WO2007094196A1 - Torque detector and rotating angle detector - Google Patents

Torque detector and rotating angle detector Download PDF

Info

Publication number
WO2007094196A1
WO2007094196A1 PCT/JP2007/051971 JP2007051971W WO2007094196A1 WO 2007094196 A1 WO2007094196 A1 WO 2007094196A1 JP 2007051971 W JP2007051971 W JP 2007051971W WO 2007094196 A1 WO2007094196 A1 WO 2007094196A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
magnetic
rotation angle
target
detection
Prior art date
Application number
PCT/JP2007/051971
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Sasanouchi
Kouji Oike
Kiyotaka Uehira
Kouichi Santo
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007094196A1 publication Critical patent/WO2007094196A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets

Definitions

  • the present invention relates to a torque detection device and a rotation angle detection device used for power steering of various vehicles.
  • Patent Document 1 Conventionally, as a torque detection method using a rotation angle sensor, for example, a method shown in Patent Document 1 is known.
  • FIG. 17 is a diagram for explaining a torque detection method using a conventional rotation angle sensor 100.
  • the rotation angle sensor 100 includes a gear unit 59.
  • the gear portion 59 is fixedly attached to a rotation shaft (not shown) whose rotation angle is to be detected via an engagement panel 60.
  • the gear part 59 meshes with the gear part 62.
  • a code plate 61 having a plurality of magnetic poles magnetized on the outer peripheral end face is attached to the gear portion 62.
  • the rotation angle sensor 100 includes a detection element 63 provided to face the magnetic pole.
  • the detection element 63 detects the rotation angle by counting the magnetic poles passing within the unit time.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-194007
  • the present invention has been made in view of the above-described problems, and provides a torque detection device and a rotation angle detection device with high detection accuracy.
  • the torque detection device of the present invention includes a first rotating body coupled to the input shaft side of the shaft portion to be detected, a second rotating body coupled to the output shaft side of the shaft portion, A first detector for detecting a rotation angle of the first rotating body; a second detector for detecting a rotation angle of the second rotating body; and the rotation angles of the first rotating body and the second rotating body. It is characterized by having a torque detector that detects torque from the difference.
  • the first rotating body and the second rotating body are directly connected to the shaft portions to be detected, and the torque is detected from the difference in rotation angle between the rotating bodies. Therefore, it is possible to provide a torque detection device with high detection accuracy that is not easily affected by knock lashes or the like.
  • the rotation angle detection device of the present invention detects the rotation angle of the torque detection device of the present invention, a third rotation body that rotates in synchronization with the first rotation body, and the third rotation body.
  • a third detection unit, and a rotation angle differential force between the first rotation body and the third rotation body, and an absolute angle detection unit that detects the absolute rotation angle of the first rotation body and the third rotation body is characterized by.
  • the absolute angle detection unit may be configured to detect an absolute rotation angle of the second rotating body and a rotational angle difference force between the second rotating body and the third rotating body.
  • the absolute rotation angle of the second rotating body can be further detected.
  • the first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in the circumferential direction
  • the second rotating body has magnetic poles having different polarities alternately arranged in the circumferential direction
  • the third rotating body has a third target in which magnetic poles having different polarities are alternately arranged in the circumferential direction, and includes a first detection unit, a second detection unit, and a second target.
  • Each of the three detectors has a magnetic field of a magnetic pole disposed on each of the first target, the second target, and the third target. It may be configured to detect a change.
  • the first target and the second target have a multi-pole ring magnet force in which magnetic poles having different poles are alternately arranged on the outer peripheral surface, and the third target has a configuration having a bar magnet force. Also good.
  • the first magnetic sensing element arranged to face the magnetic pole of the first target
  • the second magnetic sensing element arranged to face the magnetic pole of the second target
  • the magnetic pole of the third target And a third magnetic sensing element disposed opposite to each other, the first detection unit detects a magnetic field change by the first magnetic detection element, and the second detection unit detects the magnetic field change by the second magnetic detection element.
  • the third detection unit may detect the magnetic field change by the third magnetic sensing element.
  • the magnetic field change can be detected more accurately by using the magnetic sensing element.
  • a fourth rotating body connected to the shaft portion and rotating in synchronization with the first rotating body may be provided, and the third rotating body may be configured to rotate by the rotation of the fourth rotating body. Good.
  • the absolute rotation angle of the first rotating unit and the second rotating unit are compared, and an abnormality detecting unit that detects an abnormality when the difference exceeds a predetermined value is provided. Also good.
  • a memory for storing signal levels of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit, and a sine wave signal depending on the signal level And a normal part that performs normality of the cosine wave signal.
  • sinusoidal signals output from the first detection unit, the second detection unit, and the third detection unit may include a confirmation unit that confirms whether the signal level is within a predetermined value.
  • a memory for storing the amplitude centers of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit, and the sine wave signal and A configuration may be provided that includes a normal key section that performs normal control of the cosine wave signal.
  • the configuration further includes a confirmation unit that confirms whether the amplitude center of the signal output from the first detection unit, the second detection unit, and the third detection unit is within a predetermined value. Also good.
  • the rotation angle can be detected with high accuracy by excluding the influence when the apparatus is abnormal.
  • the first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in the circumferential direction
  • the second rotating body has a polarity in the circumferential direction.
  • the second target has a second target in which different magnetic poles are alternately arranged, the first magnetic sensing element is disposed opposite to the magnetic pole of the first target, and the second magnetic is disposed opposite to the magnetic pole of the second target.
  • a detection element; a failure detection magnetic detection element provided at a position shifted from at least one of the first magnetic detection element and the second magnetic detection element; the first magnetic detection element and the second magnetic detection element; A failure determination unit that determines a failure by comparing at least one of these and an output from the failure detection magnetic sensing element may be used.
  • the first magnetic sensing element is provided at a position shifted from the center of the peripheral surface of the first target to the input shaft side or the output shaft side in the direction along the shaft portion.
  • the element may be provided at a position shifted to the input shaft side or the output shaft side in the direction along the shaft part from the center of the peripheral surface of the second target.
  • the first magnetic sensing element is provided to be shifted from the center of the peripheral surface of the first target toward the input shaft in the direction along the shaft portion, and the second magnetic sensing element is the second magnetic sensing element.
  • the magnetic sensing element for failure determination is provided with a center of the first target and a center of the second target. A configuration provided between the two may be used.
  • the failure of the two rotating parts can be further determined by one failure detection magnetic sensing element.
  • first target and the second target may be configured to have a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged on the outer peripheral surface.
  • a third rotating body that rotates in synchronization with the first rotating body, and a third rotating body that is held by the third rotating body and has magnetic poles having different polarities alternately arranged in the rotation direction of the third rotating body.
  • the target, a third detection unit for detecting the rotation angle of the third rotating body, and a third magnetic sensing element arranged opposite to the magnetic pole of the third target, and the third detection unit includes: The magnetic field change is detected by the third magnetic sensing element, and the failure judgment unit is configured to judge the failure by comparing the magnetic field changes detected by the first magnetic sensing element and the third magnetic sensing element. May be.
  • the rotation angle detection device of the present invention includes the first rotation body and the third rotation body based on the rotation angle difference between the torque detection device of the present invention and the first rotation body and the third rotation body.
  • the absolute angle detection part which detects this absolute rotation angle may be provided.
  • the absolute rotation angles of the first rotating body and the third rotating body can be detected while further having a failure determination function.
  • a fourth rotating body connected to the shaft portion and rotating synchronously with the first rotating body may be provided, and the third rotating body may be configured to rotate by the rotation of the fourth rotating body. Good.
  • FIG. 1 is a cross-sectional view of a torque detector according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the torque detector when the AA cross section in FIG. 1 is viewed in the direction of the arrow.
  • FIG. 3 is a block diagram showing an electrical configuration of the torque detection device.
  • FIG. 4A is caused by a magnetic field change with respect to the rotation angle (mechanical angle) of each rotating body when the first rotating body, the second rotating body, or the third rotating body is rotated.
  • FIG. 6 is a diagram illustrating an example of outputs from a first detection unit, a second detection unit, and a third detection unit.
  • FIG. 4B is a diagram showing a rotation angle (electrical angle) of each rotating body calculated using the signal output shown in FIG. 4A.
  • FIG. 5A is a diagram showing a characteristic waveform of the rotation angle (electrical angle) of the first rotating body with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body.
  • FIG. 5B is a diagram showing a characteristic waveform of the rotation angle (electrical angle) of the third rotating body with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body.
  • FIG. 5C is a diagram showing a characteristic waveform of the rotation angle difference (electrical angle difference) between the first rotation body and the third rotation body with respect to the absolute rotation angle (mechanical angle) of the fourth rotation body. It is.
  • FIG. 6 is a diagram showing an example of a torque characteristic diagram detected by the torque detector.
  • FIG. 7A is a diagram showing a rotation angle (electrical angle) of the third rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
  • FIG. 7B is a diagram showing a rotation angle difference (electrical angle difference) between the first rotating body and the third rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
  • FIG. 7C is a diagram showing a rotation angle (electrical angle) of the first rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
  • FIG. 8 shows the first to third magnetic sensing elements, the amplifying unit, etc.
  • FIG. 6 is a diagram for explaining a method of suppressing the sensitivity variation of the apparatus and preventing the occurrence of a rotation detection error during operation of the apparatus.
  • FIG. 9 is a cross-sectional view showing a configuration of a torque detection device according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the same torque detector when the AA cross section in FIG. 9 is viewed in the direction of the arrow.
  • FIG. 11A is a perspective view schematically showing the arrangement relationship between the first and second magnetic detection elements and the failure detection magnetic detection element in part A of FIG.
  • FIG. 11B is a side view schematically showing the arrangement relationship between the first and second magnetic detection elements and the failure detection magnetic detection element in part A of FIG.
  • FIG. 12 is a block diagram showing an electrical configuration of the torque detection device.
  • FIG. 13 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
  • FIG. 14 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
  • FIG. 15 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
  • FIG. 16 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
  • FIG. 17 is a diagram for explaining a torque detection method using a conventional rotation angle degree sensor.
  • FIG. 1 is a cross-sectional view of the torque detection device 1 according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the torque detection device 1 taken along the line AA in FIG.
  • FIG. 3 is a block diagram showing an electrical configuration of the torque detector 1.
  • the torque detection device 1 detects torque generated in the shaft portion 8 that is the same rigid body, in which the input shaft 4 and the output shaft 6 are connected to both ends of the torsion bar 2. It is a device that can do.
  • the torque detector 1 is connected to the first rotating body 10 connected to the input shaft 4 side of the shaft portion 8 and to the output shaft 6 side of the shaft portion 8.
  • a second rotor 12 a first detector 11 that detects the rotation angle of the first rotor 10, and a second detector 13 that detects the rotation angle of the second rotor 12.
  • the first rotating body 10 has a first target 14 that also has a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged in the circumferential direction.
