JPH04134267A - Rotary sensor - Google Patents

Rotary sensor

Info

Publication number
JPH04134267A
JPH04134267A JP25796290A JP25796290A JPH04134267A JP H04134267 A JPH04134267 A JP H04134267A JP 25796290 A JP25796290 A JP 25796290A JP 25796290 A JP25796290 A JP 25796290A JP H04134267 A JPH04134267 A JP H04134267A
Authority
JP
Japan
Prior art keywords
rotor
gap
magnetoresistive element
magnetized
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25796290A
Other languages
Japanese (ja)
Other versions
JP2936684B2 (en
Inventor
Katsuyoshi Shirai
克佳 白井
Toru Watanabe
徹 渡辺
Masayuki Kondo
正行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP25796290A priority Critical patent/JP2936684B2/en
Publication of JPH04134267A publication Critical patent/JPH04134267A/en
Application granted granted Critical
Publication of JP2936684B2 publication Critical patent/JP2936684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide possibility of sensing in a wide gap range by installing a magneto resistance element with its axis dislocated by a certain dimension from the axis in the direction across the width of the magnetized surface of a rotor. CONSTITUTION:A rotary sensor is arranged so that the axis Ct of a magneto resistance element 11 is dislocated for the axis Cr in the direction across the width l of the cylindrical magnetized surface of a rotor 10, and thereby a gauge 6 can be left unsaturated while gauges 5,7,8 be saturated. Therefore, the output therefrom assumes a gradual curve, and the gap (g) between the rotor 10 and magneto resistance element 11 may also be OK even between g3 and g4, and the serviceable gap range can be set off wider than between g1 and g2 which is the serviceable gap range according to the conventional arrangement.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は車輌の車輪速検出、エンジン回転数検出等に用
いる回転センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation sensor used for detecting wheel speed, engine rotation speed, etc. of a vehicle.

[従来の技術] 車輪等の回転数を検出するのに多極着磁したロータを回
転させ、その磁束密度の変化を強磁性体式の磁気抵抗素
子にて検出することがおこなわれている。
[Prior Art] To detect the rotational speed of a wheel or the like, a multi-pole magnetized rotor is rotated, and changes in the magnetic flux density are detected using a ferromagnetic magnetoresistive element.

強磁性体式の磁気抵抗素子は第3図に示すような構成で
ある。
The ferromagnetic magnetoresistive element has a structure as shown in FIG.

第3図において1〜4は電極、5〜8はゲージを示す。In FIG. 3, 1 to 4 indicate electrodes, and 5 to 8 indicate gauges.

ゲージ5〜8はスパッタリング又は蒸着によって基板9
上に薄膜として形成され、その後エツチングによってパ
ターンニングされる。ゲージ5から8は例えばガラス等
の絶縁基板上にニッケルコバルト(NiCo)或いはニ
ッケル鉄(NiFe)等の材料を薄膜形成するものであ
る。そして、その膜厚は500〜2000オングストロ
ームで、例えばつづら折り形状となるように基板9上に
形成される。さらに、ゲージ5〜8上には保護膜として
酸化シリコン(St(la)層が形成される。ゲージ5
〜8、電極1〜4は第4図に示すようにブリッジが構成
されている。このブリッジはケージ5はゲージ7と、ゲ
ージ6はゲージ8と同じ抵抗値変化を示す。
Gauges 5 to 8 are attached to substrate 9 by sputtering or vapor deposition.
It is formed as a thin film on top and then patterned by etching. Gauges 5 to 8 are made by forming a thin film of material such as nickel cobalt (NiCo) or nickel iron (NiFe) on an insulating substrate such as glass. The film has a thickness of 500 to 2000 angstroms, and is formed on the substrate 9 in a meandering shape, for example. Further, a silicon oxide (St(la)) layer is formed as a protective film on the gauges 5 to 8.
8. Electrodes 1 to 4 are configured as a bridge as shown in FIG. In this bridge, cage 5 shows the same change in resistance as gauge 7, and gauge 6 shows the same change in resistance as gauge 8.