  • the second rotating body 12 also has a second target 16 having a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged in the circumferential direction.
  • the number of magnetic poles arranged on each of the first target 14 and the second target 16 is the same.
  • a first magnetic sensing element 18 and a second magnetic sensing element 20 for detecting a change in the magnetic field are arranged at positions facing the respective magnetic poles of the first target 14 and the second target 16. .
  • the torque detection device 1 includes a third rotating body 22 that rotates synchronously with the first rotating body 10 and rotates around a rotation axis different from that of the first rotating body 10. Furthermore, the torque detection device 1 includes a third detection unit 23 that detects the rotation angle of the third rotator 22.
  • the torque detection device 1 further includes a fourth rotating body 24 connected to the input shaft 4 side of the shaft portion 8.
  • the third rotating body 22 is arranged so as to rotate in synchronization with the rotation of the fourth rotating body 24.
  • Each of the third rotating body 22 and the fourth rotating body 24 has a gear, and Rotate with the teeth engaged.
  • the ratio of the rotational speeds of the third rotating body 22 and the fourth rotating body 24 is determined by the gear ratio.
  • the diameter of the fourth rotating body 24 is made larger than the diameter of the third rotating body 22, and the number of gears of the third rotating body 22 is smaller than the number of gears of the fourth rotating body 24. is doing.
  • the third rotating body 22 has a third target 26 that also has a bar magnet force in which different magnetic poles are arranged at both ends.
  • a third magnetic sensing element 28 for detecting a change in the magnetic field is arranged.
  • the third target 26 is not limited to a bar magnet, and can be a multipolar ring magnet in which magnetic poles having different polarities are alternately arranged in the circumferential direction.
  • the first detection unit 11 detects a change in the magnetic field due to the magnetic pole disposed on the first target 14 from the output from the first magnetic detection element 18.
  • the second detection unit 13 detects a change in the magnetic field due to the magnetic pole disposed on the second target 16 from the output from the second magnetic sensing element 20.
  • the third detection unit 23 detects a change in the magnetic field due to the magnetic pole disposed on the third target 26 from the output from the third magnetic sensing element 28.
  • a magnetoresistive element also referred to as an MR element
  • the detection signals detected by the first detection unit 11, the second detection unit 13, and the third detection unit 23 are amplified to a predetermined amplitude by the amplifier 30. Is done.
  • Each amplified signal is processed through an AZD converter in the CPU 32 (microcomputer), and between the CPU 32 and the EEPROM (Electronically Erasable and Programmable Read Only Memory) 34 of the nonvolatile memory. The information is read and written as needed. Then, the CPU 32 that is a torque detection unit detects torque from the rotation angle difference between the first rotating body 10 and the second rotating body 12.
  • the CPU 32 also functions as a rotation angle detection unit, and from the outputs of the first detection unit 11, the second detection unit 13, and the third detection unit 23, the first rotary body 10, the second rotation unit 10 Rotating body 12 and The rotation angle (electrical angle) of each of the third rotating bodies 22 is detected.
  • the CPU 32 also functions as an absolute angle detection unit, and the rotation angle difference (electrical angle difference) between the first rotating body 10 and the third rotating body 22, and the second rotating body 12 and the third rotating body 22.
  • the absolute rotation angles of the first rotating body 10, the second rotating body 12, and the third rotating body 22 can be detected from the rotation angle difference (electrical angle difference) of the rotating body 22.
  • the torque detection device 1 also functions as a rotation angle detection device.
  • FIG. 4A shows the change in magnetic field with respect to the rotation angle (mechanical angle) of each rotating body when the first rotating body 10, the second rotating body 12, or the third rotating body 22 is rotated.
  • FIG. 6 is a diagram showing an example of the respective outputs of the first detection unit 11, the second detection unit 13, and the third detection unit 23 that are caused.
  • FIG. 4B is a diagram showing the rotation angle (electrical angle) of each rotating body calculated using the signal output shown in FIG. 4A.
  • a sine wave signal 38 and a cosine wave signal 40 corresponding to the number of magnetic poles are output for each rotation of the first to third rotating bodies 10, 12, and 22 (rotation angle (mechanical angle) per 360 degrees). Detected as a signal.
  • the CPU 32 calculates an arctangent signal based on the sine wave signal 38 and the cosine wave signal 40, and calculates the rotation angle (electrical angle) of each rotating body as shown in FIG. 4B. be able to.
  • the triangular wave signal 42 for two cycles corresponds to the rotation angle (electrical angle) of each rotating body. ) Is calculated as a signal indicating.
  • FIG. 5A is a diagram showing a characteristic waveform 44 of the rotation angle (electrical angle) of the first rotating body 10 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24.
  • FIG. 5B is a diagram showing a characteristic waveform 46 of the rotation angle (electrical angle) of the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24.
  • FIG. 5C is a diagram illustrating a characteristic waveform 48 of the rotation angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24.
  • the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is assumed to be 0 to 1800 deg. This corresponds to five rotations of the shaft 8.
  • the third rotating body 22 connected to the fourth rotating body 24 by a gear also rotates.
  • the third rotating body 22 is compared with the fourth rotating body 24. And aZ b times faster.
  • the first rotating body 10 is rotated during one rotation.
  • the magnetic sensor 18 detects c magnetic field (polarity) changes.
  • FIG. 5A the rotation angles (electrical angles) of the first rotating body 10 and the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24 are shown in FIG. 5A and FIG.
  • the rotation angle (electrical angle) is as shown in 5B.
  • the number of magnetic poles of each of first target 14 and third target 26 and the number of gears of each of third rotating body 22 and fourth rotating body 24 are appropriately selected.
  • the period of the characteristic waveform (triangular wave) 44 of the rotating angle (electrical angle) of the first rotating body 14 and the third rotating body 22 The rotation angle (electrical angle) of the characteristic waveform (triangular wave) 46 period can be made different.
  • the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is
  • the characteristic waveform 48 of the rotation angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22 can be uniquely determined. Therefore, if the rotation angle difference (electrical angle difference) between the first rotating body 10 and the third rotating body 22 is known, the absolute rotation angle (mechanical angle) of the fourth rotating body 24 can be uniquely determined. Can do.
  • the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is known, the absolute rotation angle (mechanical angle) of the first rotating body 10 is calculated from the relationship shown in FIGS. 5A and 5C. be able to. Further, the absolute rotation angle (mechanical angle) of the third rotating body 22 can be calculated from the relationship shown in FIGS. 5B and 5C.
  • Magnetic detection element 18 of 1 detects a magnetic field change.
  • the change of the magnetic field detected by the first magnetic detection element 18 is detected by the first detection unit 11 and output to the CPU 32 as a detection signal.
  • the second rotating body 12 fitted to the output shaft 6 is also rotated by the rotation of the shaft portion 8.
  • Detection element 20 detects a magnetic field change.
  • the change in the magnetic field detected by the second magnetic detection element 18 is detected by the second detection unit 13 and output to the CPU 32 as a detection signal.
  • the third rotating body 22 is also rotated by the rotation of the shaft portion 8.
  • the third target 26 held by the third rotating body 22 also rotates, and the third magnetic sensing element 28 changes the magnetic field. Is detected.
  • the change in the magnetic field detected by the third magnetic detection element 28 is detected by the third detection unit 23 and output to the CPU 32 as a detection signal.
  • the CPU 32 can calculate the torque by taking the difference (mechanical angle) of the absolute rotation angle between the first rotating body 10 and the second rotating body 12 and multiplying this by the torsion bar constant.
  • FIG. 6 is a diagram showing an example of torque characteristics detected by the torque detection device 1, and the first rotating body 10 with respect to the rotation angle (mechanical angle) of the input shaft 4 or the output shaft 6 is shown.
  • a torque characteristic wave 37 obtained from the difference between the absolute rotation angles of the second rotating body 12 and the second rotating body 12 is shown.
  • FIG. 7A to FIG. 7C are diagrams for explaining a method of performing the absolute rotation angle detection of the rotating body with higher accuracy.
  • FIG. 7A shows the rotation angle (electrical angle) of the third rotating body 22 relative to the absolute rotation angle (mechanical angle) of the fourth rotating body 24, and FIG. 7B shows the absolute rotation angle of the fourth rotating body 24.
  • FIG. 7C shows the rotation angle difference (electrical angle) of the first rotating body 10 and the third rotating body 22 with respect to the rotation angle (mechanical angle).
  • FIG. 7C shows the absolute rotation angle (mechanical angle) of the fourth rotating body 24.
  • the rotation angle (electrical angle) of the first rotating body 10 is shown.
  • the rotation angle detection of the first rotating body 10 and the third rotating body 22 includes mechanical errors, element circuit errors, and the like. Therefore, the detection error (E1) is also included in the rotation angle difference between the first rotating body 10 and the third rotating body 22.
  • This detection error (E1) also appears as a detection error (E2) when calculating the absolute rotation angle (mechanical angle) of the fourth rotating body 24 as well as the rotation angle differential force.
  • E2 the detection error included in the rotation angle difference of the rolling element 22 on the detection of the absolute rotation angle of the fourth rotating body 24 becomes large.
  • the detection error (E2) of the absolute rotation angle of the fourth rotating body 24 is smaller than the period (W1) of the triangular wave in the rotation angle detection of the first rotating body 10, the rotation angle difference
  • the position of the period (W1) can be determined based on the characteristic waveform 48, but in the case shown in FIGS. 7A to 7C, the detection error (E2) is larger than the period (W1). Therefore, it is difficult to accurately determine the position of the period (W1) of the first rotating body 10. Therefore, it is necessary to narrow the rotation detection range of the characteristic waveform 48 (increase the accuracy) and reduce the detection error (E2).
  • the detection error (E2) of the rotation angle of the fourth rotating body 24 is larger than the period (W2) of the triangular wave in the detection of the rotation angle of the third rotating body 22.
  • the position of the period (W2) of the third rotator 22 is determined from the characteristic waveform 48, and then the rotation angle of the first rotator 10 is determined from the relationship between the characteristic waveform 46 and the characteristic waveform 44. Determine the position of the detection cycle (W1).
  • the rotation angle detection error (E4) of the fourth rotating body 24 corresponding to the rotation angle detection error (E3) of the third rotating body 22 is Since the rotation detection range of the third detector 23 is narrow (resolution is high) and the gradient of the characteristic waveform 46 is large, the rotation angle detection cycle (W1) of the first rotating body 10 can be made smaller.
  • the absolute rotation angle (mechanical angle) of the fourth rotating body calculated based on the relationship of FIG. 7B is used to obtain the characteristics from the characteristic waveform 46 shown in FIG. 7A.
  • the absolute rotation angle (mechanical angle) of the rotating body 3 is calculated, and then the position of the period W1 in the characteristic waveform 44 is determined using the characteristic waveform 46 to determine the absolute rotation angle ( (Mechanical angle) can be detected.
  • the detection accuracy of the absolute rotation angle (mechanical angle) of the first rotating body 10 without changing the rotation detection range of the characteristic waveform 48 can be increased.
  • the second rotating body 12 In the torque detection device 1, when the first rotating body 10 rotates, the second rotating body 12 also rotates via the torsion bar 2. Between the input shaft 4 and the output shaft 6, a predetermined torque value is exceeded. If the rotational angle difference between the first rotating body 10 and the second rotating body 12 exceeds a predetermined value, the mechanical error or the element circuit It can be judged as an abnormality. Those skilled in the art can determine the predetermined value empirically or by calculating a predetermined torque value force.
  • the first target 14 when the first rotating body 10 rotates, the first target 14 also rotates. As the first target 14 rotates, the magnetic field also changes, and this magnetic field change is detected by the first detector 11.
  • the first detector 11 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG. 4A in response to this magnetic field change.
  • the second detector 13 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG.
  • the CPU 32 calculates the absolute rotation angle of the fourth rotating body 24 from the relationships shown in FIGS.
  • Difference in rotation angle between first rotating body 10 and second rotating body 12 (electrical angle difference) with respect to (mechanical angle) Force Calculate absolute rotation angle between first rotating body 10 and second rotating body 12 . If the origins of the absolute rotation angles (mechanical angles) of the first rotating body 10 and the second rotating body 12 are matched, the absolute rotation angles of the first rotating body 10 and the second rotating body 12 The difference will be less than or equal to a predetermined value unless there is a particular abnormality.
  • the CPU 32 detects the absolute rotation angle difference (mechanical angle) between the first rotating body 10 and the second rotating body 12, and notifies the abnormality when the value exceeds a predetermined value. Generate a signal.
  • the third detector 23 every time the fourth rotating body 24 rotates (360 X (bZa) Z2) deg, the third detector 23 generates a sine wave signal 38 and a cosine wave signal 40 for a period (electrical). Angle 180deg) A changing signal will be output.
  • 360 / c By correcting with (360 X (bZa) Z2)), the value will be below the specified value as long as there is no abnormality in the device. This specified value can be calculated experimentally.
  • the CPU 32 detects a difference in rotational angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22, and when the value exceeds a predetermined value, Generate a notification signal.
  • FIG. 5 is a diagram for explaining this method.
  • the magnetic field also changes.
  • the first detector 11 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG. These signals are input to the CPU 32 via the amplifier 30, and the arc tangent signal is calculated based on the sine wave signal 38 and the cosine wave signal 40 in the CPU 32.
  • the signal level (S1) of the sine wave signal 38 and the cosine wave are applied. If the signal level (S2) of the signal 40 slightly changes due to sensitivity variations of the first magnetic sensing element 18 and the amplifying unit 30, the accuracy of the calculated arctangent signal decreases.
  • the maximum value of the amplitude of the sine wave signal 38 and the cosine wave signal 40 is the signal level.
  • the switch 49 when the switch 49 is operated to enter the sensitivity memory mode, the first rotating body 10 and the second rotating body 12 are rotated by at least (360 Zc) deg.
  • the signal levels (sensitivities) of the sine wave signal 38 and the cosine wave signal 40 output from the detection unit 11 of 1 are calculated and stored in the EEPROM 34 which is a nonvolatile memory.
  • the signal level of the second detection unit 13 that detects the rotation angle of the second rotating body 12 is stored in the EEPROM 34 that is a non-volatile memory.
  • switch 49 is operated to turn off the sensitivity memory mode.
  • the CPU 32 functions as a normal part, and the first detection unit 11 and the second detection unit 13 have a signal level of the output sine wave signal 38 and cosine wave signal 40 and the stored signal level. -Calculate the rotation angle value by calculating the force tangent signal by normalizing it to match.
  • the fourth rotating body 24 is rotated so that the third rotating body 22 rotates by 180 degrees or more. Then, the signal levels (sensitivity) of the sine wave signal 38 and the cosine wave signal 40 shown in FIG. 4A calculated from the third detection unit 23 are calculated and stored in the EEPROM 34 which is a nonvolatile memory.
  • the CPU 32 matches the signal level stored as described above with the signal levels of the sine wave signal 38 and the cosine wave signal 40 output from the third detection unit 23. Normalize and calculate the arc tangent signal to determine the rotation angle value.
  • the signal output values from the first to third detection units 11, 13, and 23 at desired positions of the rotating body, or these signals By storing the absolute rotation angle value calculated from the output in the memory, it is possible to detect the absolute rotation angle of the desired position force. Also, by storing these values without applying torque, the origin for torque detection can be set.
  • a signal indicating that the position of the rotating body is a desired position can be sent from the external device 52 as an electrical signal, as in the specific position determination signal line 50.
  • a specific position can be specified without performing mechanical operation.
  • FIG. 9 is a cross-sectional view of the torque detection device 3 according to the second embodiment of the present invention.
  • FIG. 0 is an arrow view of the AA section in FIG.
  • FIG. 11A is a perspective view showing an example of an arrangement relationship between the first and second magnetic detection elements 18 and 20 and the failure detection magnetic detection element 29 in part A of FIG.
  • FIG. 12 is a side view of the same, and
  • FIG. 12 is a block diagram showing an electrical configuration of the torque detector 3.
  • the same components as those in the torque detection device 1 described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the torque detection device 3 differs from the torque detection device 1 in that the torque detection device 3 includes the first detection unit 11, the second detection unit 13, the first target 14, the second target 16, and the like. It is equipped with a failure judgment function that judges the failure of the equipment.
  • the second target 16 is positioned at a position shifted in the rotational direction of the second rotating body 12 with respect to the second magnetic sensing element 20.
  • a failure detection magnetic sensing element 29 is provided so as to face the magnetic pole arranged in FIG.
  • the CPU 32 functions as a failure determination unit that determines a failure by comparing the magnetic field change detected from the second magnetic detection element 20 and the magnetic field change detected from the failure detection magnetic detection element 29.
  • the first magnetic sensing element 18 is located below the center of the peripheral surface of the first target 14 (in the direction along the axis 8).
  • the input shaft is shifted to 4).
  • the second magnetic sensing element 20 is provided so as to be shifted from the center of the peripheral surface of the second target 16 to the upper side (the output shaft 6 side in the direction along the shaft 8).
  • the failure detection magnetic detection element 29 is disposed adjacent to the second magnetic detection element 20 at a position shifted in the rotation direction of the second rotating body 12. .
  • the CPU 32 is based on the comparison between the magnetic field change detected by the second magnetic detection element and the magnetic field change detected by the failure determination magnetic detection element 29 arranged in the vicinity of the second target 16. ! / Hurry to judge the failure.
  • a deposit such as a metal adheres to the second target 16
  • the magnetic field change of the magnetic pole that is magnetically affected due to the object is detected, while the other detects the magnetic field change of the magnetic pole in the state under the magnetic influence.
  • the second magnetic sensing element 20 and the failure determination magnetic sensing element 29 have a phase difference in accordance with the circumferential angle difference between them.
  • the phase difference of this characteristic waveform changes or the amplitude changes.
  • the CPU 32 determines a failure by detecting this change.
  • failure detection magnetic detection element 29 is provided in the vicinity of the second magnetic detection element 20 in the above-described example, but the present invention is not limited to this example.
  • a failure detection magnetic detection element 29 may be provided in the vicinity of the first magnetic detection element 18.
  • the CPU 32 determines the first type based on the comparison between the magnetic field change detected by the first magnetic detection element 18 and the magnetic field change detected by the failure determination magnetic detection element 29. Judgment of adhesion of metal objects to the get 14 or failure of the first detection unit 11 is made.
  • FIGS. 13 to 16 are schematic views showing other arrangement configurations of the first magnetic detection element 18, the second magnetic detection element 20, and the failure determination magnetic detection element 29, respectively.
  • the failure determination magnetic sensing element 29 in FIG. 13 is arranged on the opposite side of the first target 14 from the side where the first magnetic sensing element 18 is provided.
  • the two failure determination detection elements 29 have the first magnetic detection element 18 and the second target 16 with respect to the first target 14 and the second target 16, respectively.
  • the magnetic sensing element 20 is disposed at a position opposite to the position where it is provided.
  • the two failure determination detecting elements 29 are shifted in the rotational direction of the first target 14 with respect to the first magnetic detecting element 18, and the second The magnetic sensing elements 20 are arranged at adjacent positions shifted in the rotation direction of the second target 16. Furthermore, in the example shown in FIG. 16, the first magnetic sensing element 18 is provided shifted downward from the peripheral center of the first target 14, and the second magnetic sensing element 20 is Second target
  • a failure can be determined using the 8 and second magnetic detection elements 20 and one failure detection magnetic detection element 29.
  • the failure was detected by the first magnetic detection element 18 and the third magnetic detection element 28 without using the failure detection magnetic detection element 29. It is also possible to judge failure by comparing magnetic field changes.
  • the period of the magnetic field change of the magnetic pole detected by the first magnetic sensing element 18 and the third magnetic sensing element 28 is It is constant.
  • the rotation cycle of the first rotating body 10 is used as a reference, a certain phase difference is generated due to the difference in the cycle.
  • this abnormality 32 By detecting this abnormality 32, it can be determined that a deposit has adhered to the first target 14 or the third target 26 and has failed.

Abstract

A torque detector comprises a first rotary body connected to the input shaft side of a shaft part to be detected, a second rotary body connected to the output shaft side of the shaft part, a first detection part for detecting the rotating angle of the first rotary body, a second detection part for detecting the rotating angle of the second rotary body, and a torque detection part for detecting a torque by the difference in rotating angle between the first and second rotary bodies.

Description

トルク検出装置および回転角度検出装置  Torque detection device and rotation angle detection device
技術分野  Technical field
[0001] 本発明は、各種車両のパワーステアリング等に用いられるトルク検出装置および回 転角度検出装置に関する。  The present invention relates to a torque detection device and a rotation angle detection device used for power steering of various vehicles.
背景技術  Background art
[0002] 従来から、回転角度センサを用いたトルク検出方式として、例えば特許文献 1に示 されたような方式が知られて 、る。  Conventionally, as a torque detection method using a rotation angle sensor, for example, a method shown in Patent Document 1 is known.
[0003] 図 17は、従来の回転角度センサ 100を用いたトルク検出方式について説明するた めの図である。 FIG. 17 is a diagram for explaining a torque detection method using a conventional rotation angle sensor 100.
[0004] 回転角度センサ 100は、歯車部 59を備える。歯車部 59は、回転角度を検出したい 回転軸(図示せず)に、係合パネ 60を介して固定して取り付けられる。歯車部 59は歯 車部 62とかみあっている。歯車部 62には、外周端面に複数の磁極を着磁されたコー ド板 61が取り付けられている。  The rotation angle sensor 100 includes a gear unit 59. The gear portion 59 is fixedly attached to a rotation shaft (not shown) whose rotation angle is to be detected via an engagement panel 60. The gear part 59 meshes with the gear part 62. A code plate 61 having a plurality of magnetic poles magnetized on the outer peripheral end face is attached to the gear portion 62.