磁気抵抗素子11と着磁ロータ10は第5図に示すよう
に配置されている。図において12はロータ軸である。
The magnetoresistive element 11 and the magnetized rotor 10 are arranged as shown in FIG. In the figure, 12 is a rotor shaft.

磁気抵抗素子11は、ゲージ5〜8が第6図に示すよう
な矢印a方向に磁束が印加された時、第7図に示すよう
に抵抗値変化する。つまり、磁束をOから徐々に増やし
ていくとゲージ5〜8の抵抗値は減少していく。しかし
、さらに増やしていき、印加磁界がH6より大きくなる
と抵抗値変化が飽和する。
The resistance value of the magnetoresistive element 11 changes as shown in FIG. 7 when a magnetic flux is applied to the gauges 5 to 8 in the direction of arrow a as shown in FIG. 6. That is, as the magnetic flux is gradually increased from O, the resistance values of gauges 5 to 8 decrease. However, as the applied magnetic field increases further and becomes larger than H6, the change in resistance value becomes saturated.

従って、ゲージを第8図のように、ケージを磁束変化の
太きいところに配置すると、第9図に示すように出力電
圧■PPは大きくとれるが、波形が正弦波(第11図)
に近くない波形となる。
Therefore, if the gauge is placed in a place where the magnetic flux changes are large as shown in Figure 8, the output voltage ■PP can be increased as shown in Figure 9, but the waveform is a sine wave (Figure 11).
The waveform is not close to .

この波形は中央値レベルが変化すると周期が著しく変化
する。即ち第10図に示すように周期T+ とT2とで
は著しく異なった値となる。
The period of this waveform changes significantly when the median level changes. That is, as shown in FIG. 10, the values for periods T+ and T2 are significantly different.

[発明が解決しようとする課題] このような従来技術では、着磁ロータ10と磁気抵抗素
子11とのギャップg(第12図)をはなしてゲージ全
てを非飽和状態で使用すると、ギャップが或数値より大
きくなると第13図のように出力が急に低下する。
[Problem to be Solved by the Invention] In such a conventional technique, if the gap g (FIG. 12) between the magnetized rotor 10 and the magnetoresistive element 11 is removed and all the gauges are used in a non-saturated state, the gap becomes When it becomes larger than the numerical value, the output suddenly decreases as shown in FIG.

つまり、ギャップが小さくなると、波形が第10図に示
したものとなり、ギャップが大きくなると、急に出力が
小さくなる。このため、使用可能ギャップが狭くなり組
み付は精度の管理が必要となってしまう。
That is, when the gap becomes smaller, the waveform becomes as shown in FIG. 10, and when the gap becomes larger, the output suddenly becomes smaller. For this reason, the usable gap becomes narrower, and assembly precision must be controlled.

本発明は上記事情に鑑みてなされたもので、複数本のゲ
ージの一部を飽和、残りのゲージを非飽和に配置するこ
とにより、波形を飽和させず、かつ、出力電圧を可能な
かぎり大きくし、使用可能のギャップ範囲を広くとるこ
とを可能にした回転センサを提供せんとするものである
The present invention was made in view of the above circumstances, and by arranging some of the plurality of gauges to be saturated and the remaining gauges to be non-saturated, the waveform is not saturated and the output voltage is as large as possible. However, it is an object of the present invention to provide a rotation sensor that can be used over a wide range of gaps.