[0005] このような構成により、検出対象となる回転軸の回転にしたがって歯車部 59が回転 し、これにより歯車部 62が回転する。そして、歯車部 62の回転により、コード板 61に 設けられた磁極が回転する。 [0005] With such a configuration, the gear portion 59 rotates according to the rotation of the rotation shaft to be detected, and thereby the gear portion 62 rotates. The magnetic poles provided on the code plate 61 are rotated by the rotation of the gear portion 62.
[0006] 回転角度センサ 100は、磁極に対向するように設けられた検知素子 63を備える。 [0006] The rotation angle sensor 100 includes a detection element 63 provided to face the magnetic pole.
検知素子 63は、単位時間内に通過する磁極をカウントすることにより、回転角度を検 出する。  The detection element 63 detects the rotation angle by counting the magnetic poles passing within the unit time.
[0007] また、このような機構を、トーシヨンバーを介して連結された二つの軸それぞれに取 り付けることにより、 2本の軸間にトルクが作用して軸間のねじれが発生したときに、各 々の軸の回転角度を比較することによって、作用したトルクの量を検出することができ た。  [0007] Further, by attaching such a mechanism to each of two shafts connected via a torsion bar, when a torque acts between the two shafts and a twist between the shafts occurs, By comparing the rotation angle of each shaft, the amount of applied torque could be detected.
[0008] し力しながら、上述した従来の技術においては、コード板 61の回転と検出対象とな る回転軸の回転とは歯車を介しているため、ノ ックラッシュ等の影響を受けやすぐ検 知精度の向上が難し 、と 、う課題があった。 特許文献 1:特開平 11— 194007号公報 However, in the conventional technology described above, since the rotation of the code plate 61 and the rotation of the rotation shaft to be detected are via a gear, the detection is immediately affected by the influence of a knock lash or the like. There was a problem that it was difficult to improve intelligence accuracy. Patent Document 1: Japanese Patent Laid-Open No. 11-194007
発明の開示  Disclosure of the invention
[0009] 本発明は上述のような課題に鑑みてなされたものであり、検知精度の高いトルク検 出装置および回転角度検出装置を提供するものである。  [0009] The present invention has been made in view of the above-described problems, and provides a torque detection device and a rotation angle detection device with high detection accuracy.
[0010] 本発明のトルク検出装置は、検出対象となる軸部の入力軸側に連結される第 1の回 転体と、軸部の出力軸側に連結される第 2の回転体と、第 1の回転体の回転角度を 検出する第 1の検出部と、第 2の回転体の回転角度を検出する第 2の検出部と、第 1 の回転体および第 2の回転体の回転角度差からトルクを検出するトルク検出部とを備 えたことを特徴としている。  [0010] The torque detection device of the present invention includes a first rotating body coupled to the input shaft side of the shaft portion to be detected, a second rotating body coupled to the output shaft side of the shaft portion, A first detector for detecting a rotation angle of the first rotating body; a second detector for detecting a rotation angle of the second rotating body; and the rotation angles of the first rotating body and the second rotating body. It is characterized by having a torque detector that detects torque from the difference.
[0011] このような構成により、第 1の回転体と第 2の回転体とがそれぞれ直接検出対象とな る軸部に連結されており、それらの回転体の回転角度差からトルクを検出するので、 ノ ックラッシュ等の影響を受けにくぐ検知精度の高いトルク検出装置を提供すること ができる。  [0011] With such a configuration, the first rotating body and the second rotating body are directly connected to the shaft portions to be detected, and the torque is detected from the difference in rotation angle between the rotating bodies. Therefore, it is possible to provide a torque detection device with high detection accuracy that is not easily affected by knock lashes or the like.
[0012] 次に、本発明の回転角度検出装置は、本発明のトルク検出装置と、第 1の回転体と 同期回転する第 3の回転体と、第 3の回転体の回転角度を検出する第 3の検出部と、 第 1の回転体および第 3の回転体の回転角度差力 第 1の回転体および第 3の回転 体の絶対回転角度を検出する絶対角度検出部とを備えたことを特徴としている。  Next, the rotation angle detection device of the present invention detects the rotation angle of the torque detection device of the present invention, a third rotation body that rotates in synchronization with the first rotation body, and the third rotation body. A third detection unit, and a rotation angle differential force between the first rotation body and the third rotation body, and an absolute angle detection unit that detects the absolute rotation angle of the first rotation body and the third rotation body. It is characterized by.
[0013] このような構成により、さらに、第 1の回転体および第 3の回転体の絶対回転角度を 検出することのできる回転角度検出装置を提供することができる。  [0013] With such a configuration, it is possible to further provide a rotation angle detection device capable of detecting the absolute rotation angles of the first rotating body and the third rotating body.
[0014] また、絶対角度検出部は、第 2の回転体および第 3の回転体の回転角度差力 第 2 の回転体の絶対回転角度を検出する構成であってもよ 、。  [0014] Further, the absolute angle detection unit may be configured to detect an absolute rotation angle of the second rotating body and a rotational angle difference force between the second rotating body and the third rotating body.
[0015] このような構成によれば、さらに、第 2の回転体の絶対回転角度を検出することがで きる。  [0015] According to such a configuration, the absolute rotation angle of the second rotating body can be further detected.
[0016] また、第 1の回転体は周方向に極性の異なる磁極を交互に配置した第 1のターゲッ トを有し、第 2の回転体は周方向に極性の異なる磁極を交互に配置した第 2のターゲ ットを有し、第 3の回転体は周方向に極性の異なる磁極を交互に配置した第 3のター ゲットを有し、第 1の検出部、第 2の検出部および第 3の検出部それぞれは、第 1のタ ーゲット、第 2のターゲットおよび第 3のターゲットそれぞれに配置された磁極の磁界 変化を検出する構成であってもよい。 [0016] The first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in the circumferential direction, and the second rotating body has magnetic poles having different polarities alternately arranged in the circumferential direction. The third rotating body has a third target in which magnetic poles having different polarities are alternately arranged in the circumferential direction, and includes a first detection unit, a second detection unit, and a second target. Each of the three detectors has a magnetic field of a magnetic pole disposed on each of the first target, the second target, and the third target. It may be configured to detect a change.
[0017] このような構成によれば、さらに、磁極の数を所望の数に組み合わせて最適な角度 検知を行うことができる。  [0017] According to such a configuration, it is possible to perform optimum angle detection by combining the number of magnetic poles with a desired number.
[0018] さらに、第 1のターゲットおよび第 2のターゲットは、外周面に極 ¾の異なる磁極を交 互に配置した多極リング磁石力 なり、第 3のターゲットは棒磁石力もなる構成であつ てもよい。 [0018] Furthermore, the first target and the second target have a multi-pole ring magnet force in which magnetic poles having different poles are alternately arranged on the outer peripheral surface, and the third target has a configuration having a bar magnet force. Also good.
[0019] このような構成によれば、さらに、簡易に本発明の構成を実現することができる。  [0019] According to such a configuration, the configuration of the present invention can be realized more easily.
[0020] また、第 1のターゲットの磁極と対向配置された第 1の磁気検知素子と、第 2のター ゲットの磁極と対向配置された第 2の磁気検知素子と、第 3のターゲットの磁極と対向 配置された第 3の磁気検知素子とを備え、第 1の検出部は第 1の磁気検知素子により 磁界変化を検出し、第 2の検出部は第 2の磁気検知素子により磁界変化を検出し、 第 3の検出部は第 3の磁気検知素子により磁界変化を検出する構成であってもよい。 [0020] In addition, the first magnetic sensing element arranged to face the magnetic pole of the first target, the second magnetic sensing element arranged to face the magnetic pole of the second target, and the magnetic pole of the third target And a third magnetic sensing element disposed opposite to each other, the first detection unit detects a magnetic field change by the first magnetic detection element, and the second detection unit detects the magnetic field change by the second magnetic detection element. The third detection unit may detect the magnetic field change by the third magnetic sensing element.
[0021] このような構成によれば、さらに、磁気検知素子を用いて、より正確に磁界変化を検 出することができる。 [0021] According to such a configuration, the magnetic field change can be detected more accurately by using the magnetic sensing element.
[0022] また、軸部に連結され、第 1の回転体と同期回転する第 4の回転体を備え、第 3の 回転体は、第 4の回転体の回転により回転する構成であってもよい。  [0022] Further, a fourth rotating body connected to the shaft portion and rotating in synchronization with the first rotating body may be provided, and the third rotating body may be configured to rotate by the rotation of the fourth rotating body. Good.
[0023] このような構成によれば、さらに、第 1の回転体の回転に影響を与えることなぐ入力 軸側の回転を第 3の回転体に伝えることができる。 [0023] According to such a configuration, it is possible to further transmit the rotation on the input shaft side without affecting the rotation of the first rotating body to the third rotating body.
[0024] さらに、第 1の回転部および第 2の回転部の絶対回転角度を比較して、その差が所 定の値を超えた場合に異常を検知する異常検知部を備える構成であってもよい。 [0024] Further, the absolute rotation angle of the first rotating unit and the second rotating unit are compared, and an abnormality detecting unit that detects an abnormality when the difference exceeds a predetermined value is provided. Also good.
[0025] このような構成によれば、さらに、機械的または電気的な装置の異常を検知すること ができる。 [0025] According to such a configuration, it is possible to further detect an abnormality in a mechanical or electrical device.
[0026] また、第 1の検出部、第 2の検出部および第 3の検出部から出力される正弦波信号 および余弦波信号の信号レベルを記憶するメモリと、信号レベルによって、正弦波信 号および余弦波信号の正規ィ匕を行う正規ィ匕部とを備える構成であってもよい。  [0026] Further, a memory for storing signal levels of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit, and a sine wave signal depending on the signal level And a normal part that performs normality of the cosine wave signal.
[0027] このような構成によれば、さらに、素子の感度ばらつき等の影響を低くして、高い精 度で回転角度の検出をすることができる。  [0027] According to such a configuration, it is possible to detect the rotation angle with high accuracy by further reducing the influence of variations in sensitivity of the elements.
[0028] さらに、第 1の検出部、第 2の検出部および第 3の検出部から出力される正弦波信 号および余弦波信号の信号レベルが、所定の値以内であるかを確認する確認部を 備える構成であってもよ 、。 [0028] Furthermore, sinusoidal signals output from the first detection unit, the second detection unit, and the third detection unit. The signal level of the signal and the cosine wave signal may include a confirmation unit that confirms whether the signal level is within a predetermined value.
[0029] このような構成によれば、さらに、より高い分解能を実現しつつ、回転角度の検出を 行うことができる。  [0029] According to such a configuration, it is possible to detect the rotation angle while realizing higher resolution.
[0030] また、第 1の検出部、第 2の検出部および第 3の検出部から出力される正弦波信号 および余弦波信号の振幅中心を記憶するメモリと、振幅中心によって正弦波信号お よび余弦波信号の正規ィ匕を行う正規ィ匕部とを備える構成であってもよい。  [0030] Further, a memory for storing the amplitude centers of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit, and the sine wave signal and A configuration may be provided that includes a normal key section that performs normal control of the cosine wave signal.
[0031] このような構成によっても、素子の感度ばらつき等の影響を低くして、高い精度で回 転角度の検出をすることができる。  [0031] With such a configuration as well, it is possible to detect the rotation angle with high accuracy by reducing the influence of variations in the sensitivity of the elements.
[0032] さらに、第 1の検出部、第 2の検出部および第 3の検出部から出力される信号の振 幅中心が所定の値以内であるかを確認する確認部を備える構成であってもよい。  [0032] The configuration further includes a confirmation unit that confirms whether the amplitude center of the signal output from the first detection unit, the second detection unit, and the third detection unit is within a predetermined value. Also good.
[0033] このような構成によれば、さらに、装置が異常な場合の影響を除外して、高い精度 で回転角度の検出を行うことができる。  [0033] According to such a configuration, the rotation angle can be detected with high accuracy by excluding the influence when the apparatus is abnormal.
[0034] また、本発明のトルク検出装置は、第 1の回転体は周方向に極性の異なる磁極を交 互に配置した第 1のターゲットを有し、第 2の回転体は周方向に極性の異なる磁極を 交互に配置した第 2のターゲットを有し、第 1のターゲットの磁極と対向配置された第 1の磁気検知素子と、第 2のターゲットの磁極と対向配置された第 2の磁気検知素子 と、第 1の磁気検知素子および第 2の磁気検知素子の少なくとも一方とずらした位置 に設けられた故障判断用磁気検知素子と、第 1の磁気検知素子および第 2の磁気検 知素子の少なくとも一方、ならびに、故障判断用磁気検知素子からの出力とを比較 することにより故障を判断する故障判断部とを備えた構成であってもよい。  [0034] Further, in the torque detection device of the present invention, the first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in the circumferential direction, and the second rotating body has a polarity in the circumferential direction. The second target has a second target in which different magnetic poles are alternately arranged, the first magnetic sensing element is disposed opposite to the magnetic pole of the first target, and the second magnetic is disposed opposite to the magnetic pole of the second target. A detection element; a failure detection magnetic detection element provided at a position shifted from at least one of the first magnetic detection element and the second magnetic detection element; the first magnetic detection element and the second magnetic detection element; A failure determination unit that determines a failure by comparing at least one of these and an output from the failure detection magnetic sensing element may be used.
[0035] このような構成によれば、さらに、ターゲットに対する金属物の付着や第 1の検知部 または第 2の検知部の故障等を的確に判断することができる。  [0035] According to such a configuration, it is possible to accurately determine the adhesion of a metal object to the target, the failure of the first detection unit or the second detection unit, and the like.
[0036] また、第 1の磁気検知素子は、第 1のターゲットの周面中心よりも軸部に沿った方向 の入力軸側または出力軸側にずらした位置に設けられ、第 2の磁気検知素子は、第 2のターゲットの周面中心よりも軸部に沿った方向の入力軸側または出力軸側にずら した位置に設けられる構成であってもよ 、。  [0036] The first magnetic sensing element is provided at a position shifted from the center of the peripheral surface of the first target to the input shaft side or the output shaft side in the direction along the shaft portion. The element may be provided at a position shifted to the input shaft side or the output shaft side in the direction along the shaft part from the center of the peripheral surface of the second target.
[0037] このような構成によれば、さらに、複数の磁極による磁界の変化を検出することがで きるので、より高精度な磁界変化の検出を行うことができる。 [0037] According to such a configuration, it is further possible to detect a change in magnetic field due to a plurality of magnetic poles. Therefore, the magnetic field change can be detected with higher accuracy.
[0038] さらに、第 1の磁気検知素子は、第 1のターゲットの周面中心よりも軸部に沿った方 向の入力軸側にずらして設けられ、第 2の磁気検知素子は、第 2のターゲットの周面 中心よりも軸部に沿った方向の出力軸側にずらして設けられ、故障判断用磁気検知 素子は、第 1のターゲットの周面中心と第 2のターゲットの周面中心との間に設けられ た構成であってもよい。  [0038] Furthermore, the first magnetic sensing element is provided to be shifted from the center of the peripheral surface of the first target toward the input shaft in the direction along the shaft portion, and the second magnetic sensing element is the second magnetic sensing element. The magnetic sensing element for failure determination is provided with a center of the first target and a center of the second target. A configuration provided between the two may be used.
[0039] このような構成によれば、さらに、一つの故障判断用磁気検知素子によって、二つ の回転部の故障を判断することができる。  [0039] According to such a configuration, the failure of the two rotating parts can be further determined by one failure detection magnetic sensing element.
[0040] また、第 1のターゲットおよび第 2のターゲットは、外周面に極 ¾の異なる磁極を交 互に配置した多極リング磁石力もなる構成であってもよい。  [0040] Further, the first target and the second target may be configured to have a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged on the outer peripheral surface.
[0041] このような構成によれば、さらに、簡易に本発明の構成を実現することができる。  [0041] According to such a configuration, the configuration of the present invention can be realized more easily.
[0042] また、第 1の回転体と同期回転する第 3の回転体と、第 3の回転体に保持され、第 3 の回転体の回転方向に極性の異なる磁極を交互に配置した第 3のターゲットと、第 3 の回転体の回転角度を検出する第 3の検出部と、第 3のターゲットの磁極と対向配置 された第 3の磁気検知素子とを備え、第 3の検出部は、第 3の磁気検知素子により磁 界変化を検知し、故障判断部は、第 1の磁気検知素子および第 3の磁気検知素子に より検知された磁界変化を比較して故障を判断する構成であってもよい。  [0042] In addition, a third rotating body that rotates in synchronization with the first rotating body, and a third rotating body that is held by the third rotating body and has magnetic poles having different polarities alternately arranged in the rotation direction of the third rotating body. The target, a third detection unit for detecting the rotation angle of the third rotating body, and a third magnetic sensing element arranged opposite to the magnetic pole of the third target, and the third detection unit includes: The magnetic field change is detected by the third magnetic sensing element, and the failure judgment unit is configured to judge the failure by comparing the magnetic field changes detected by the first magnetic sensing element and the third magnetic sensing element. May be.
[0043] このような構成によれば、さらに、第 3のターゲットに金属が付着したことによる故障 ち検知することがでさる。  [0043] According to such a configuration, it is further possible to detect a failure caused by metal adhering to the third target.
[0044] さらに、本発明の回転角度検出装置は、本発明のトルク検出装置と、第 1の回転体 および第 3の回転体の回転角度差から、第 1の回転体および第 3の回転体の絶対回 転角度を検出する絶対角度検出部とを備えた構成であってもよい。  [0044] Further, the rotation angle detection device of the present invention includes the first rotation body and the third rotation body based on the rotation angle difference between the torque detection device of the present invention and the first rotation body and the third rotation body. The absolute angle detection part which detects this absolute rotation angle may be provided.
[0045] このような構成によれば、さらに、故障判断機能を有しつつ、第 1の回転体および第 3の回転体の絶対回転角度を検出することができる。  [0045] According to such a configuration, the absolute rotation angles of the first rotating body and the third rotating body can be detected while further having a failure determination function.
[0046] さらに、軸部に連結され、第 1の回転体と同期回転する第 4の回転体を備え、第 3の 回転体は、第 4の回転体の回転により回転する構成であってもよい。  [0046] Further, a fourth rotating body connected to the shaft portion and rotating synchronously with the first rotating body may be provided, and the third rotating body may be configured to rotate by the rotation of the fourth rotating body. Good.
[0047] このような構成によれば、さらに、第 1の回転体の回転に影響を与えることなぐ入力 軸側の回転を第 3の回転体に伝えることができる。 [0048] 以上述べたように、本発明によれば、検知精度の高いトルク検出装置および回転 角度検出装置を提供することができる。 [0047] According to such a configuration, the rotation on the input shaft side without affecting the rotation of the first rotating body can be transmitted to the third rotating body. [0048] As described above, according to the present invention, it is possible to provide a torque detection device and a rotation angle detection device with high detection accuracy.
図面の簡単な説明  Brief Description of Drawings
[0049] [図 1]図 1は、本発明の第 1の実施の形態におけるトルク検出装置の断面図である。  FIG. 1 is a cross-sectional view of a torque detector according to a first embodiment of the present invention.
[図 2]図 2は、同トルク検出装置の図 1における A— A断面を矢印方向に見たときの断 面図である。  [FIG. 2] FIG. 2 is a cross-sectional view of the torque detector when the AA cross section in FIG. 1 is viewed in the direction of the arrow.
[図 3]図 3は、同トルク検出装置の電気的な構成を示すブロック図である。  FIG. 3 is a block diagram showing an electrical configuration of the torque detection device.
[図 4A]図 4Aは、第 1の回転体、第 2の回転体または第 3の回転体を回転させた場合 における、それぞれの回転体の回転角度 (機械角)に対する、磁界変化に起因する 第 1の検出部、第 2の検出部および第 3の検出部それぞれの出力の一例を示す図で ある。  [FIG. 4A] FIG. 4A is caused by a magnetic field change with respect to the rotation angle (mechanical angle) of each rotating body when the first rotating body, the second rotating body, or the third rotating body is rotated. FIG. 6 is a diagram illustrating an example of outputs from a first detection unit, a second detection unit, and a third detection unit.
[図 4B]図 4Bは、図 4Aに示した信号出力を用いて算出された、それぞれの回転体の 回転角度 (電気角)を示す図である。  FIG. 4B is a diagram showing a rotation angle (electrical angle) of each rotating body calculated using the signal output shown in FIG. 4A.
[図 5A]図 5Aは、第 4の回転体の絶対回転角度 (機械角)に対する、第 1の回転体の 回転角度 (電気角)の特性波形を示す図である。  FIG. 5A is a diagram showing a characteristic waveform of the rotation angle (electrical angle) of the first rotating body with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body.
[図 5B]図 5Bは、第 4の回転体の絶対回転角度 (機械角)に対する、第 3の回転体の 回転角度 (電気角)の特性波形を示す図である。  FIG. 5B is a diagram showing a characteristic waveform of the rotation angle (electrical angle) of the third rotating body with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body.
[図 5C]図 5Cは、第 4の回転体の絶対回転角度 (機械角)に対する、第 1の回転体お よび第 3の回転体の回転角度差 (電気角差)の特性波形を示す図である。  [FIG. 5C] FIG. 5C is a diagram showing a characteristic waveform of the rotation angle difference (electrical angle difference) between the first rotation body and the third rotation body with respect to the absolute rotation angle (mechanical angle) of the fourth rotation body. It is.