[課題を解決するための手段] 上記目的を達成するため、本発明は多極着磁した着磁ロ
ータの円筒形の着磁面と所定のギャップを隔てて磁気抵
抗素子を配設し、前記着磁ロータの磁束密度を検出し、
回転数を検出する回転センサにおいて、前記磁気抵抗素
子の中心軸を前記着磁ロータの着磁面の幅の中心線に対
し所定寸法ずらして配設したことを特徴としたものであ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention disposes a magnetoresistive element at a predetermined gap from the cylindrical magnetized surface of a multipolar magnetized rotor, and Detects the magnetic flux density of the magnetized rotor,
The rotation sensor for detecting the number of rotations is characterized in that the center axis of the magnetoresistive element is shifted by a predetermined dimension from the center line of the width of the magnetized surface of the magnetized rotor.

[作 用] 数本のゲージの一部を飽和、残りを非飽和に配置したの
で、磁気ロータと磁気抵抗素子とのギャップが変化して
も出力電圧の変化が急激におこらない。即ちギャップの
変化に対する出力電圧の変化のカーブがなだらかになる
[Function] Since some of the gauges are arranged in saturation and the rest in non-saturation, the output voltage does not change suddenly even if the gap between the magnetic rotor and the magnetic resistance element changes. That is, the curve of change in output voltage with respect to change in gap becomes gentle.

[実施例コ 以下、添付図面に基づいて本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の一実施例を示す磁気ロータの着磁面と
磁気抵抗素子との位置関係を示す説明図、第2図は磁気
ロータと磁気抵抗素子間のギャップと出力電圧を示す特
性図である。
Fig. 1 is an explanatory diagram showing the positional relationship between the magnetized surface of the magnetic rotor and the magnetoresistive element according to an embodiment of the present invention, and Fig. 2 is a characteristic showing the gap between the magnetic rotor and the magnetoresistive element and the output voltage. It is a diagram.

第1図に示すように本発明の回転センサは着磁ロータ1
0の円筒形の着磁面の幅βの中心線C1に対し磁気抵抗
素子11の中心線Ctをずらした位置に配置することに
より、ゲージ6を非飽和、ゲージ5,7.8を飽和する
ことができる。
As shown in FIG. 1, the rotation sensor of the present invention has a magnetized rotor 1.
By arranging the center line Ct of the magnetoresistive element 11 at a position shifted from the center line C1 of the width β of the cylindrical magnetized surface of 0, the gauge 6 is unsaturated and the gauges 5 and 7.8 are saturated. be able to.

従って、この出力は第2図に示すように、なだらかな曲
線となり、従って着磁ロータlOと磁気抵抗素子11と
のギャップg(第12図)はg3とg4の間でも良いこ
とになり、従来の配置(第8図)による使用可能ギャッ
プ範囲であるg+ とgz  (第13図)との間より
も使用可能ギャップ範囲を広くとることができる。
Therefore, this output becomes a gentle curve as shown in Fig. 2, and therefore the gap g (Fig. 12) between the magnetizing rotor lO and the magnetoresistive element 11 can be between g3 and g4, which is the conventional method. The usable gap range can be wider than the usable gap range between g+ and gz (FIG. 13) due to the arrangement of (FIG. 8).

これは、使用可能な出力電圧範囲をほぼ同じにとると、
従来の回転センサは第13図に示すようにカーブが急で
あるから、使用可能ギャップ範囲はglとgzとの間で
狭いが、本願発明の回転センサは第2図に示すようにカ
ーブがなだらかになるから、使用可能ギャップ範囲はg
、とg4との間となり、従来より広くなるからである。
This means that if we take approximately the same usable output voltage range,
The conventional rotation sensor has a steep curve as shown in Fig. 13, so the usable gap range is narrow between gl and gz, but the rotation sensor of the present invention has a gentle curve as shown in Fig. 2. Therefore, the usable gap range is g
, and g4, which is wider than before.

なお、ゲージ5,6.7を非飽和、ゲージ8を飽和で使
用しても同様な結果が得られる。
Note that similar results can be obtained by using gauges 5 and 6.7 in a non-saturated state and gauge 8 in a saturated state.