[図 6]図 6は、トルク検出装置において検出されたトルク特性図の一例を示す図である  FIG. 6 is a diagram showing an example of a torque characteristic diagram detected by the torque detector.
[図 7A]図 7Aは、第 4の回転体の絶対回転角度 (機械角)に対する第 3の回転体の回 転角度 (電気角)を示す図である。 FIG. 7A is a diagram showing a rotation angle (electrical angle) of the third rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
[図 7B]図 7Bは、第 4の回転体の絶対回転角度 (機械角)に対する第 1の回転体およ び第 3の回転体の回転角度差 (電気角差)を示す図である。  FIG. 7B is a diagram showing a rotation angle difference (electrical angle difference) between the first rotating body and the third rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
[図 7C]図 7Cは、第 4の回転体の絶対回転角度 (機械角)に対する第 1の回転体の回 転角度 (電気角)を示す図である。  FIG. 7C is a diagram showing a rotation angle (electrical angle) of the first rotating body with respect to an absolute rotation angle (mechanical angle) of the fourth rotating body.
[図 8]図 8は、トルク検出装置を用いて、第 1〜第 3の磁気検知素子および増幅部等 の感度ばらつきを抑え、装置動作時の回転検出誤差の発生を防止する方法につい て説明するための図である。 [FIG. 8] FIG. 8 shows the first to third magnetic sensing elements, the amplifying unit, etc. FIG. 6 is a diagram for explaining a method of suppressing the sensitivity variation of the apparatus and preventing the occurrence of a rotation detection error during operation of the apparatus.
[図 9]図 9は、本発明の第 2の実施の形態におけるトルク検出装置の構成を示す断面 図である。  FIG. 9 is a cross-sectional view showing a configuration of a torque detection device according to a second embodiment of the present invention.
[図 10]図 10は、同トルク検出装置の図 9における A— A断面を矢印方向に見たときの 断面図である。  FIG. 10 is a cross-sectional view of the same torque detector when the AA cross section in FIG. 9 is viewed in the direction of the arrow.
[図 11A]図 11Aは、図 9の A部における第 1、第 2の磁気検知素子と故障判断用磁気 検知素子との配置関係の概略を示す斜視図である。  FIG. 11A is a perspective view schematically showing the arrangement relationship between the first and second magnetic detection elements and the failure detection magnetic detection element in part A of FIG.
[図 11B]図 11Bは、図 9の A部における第 1、第 2の磁気検知素子と故障判断用磁気 検知素子との配置関係の概略を示す側面図である。  FIG. 11B is a side view schematically showing the arrangement relationship between the first and second magnetic detection elements and the failure detection magnetic detection element in part A of FIG.
[図 12]図 12は、同トルク検出装置の電気的な構成を示すブロック図である。  FIG. 12 is a block diagram showing an electrical configuration of the torque detection device.
[図 13]図 13は、第 1の磁気検知素子、第 2の磁気検知素子および故障判断用磁気 検知素子の他の配置構成の概略を示す図である。  FIG. 13 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
[図 14]図 14は、第 1の磁気検知素子、第 2の磁気検知素子および故障判断用磁気 検知素子の他の配置構成の概略を示す図である。  FIG. 14 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
[図 15]図 15は、第 1の磁気検知素子、第 2の磁気検知素子および故障判断用磁気 検知素子の他の配置構成の概略を示す図である。  FIG. 15 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
[図 16]図 16は、第 1の磁気検知素子、第 2の磁気検知素子および故障判断用磁気 検知素子の他の配置構成の概略を示す図である。  FIG. 16 is a diagram showing an outline of another arrangement configuration of the first magnetic detection element, the second magnetic detection element, and the failure determination magnetic detection element.
[図 17]図 17は、従来の回転角度度センサを用いたトルク検出方式について説明する ための図である。  FIG. 17 is a diagram for explaining a torque detection method using a conventional rotation angle degree sensor.
符号の説明 Explanation of symbols
1, 3 トルク検出装置  1, 3 Torque detection device
2 トーシヨンバー  2 Torsion bar
4 入力軸  4 Input shaft
6 出力軸  6 Output shaft
8 軸部  8 Shaft
10 第 1の回転体 第 1の検出部 10 First rotating body First detector
第 2の回転体  Second rotating body
第 2の検出部  Second detector
第 1のターゲット  First target
第 2のターゲット  Second target
第 1の磁気検知素子  First magnetic sensing element
第 2の磁気検知素子  Second magnetic sensing element
第 3の回転体  3rd rotating body
第 3の検出部  Third detector
第 4の回転体  4th rotating body
第 3のターゲット  3rd target
第 3の磁気検知素子  Third magnetic sensing element
故障判断用磁気検知素子  Magnetic detection element for failure determination
増幅器  Amplifier
CPU (トルク検出部、正規化部、絶対角度検出部) EEPROM (メモリ)  CPU (torque detector, normalizer, absolute angle detector) EEPROM (memory)
出力信号線  Output signal line
特性波  Characteristic wave
正弦波信号  Sine wave signal
余弦波信号  Cosine wave signal
三角波信号 Triangular wave signal
, 46, 48 特性波形 , 46, 48 Characteristic waveform
スィッチ  Switch
特定位置決定用信号線 Signal line for specific position determination
, 52 外部装置, 52 External device
, 62 歯車咅 , 62 Gear wheel
係合パネ  Engagement panel
コード板 63 検知素子 Code board 63 Sensing element
100 回転角度センサ  100 rotation angle sensor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 以下、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0052] (第 1の実施の形態)  [0052] (First embodiment)
図 1は、本発明の第 1の実施の形態におけるトルク検出装置 1の断面図であり、図 2 は、同トルク検出装置 1の図 1における A— A断面を矢印方向に見たときの断面図で あり、図 3は同トルク検出装置 1の電気的な構成を示すブロック図である。  FIG. 1 is a cross-sectional view of the torque detection device 1 according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the torque detection device 1 taken along the line AA in FIG. FIG. 3 is a block diagram showing an electrical configuration of the torque detector 1.
[0053] 本発明の第 1の実施の形態におけるトルク検出装置 1は、トーシヨンバー 2の両端に 入力軸 4と出力軸 6とが連結された、同一剛体である軸部 8に発生するトルクを検出 することのできる装置である。  The torque detection device 1 according to the first embodiment of the present invention detects torque generated in the shaft portion 8 that is the same rigid body, in which the input shaft 4 and the output shaft 6 are connected to both ends of the torsion bar 2. It is a device that can do.
[0054] 図 1から図 3に示したように、トルク検出装置 1は、軸部 8の入力軸 4側に連結する第 1の回転体 10と、軸部 8の出力軸 6側に連結する第 2の回転体 12と、第 1の回転体 1 0の回転角度を検出する第 1の検出部 11と、第 2の回転体 12の回転角度を検出する 第 2の検出部 13とを備えて 、る。  As shown in FIGS. 1 to 3, the torque detector 1 is connected to the first rotating body 10 connected to the input shaft 4 side of the shaft portion 8 and to the output shaft 6 side of the shaft portion 8. A second rotor 12, a first detector 11 that detects the rotation angle of the first rotor 10, and a second detector 13 that detects the rotation angle of the second rotor 12. And
[0055] 第 1の回転体 10は、周方向に極性の異なる磁極を交互に配置した多極リング磁石 力もなる第 1のターゲット 14を有する。第 2の回転体 12も、周方向に極性の異なる磁 極を交互に配置した多極リング磁石力もなる第 2のターゲット 16を有する。  The first rotating body 10 has a first target 14 that also has a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged in the circumferential direction. The second rotating body 12 also has a second target 16 having a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged in the circumferential direction.
[0056] 第 1のターゲット 14および第 2のターゲット 16それぞれに配置された磁極の数は同 じである。第 1のターゲット 14および第 2のターゲット 16それぞれの磁極に対向する 位置には、磁界の変化を検知するための第 1の磁気検知素子 18および第 2の磁気 検知素子 20が配置されて 、る。  [0056] The number of magnetic poles arranged on each of the first target 14 and the second target 16 is the same. A first magnetic sensing element 18 and a second magnetic sensing element 20 for detecting a change in the magnetic field are arranged at positions facing the respective magnetic poles of the first target 14 and the second target 16. .
[0057] また、トルク検出装置 1は、第 1の回転体 10と同期回転し、第 1の回転体 10とは異 なる回転軸を中心に回転する第 3の回転体 22を備える。さらに、トルク検出装置 1は 、第 3の回転体 22の回転角度を検出する第 3の検出部 23を備える。  In addition, the torque detection device 1 includes a third rotating body 22 that rotates synchronously with the first rotating body 10 and rotates around a rotation axis different from that of the first rotating body 10. Furthermore, the torque detection device 1 includes a third detection unit 23 that detects the rotation angle of the third rotator 22.
[0058] トルク検出装置 1は、さらに、軸部 8の入力軸 4側に連結する第 4の回転体 24を備え る。第 3の回転体 22は第 4の回転体 24の回転と同期回転するように配置されている。 第 3の回転体 22および第 4の回転体 24は、それぞれ歯車を有するとともに、互いの 歯をかみ合わせた状態で回転して 、る。 The torque detection device 1 further includes a fourth rotating body 24 connected to the input shaft 4 side of the shaft portion 8. The third rotating body 22 is arranged so as to rotate in synchronization with the rotation of the fourth rotating body 24. Each of the third rotating body 22 and the fourth rotating body 24 has a gear, and Rotate with the teeth engaged.
[0059] このような構成により、入力軸 4が回転すると、第 1の回転体 10と第 4の回転体 24が 回転する。そして、第 3の回転体 22は第 4の回転体 24と同期回転し、結果的に第 3 の回転体 22は第 1の回転体 10と同期回転する。  With such a configuration, when the input shaft 4 rotates, the first rotating body 10 and the fourth rotating body 24 rotate. Then, the third rotating body 22 rotates in synchronization with the fourth rotating body 24, and as a result, the third rotating body 22 rotates in synchronization with the first rotating body 10.
[0060] 第 3の回転体 22および第 4の回転体 24の回転速度の比率は歯車比によって決ま る。本実施の形態では、第 3の回転体 22の直径よりも第 4の回転体 24の直径を大き くし、第 3の回転体 22の歯車数を第 4の回転体 24の歯車数よりも少なくしている。  [0060] The ratio of the rotational speeds of the third rotating body 22 and the fourth rotating body 24 is determined by the gear ratio. In the present embodiment, the diameter of the fourth rotating body 24 is made larger than the diameter of the third rotating body 22, and the number of gears of the third rotating body 22 is smaller than the number of gears of the fourth rotating body 24. is doing.