[発明の効果] 以上詳細に説明した本発明の回転センサは、磁気抵抗素
子の中心軸を着磁ロータの着磁面の幅の中心線に対しず
らして配設することにより、発生する出力電圧の波形が
正弦波的であり、着磁ロータと磁気抵抗素子間のギャッ
プが大きくなつても従来の回転センサの如く出力電圧が
著しく低下しないので広いギャップ範囲で検出可能であ
る。
[Effects of the Invention] The rotation sensor of the present invention described in detail above has the output voltage generated by arranging the central axis of the magnetoresistive element offset with respect to the center line of the width of the magnetized surface of the magnetized rotor. The waveform is sinusoidal, and even if the gap between the magnetized rotor and the magnetoresistive element becomes large, the output voltage does not drop significantly unlike in conventional rotation sensors, so detection is possible over a wide gap range.

従って、着磁ロータの振れに強い回転センサであり、従
って取付精度も下げることができ、取付が簡略化できる
Therefore, the rotation sensor is resistant to vibrations of the magnetized rotor, and therefore the mounting accuracy can be lowered and the mounting can be simplified.

さらに、従来の回転センサのように、出力波形の周期が
著しく変化せず、安定しているので周期を測定して制御
をおこなうシステム、例えば車輌のABSシステム等に
適用すると精度の良い制御が可能である。
Furthermore, unlike conventional rotation sensors, the period of the output waveform does not change significantly and is stable, so it can be applied to systems that measure the period and perform control, such as vehicle ABS systems, to achieve highly accurate control. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回転センサの磁気ロー
タの着磁面と磁気抵抗素子との位置関係を示す説明図、
第2図は同磁気ロータと磁気抵抗素子間のギャップと出
力電圧の関係を示す特性図、第3図は磁気抵抗素子の正
面図、第4図はブリッジ構成回路図、第5図は磁気抵抗
素子とロータの斜視図、第6図は磁気抵抗素子の斜視図
、第7図は磁気抵抗素子の抵抗値変化を示す特性図、第
8図は磁気抵抗素子と着磁ロータの位置関係を示す説明
図、第9図、第10図は、従来の磁気抵抗素子が出力す
る信号を示す特性図、第11図は正弦波を示す波形、第
12図は磁気ロータと磁気抵抗素子の関係を示す説明図
、第13図は従来の回転センサの磁気ロータと磁気抵抗
素子間のギャップと出力電圧の関係を示す特性図である
。 10・・・着磁ロータ、11・・・磁気抵抗素子、10
a・・・着磁面、g・・・ギャップ、Ct・・・磁気抵
抗素子の中心軸、 Or・・・着磁ロータの着磁面の幅の中心線。 特許出願人  アイシン精機株式会社 ld口 充3船 第2図 ゛を 第4目 シ1 94 −キ”イツア 第8図
FIG. 1 is an explanatory diagram showing the positional relationship between the magnetized surface of the magnetic rotor and the magnetoresistive element of a rotation sensor showing one embodiment of the present invention;
Fig. 2 is a characteristic diagram showing the relationship between the gap between the magnetic rotor and the magnetoresistive element and the output voltage, Fig. 3 is a front view of the magnetoresistive element, Fig. 4 is a bridge configuration circuit diagram, and Fig. 5 is the magnetoresistive element. Figure 6 is a perspective view of the element and rotor, Figure 6 is a perspective view of the magnetoresistive element, Figure 7 is a characteristic diagram showing the resistance value change of the magnetoresistive element, Figure 8 is the positional relationship between the magnetoresistive element and the magnetized rotor. Explanatory diagrams, Figures 9 and 10 are characteristic diagrams showing signals output by conventional magnetoresistive elements, Figure 11 is a waveform showing a sine wave, and Figure 12 shows the relationship between the magnetic rotor and the magnetoresistive element. The explanatory diagram, FIG. 13, is a characteristic diagram showing the relationship between the output voltage and the gap between the magnetic rotor and the magnetoresistive element of a conventional rotation sensor. 10... Magnetized rotor, 11... Magnetoresistive element, 10
a... Magnetized surface, g... Gap, Ct... Central axis of the magnetoresistive element, Or... Center line of the width of the magnetized surface of the magnetized rotor. Patent Applicant: Aisin Seiki Co., Ltd. Figure 2: Figure 4: Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1) 多極着磁した着磁ロータの円筒形の着磁面と所
定のギャップを隔てて磁気抵抗素子を配設し、前記着磁
ロータの磁束密度を検出し、回転数を検出する回転セン
サにおいて、 前記磁気抵抗素子の中心軸を前記着磁ロータの着磁面の
幅の中心線に対し所定寸法ずらして配設したことを特徴
とする回転センサ。
(1) Rotation in which a magnetic resistance element is arranged at a predetermined gap from the cylindrical magnetized surface of a multi-pole magnetized rotor, and the magnetic flux density of the magnetized rotor is detected to detect the number of rotations. A rotation sensor, wherein the center axis of the magnetoresistive element is shifted by a predetermined dimension from the center line of the width of the magnetized surface of the magnetized rotor.
JP25796290A 1990-09-27 1990-09-27 Rotation sensor Expired - Lifetime JP2936684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25796290A JP2936684B2 (en) 1990-09-27 1990-09-27 Rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25796290A JP2936684B2 (en) 1990-09-27 1990-09-27 Rotation sensor