[0061] さらに、第 3の回転体 22は、両端に異なる磁極が配置された棒磁石力もなる第 3の ターゲット 26を有する。この第 3のターゲット 26に配置された磁極に対向する位置に は、磁界の変化を検知する第 3の磁気検知素子 28が配置されている。なお、第 3のタ 一ゲット 26は、棒磁石に限定されるものでなぐ周方向に極性の異なる磁極を交互に 配置した多極リング磁石を用いることもできる。  Further, the third rotating body 22 has a third target 26 that also has a bar magnet force in which different magnetic poles are arranged at both ends. At a position facing the magnetic pole arranged on the third target 26, a third magnetic sensing element 28 for detecting a change in the magnetic field is arranged. The third target 26 is not limited to a bar magnet, and can be a multipolar ring magnet in which magnetic poles having different polarities are alternately arranged in the circumferential direction.
[0062] 第 1の検出部 11は、第 1のターゲット 14に配置された磁極による磁界変化を第 1の 磁気検知素子 18からの出力より検出する。同様に、第 2の検出部 13は、第 2のター ゲット 16に配置された磁極による磁界変化を第 2の磁気検知素子 20からの出力より 検出する。さらに、第 3の検出部 23は、第 3のターゲット 26に配置された磁極による 磁界変化を第 3の磁気検知素子 28からの出力より検出する。  The first detection unit 11 detects a change in the magnetic field due to the magnetic pole disposed on the first target 14 from the output from the first magnetic detection element 18. Similarly, the second detection unit 13 detects a change in the magnetic field due to the magnetic pole disposed on the second target 16 from the output from the second magnetic sensing element 20. Further, the third detection unit 23 detects a change in the magnetic field due to the magnetic pole disposed on the third target 26 from the output from the third magnetic sensing element 28.
[0063] ここで、第 1の検出部 11、第 2の検出部 13および第 3の検出部 23それぞれとしては 、磁気抵抗素子 (MR素子とも記す)を用いることができる。  Here, as each of the first detection unit 11, the second detection unit 13, and the third detection unit 23, a magnetoresistive element (also referred to as an MR element) can be used.
[0064] 図 3に示すように、第 1の検出部 11、第 2の検出部 13および第 3の検出部 23それ ぞれによって検出された検出信号が、増幅器 30にて所定の振幅に増幅される。  As shown in FIG. 3, the detection signals detected by the first detection unit 11, the second detection unit 13, and the third detection unit 23 are amplified to a predetermined amplitude by the amplifier 30. Is done.
[0065] そして、増幅されたそれぞれの信号が、 CPU32 (マイクロコンピュータ)内の AZD コンバータを介して演算処理されるとともに、 CPU32と不揮発性メモリの EEPROM( Electronically Erasable and Programmable Read Only Memory) 34 の間で必要に応じて情報が読み書きされる。そして、トルク検出部である CPU32は、 第 1の回転体 10および第 2の回転体 12の回転角度差からトルクを検出する。  [0065] Each amplified signal is processed through an AZD converter in the CPU 32 (microcomputer), and between the CPU 32 and the EEPROM (Electronically Erasable and Programmable Read Only Memory) 34 of the nonvolatile memory. The information is read and written as needed. Then, the CPU 32 that is a torque detection unit detects torque from the rotation angle difference between the first rotating body 10 and the second rotating body 12.
[0066] CPU32は、回転角度検出部としても機能し、第 1の検出部 11、第 2の検出部 13お よび第 3の検出部 23それぞれの出力から、第 1の回転体 10、第 2の回転体 12および 第 3の回転体 22それぞれの回転角度 (電気角)を検出する。 [0066] The CPU 32 also functions as a rotation angle detection unit, and from the outputs of the first detection unit 11, the second detection unit 13, and the third detection unit 23, the first rotary body 10, the second rotation unit 10 Rotating body 12 and The rotation angle (electrical angle) of each of the third rotating bodies 22 is detected.
[0067] さらに、 CPU32は絶対角度検出部としても機能し、第 1の回転体 10および第 3の 回転体 22の回転角度差 (電気角差)、ならびに、第 2の回転体 12および第 3の回転 体 22の回転角度差 (電気角差)から、第 1の回転体 10、第 2の回転体 12および第 3 の回転体 22それぞれの絶対回転角度を検出することができる。この場合、トルク検出 装置 1は、回転角度検出装置としても機能する。  Furthermore, the CPU 32 also functions as an absolute angle detection unit, and the rotation angle difference (electrical angle difference) between the first rotating body 10 and the third rotating body 22, and the second rotating body 12 and the third rotating body 22. The absolute rotation angles of the first rotating body 10, the second rotating body 12, and the third rotating body 22 can be detected from the rotation angle difference (electrical angle difference) of the rotating body 22. In this case, the torque detection device 1 also functions as a rotation angle detection device.
[0068] これらの検出されたトルク、回転角度および絶対回転角度の情報は、出力信号線 3 6を介して外部装置 51に出力される。  [0068] Information on the detected torque, rotation angle, and absolute rotation angle is output to the external device 51 via the output signal line 36.
[0069] ここで、トルク検出装置 1において、第 1の回転体 10、第 2の回転体 12および第 3の 回転体 22それぞれの回転角度 (電気角)を検出する方法について説明する。  Here, a method for detecting the rotation angles (electrical angles) of the first rotating body 10, the second rotating body 12, and the third rotating body 22 in the torque detection device 1 will be described.
[0070] 図 4Aは、第 1の回転体 10、第 2の回転体 12または第 3の回転体 22を回転させた 場合における、それぞれの回転体の回転角度 (機械角)に対する、磁界変化に起因 する第 1の検出部 11、第 2の検出部 13および第 3の検出部 23それぞれの出力の一 例を示す図である。図 4Bは、図 4Aに示した信号出力を用いて算出された、それぞ れの回転体の回転角度 (電気角)を示す図である。  [0070] FIG. 4A shows the change in magnetic field with respect to the rotation angle (mechanical angle) of each rotating body when the first rotating body 10, the second rotating body 12, or the third rotating body 22 is rotated. FIG. 6 is a diagram showing an example of the respective outputs of the first detection unit 11, the second detection unit 13, and the third detection unit 23 that are caused. FIG. 4B is a diagram showing the rotation angle (electrical angle) of each rotating body calculated using the signal output shown in FIG. 4A.
[0071] 第 1〜第 3の磁気検知素子 18, 20, 28によって第 1〜第 3のターゲット 14, 16, 26 の磁界変化を検知した場合には、図 4Aに示すように、磁極一極に対して一周期の 正弦波信号 38および余弦波信号 40が第 1〜第 3の検出部 11, 13, 23から出力信 号として検出される。  [0071] When a change in the magnetic field of the first to third targets 14, 16, and 26 is detected by the first to third magnetic sensing elements 18, 20, and 28, as shown in FIG. On the other hand, a sine wave signal 38 and a cosine wave signal 40 of one cycle are detected as output signals from the first to third detectors 11, 13, and 23.
[0072] 第 1〜第 3の回転体 10, 12, 22の 1回転あたり(回転角度 (機械角) 360度あたり) に対して、磁極数分の正弦波信号 38および余弦波信号 40が出力信号として検出さ れる。  [0072] A sine wave signal 38 and a cosine wave signal 40 corresponding to the number of magnetic poles are output for each rotation of the first to third rotating bodies 10, 12, and 22 (rotation angle (mechanical angle) per 360 degrees). Detected as a signal.
[0073] CPU32では、これらの正弦波信号 38および余弦波信号 40にもとづいて逆正接信 号を算出して、図 4Bに示すような、それぞれの回転体の回転角度 (電気角)を算出 することができる。  [0073] The CPU 32 calculates an arctangent signal based on the sine wave signal 38 and the cosine wave signal 40, and calculates the rotation angle (electrical angle) of each rotating body as shown in FIG. 4B. be able to.
[0074] 図 4Bに示すように、磁極一極 (正弦波信号 38および余弦波信号 40の一周期)に 対して、二周期分の三角波信号 42が、それぞれの回転体の回転角度 (電気角)を示 す信号として算出される。 [0075] 次に、トルク検出装置 1において、第 1の回転体 10、第 2の回転体 12および第 3の 回転体 22それぞれの絶対回転角度 (機械角)を検出する方法について説明する。 [0074] As shown in FIG. 4B, with respect to one pole of the magnetic pole (one cycle of the sine wave signal 38 and cosine wave signal 40), the triangular wave signal 42 for two cycles corresponds to the rotation angle (electrical angle) of each rotating body. ) Is calculated as a signal indicating. Next, a method for detecting the absolute rotation angles (mechanical angles) of the first rotating body 10, the second rotating body 12, and the third rotating body 22 in the torque detection device 1 will be described.
[0076] まず、第 1の回転体 10および第 3の回転体 22の絶対回転角度を検出する方法に ついて、説明する。  First, a method for detecting the absolute rotation angles of the first rotating body 10 and the third rotating body 22 will be described.
[0077] 図 5Aは、第 4の回転体 24の絶対回転角度 (機械角)に対する、第 1の回転体 10の 回転角度 (電気角)の特性波形 44を示す図である。図 5Bは、第 4の回転体 24の絶 対回転角度 (機械角)に対する、第 3の回転体 22の回転角度 (電気角)の特性波形 4 6を示す図である。図 5Cは、第 4の回転体 24の絶対回転角度 (機械角)に対する、第 1の回転体 10および第 3の回転体 22の回転角度差 (電気角)の特性波形 48を示す 図である。ここで、図 5A〜Cにおいては、第 4の回転体 24の絶対回転角度 (機械角 度)を、 0〜1800degとして説明する。これは、軸部 8の五回転分に相当する。  FIG. 5A is a diagram showing a characteristic waveform 44 of the rotation angle (electrical angle) of the first rotating body 10 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24. FIG. 5B is a diagram showing a characteristic waveform 46 of the rotation angle (electrical angle) of the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24. FIG. 5C is a diagram illustrating a characteristic waveform 48 of the rotation angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24. . Here, in FIGS. 5A to 5C, the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is assumed to be 0 to 1800 deg. This corresponds to five rotations of the shaft 8.
[0078] 第 4の回転体 24が回転したとき、その第 4の回転体 24と歯車によって接続された第 3の回転体 22も回転する。ここで、第 4の回転体 24の歯車の歯数を a個、第 3の回転 体 22の歯車の歯数を b個とすると、第 3の回転体 22は第 4の回転体 24に対して、 aZ b倍の速さで回転する。  When the fourth rotating body 24 rotates, the third rotating body 22 connected to the fourth rotating body 24 by a gear also rotates. Here, if the number of teeth of the gear of the fourth rotating body 24 is a and the number of teeth of the gear of the third rotating body 22 is b, the third rotating body 22 is compared with the fourth rotating body 24. And aZ b times faster.