Publications (2)

Publication Number Publication Date
JPH04134267A true JPH04134267A (en) 1992-05-08
JP2936684B2 JP2936684B2 (en) 1999-08-23

Family

ID=17313632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25796290A Expired - Lifetime JP2936684B2 (en) 1990-09-27 1990-09-27 Rotation sensor

Country Status (1)

Country Link
JP (1) JP2936684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077910A1 (en) * 2006-01-05 2007-07-12 Matsushita Electric Industrial Co., Ltd. Device for detecting rotation angle and torque
WO2007094196A1 (en) * 2006-02-16 2007-08-23 Matsushita Electric Industrial Co., Ltd. Torque detector and rotating angle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077910A1 (en) * 2006-01-05 2007-07-12 Matsushita Electric Industrial Co., Ltd. Device for detecting rotation angle and torque
WO2007094196A1 (en) * 2006-02-16 2007-08-23 Matsushita Electric Industrial Co., Ltd. Torque detector and rotating angle detector

Also Published As

Publication number Publication date
JP2936684B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US4668914A (en) Circular, amorphous metal, Hall effect magnetic field sensor with circumferentially spaced electrodes
JP2008534926A (en) Angular position detection using multiple rotary magnetic sensors
JP2796391B2 (en) Physical quantity detection method and physical quantity detection device, servo motor using these methods and devices, and power steering device using this servo motor
CN110617840B (en) Systems and methods for angle sensing using magnets having magnetization configurations
EP3151017B1 (en) Amr speed and direction sensor for use with magnetic targets
US4875008A (en) Device for sensing the angular position of a shaft
JPH07181194A (en) Magnetic sensor
JPH04134267A (en) Rotary sensor
JP2003149260A (en) Position deciding device for motion sensor element
JP2980215B2 (en) Magnetic sensor
JP3186656B2 (en) Speed sensor
JPS6311672Y2 (en)
JP2007516437A (en) Magnet sensor device
JPH0266479A (en) Magnetoresistance effect element
JPH06224488A (en) Magnetoresistance element
JP4211278B2 (en) Encoder
JPH069306Y2 (en) Position detector
JP5959686B1 (en) Magnetic detector
JPH0217476A (en) Differential type magnetoresistance effect element
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JPH0634711Y2 (en) Magnetic sensor
JP3643222B2 (en) Magnetoresistive element and magnetic linear measuring device
JPH0320779Y2 (en)
JPH081387B2 (en) Magnetic sensor
JP2001249029A (en) Rotation detection sensor