[0079] また、第 1のターゲット 14の磁極数を c個(N極、 S極の数はそれぞれ (cZ2)個)と すると、第 1の回転体 10が 1回転する間に、第 1の磁気検知素子 18は c回の磁界 (極 性)の変化を検知する。このように、歯車の歯数 a、 bと磁極数 cとを適切に選択するこ とにより、回転数、磁界の変化数を所定の数にできる。  [0079] If the number of magnetic poles of the first target 14 is c (the number of N poles and the number of S poles is (cZ2), respectively), the first rotating body 10 is rotated during one rotation. The magnetic sensor 18 detects c magnetic field (polarity) changes. Thus, by appropriately selecting the number of gear teeth a and b and the number of magnetic poles c, the number of rotations and the number of magnetic field changes can be set to predetermined numbers.
[0080] このとき、第 4の回転体 24の絶対回転角度 (機械角)に対する、第 1の回転体 10お よび第 3の回転体 22それぞれの回転角度 (電気角)は、図 5Aおよび図 5Bに示すよう な回転角度 (電気角)となる。  At this time, the rotation angles (electrical angles) of the first rotating body 10 and the third rotating body 22 with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24 are shown in FIG. 5A and FIG. The rotation angle (electrical angle) is as shown in 5B.
[0081] トルク検出装置 1では、第 1のターゲット 14および第 3のターゲット 26それぞれの磁 極数、および、第 3の回転体 22および第 4の回転体 24それぞれの歯車数を適切に 選択することにより、第 4の回転体 24の絶対回転角度 (機械角)に対し、第 1の回転 体 14の回転角度 (電気角)の特性波形 (三角波) 44の周期と、第 3の回転体 22の回 転角度 (電気角)の特性波形 (三角波) 46の周期とを異ならせることができる。  [0081] In torque detection device 1, the number of magnetic poles of each of first target 14 and third target 26 and the number of gears of each of third rotating body 22 and fourth rotating body 24 are appropriately selected. Thus, with respect to the absolute rotation angle (mechanical angle) of the fourth rotating body 24, the period of the characteristic waveform (triangular wave) 44 of the rotating angle (electrical angle) of the first rotating body 14 and the third rotating body 22 The rotation angle (electrical angle) of the characteristic waveform (triangular wave) 46 period can be made different.
[0082] したがって、図 5Cに示すように、第 4の回転体 24の絶対回転角度 (機械角)に対し て、第 1の回転体 10および第 3の回転体 22の回転角度差 (電気角)の特性波形 48 を一義的に定めることができる。よって、第 1の回転体 10および第 3の回転体 22の回 転角度差 (電気角差)が分かれば、第 4の回転体 24の絶対回転角度 (機械角)を一 義的に定めることができる。 Accordingly, as shown in FIG. 5C, the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is Thus, the characteristic waveform 48 of the rotation angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22 can be uniquely determined. Therefore, if the rotation angle difference (electrical angle difference) between the first rotating body 10 and the third rotating body 22 is known, the absolute rotation angle (mechanical angle) of the fourth rotating body 24 can be uniquely determined. Can do.
[0083] また、第 4の回転体 24の絶対回転角度 (機械角)が分かれば、図 5Aおよび図 5Cに 示す関係から、第 1の回転体 10の絶対回転角度 (機械角)を算出することができる。 また、図 5Bおよび図 5Cに示す関係から、第 3の回転体 22の絶対回転角度 (機械角 ) 算出することができる。  [0083] If the absolute rotation angle (mechanical angle) of the fourth rotating body 24 is known, the absolute rotation angle (mechanical angle) of the first rotating body 10 is calculated from the relationship shown in FIGS. 5A and 5C. be able to. Further, the absolute rotation angle (mechanical angle) of the third rotating body 22 can be calculated from the relationship shown in FIGS. 5B and 5C.
[0084] 以上述べたのと同様の方法で、第 4の回転体 24の絶対回転角度 (機械角)に対す る第 2の回転体 12の回転角度 (電気角)の関係、第 4の回転体 24の絶対回転角度( 機械角)に対する第 3の回転体 22の回転角度 (電気角)の関係、および、第 2の回転 体 12および第 3の回転体 22の回転角度差 (電気角)から、第 2の回転体 12の絶対回 転角度 (機械角)を算出することができる。  [0084] In the same manner as described above, the relationship of the rotation angle (electrical angle) of the second rotating body 12 to the absolute rotation angle (mechanical angle) of the fourth rotating body 24, the fourth rotation The relationship between the rotation angle (electrical angle) of the third rotating body 22 relative to the absolute rotation angle (mechanical angle) of the body 24, and the rotation angle difference (electrical angle) between the second rotating body 12 and the third rotating body 22 From this, the absolute rotation angle (mechanical angle) of the second rotating body 12 can be calculated.
[0085] 次に、トルク検出装置 1を用いたトーシヨンバー 2にかかるトルクの算出方法につい て説明する。  [0085] Next, a method for calculating the torque applied to the torsion bar 2 using the torque detection device 1 will be described.
[0086] 図 1に示したように、同一剛体である、入力軸 4、トーシヨンバー 2および出力軸 6 (軸 部 8)が回転すると、この入力軸 4と嵌合している第 1の回転体 10が回転する。  [0086] As shown in FIG. 1, when the input shaft 4, the torsion bar 2 and the output shaft 6 (shaft portion 8), which are the same rigid body, rotate, the first rotating body fitted to the input shaft 4 10 rotates.
[0087] 第 1の回転体 10が回転すると、この第 1の回転体 10に保持されている第 1のターゲ ット 14が回転し、第 1のターゲット 14に対向する位置に配置された第 1の磁気検知素 子 18が磁界変化を検知する。第 1の磁気検知素子 18が検知した磁界の変化は第 1 の検出部 11によって検出され、検出信号として CPU32に出力される。  When the first rotating body 10 rotates, the first target 14 held by the first rotating body 10 rotates and the first target 14 disposed at a position facing the first target 14 rotates. Magnetic detection element 18 of 1 detects a magnetic field change. The change of the magnetic field detected by the first magnetic detection element 18 is detected by the first detection unit 11 and output to the CPU 32 as a detection signal.
[0088] また、軸部 8の回転によって、出力軸 6と嵌合している第 2の回転体 12も回転する。  Further, the second rotating body 12 fitted to the output shaft 6 is also rotated by the rotation of the shaft portion 8.
この第 2の回転体 12が回転すると、この第 2の回転体 12に保持されている第 2のター ゲット 16が回転し、第 2のターゲット 16に対向する位置に配置された第 2の磁気検知 素子 20が磁界変化を検知する。第 2の磁気検知素子 18が検知した磁界の変化は第 2の検出部 13によって検出され、検出信号として CPU32に出力される。  When the second rotating body 12 rotates, the second target 16 held by the second rotating body 12 rotates, and the second magnetic body disposed at a position facing the second target 16 is rotated. Detection element 20 detects a magnetic field change. The change in the magnetic field detected by the second magnetic detection element 18 is detected by the second detection unit 13 and output to the CPU 32 as a detection signal.
[0089] さらに、軸部 8の回転によって、第 3の回転体 22も回転する。これにより、第 3の回転 体 22に保持された第 3のターゲット 26も回転し、第 3の磁気検知素子 28は磁界変化 を検知する。第 3の磁気検知素子 28が検知した磁界の変化は第 3の検出部 23によ つて検出されて、検出信号として CPU32に出力される。 Further, the third rotating body 22 is also rotated by the rotation of the shaft portion 8. As a result, the third target 26 held by the third rotating body 22 also rotates, and the third magnetic sensing element 28 changes the magnetic field. Is detected. The change in the magnetic field detected by the third magnetic detection element 28 is detected by the third detection unit 23 and output to the CPU 32 as a detection signal.
[0090] 第 1〜第 3の検出部 11, 13, 23によって検出された検出信号にもとづいて、 CPU3[0090] Based on the detection signals detected by the first to third detection units 11, 13, and 23, CPU3
2は、前述の演算処理を行い、第 1の回転体 10、第 2の回転体 12および第 3の回転 体 22それぞれの絶対回転角度 (機械角)を検出する。 2 performs the above-described arithmetic processing and detects the absolute rotation angles (mechanical angles) of the first rotating body 10, the second rotating body 12, and the third rotating body 22.
[0091] CPU32は、この第 1の回転体 10および第 2の回転体 12の絶対回転角度の差 (機 械角度)をとり、これにトーシヨンバー定数を乗ずることでトルクを算出することができるThe CPU 32 can calculate the torque by taking the difference (mechanical angle) of the absolute rotation angle between the first rotating body 10 and the second rotating body 12 and multiplying this by the torsion bar constant.
。この回転角度差より求めたトルクの一例を図 6に示す。 . An example of torque obtained from this rotational angle difference is shown in FIG.
[0092] 図 6は、トルク検出装置 1において検出されるトルク特性の一例を示す図であり、入 力軸 4または出力軸 6の回転角度 (機械角)に対して、第 1の回転体 10と第 2の回転 体 12の絶対回転角度の差より得られるトルクの特性波 37を示している。 FIG. 6 is a diagram showing an example of torque characteristics detected by the torque detection device 1, and the first rotating body 10 with respect to the rotation angle (mechanical angle) of the input shaft 4 or the output shaft 6 is shown. A torque characteristic wave 37 obtained from the difference between the absolute rotation angles of the second rotating body 12 and the second rotating body 12 is shown.
[0093] 第 1の回転体 10の絶対回転角度を Xとし、第 2の回転体 12の絶対回転角度を Yと し、トーシヨンバー定数を Tとすると、トルクを { (X) - (Y) } X (T)の関係にもとづいて 検出できる。 [0093] When the absolute rotation angle of the first rotating body 10 is X, the absolute rotation angle of the second rotating body 12 is Y, and the torsion bar constant is T, the torque is {(X)-(Y)} It can be detected based on the relationship of X (T).
[0094] 次に、回転体の絶対回転角度検出を更に高精度に行う方法について説明する。  Next, a method for detecting the absolute rotation angle of the rotating body with higher accuracy will be described.
[0095] 図 7A〜図 7Cは、回転体の絶対回転角度検出を更に高精度に行う方法について 説明するための図である。 FIG. 7A to FIG. 7C are diagrams for explaining a method of performing the absolute rotation angle detection of the rotating body with higher accuracy.
[0096] 図 7Aは、第 4の回転体 24の絶対回転角度 (機械角)に対する第 3の回転体 22の 回転角度 (電気角)を示し、図 7Bは、第 4の回転体 24の絶対回転角度 (機械角)に 対する第 1の回転体 10および第 3の回転体 22の回転角度差 (電気角)を示し、図 7C は第 4の回転体 24の絶対回転角度 (機械角)に対する第 1の回転体 10の回転角度( 電気角)を示している。 FIG. 7A shows the rotation angle (electrical angle) of the third rotating body 22 relative to the absolute rotation angle (mechanical angle) of the fourth rotating body 24, and FIG. 7B shows the absolute rotation angle of the fourth rotating body 24. FIG. 7C shows the rotation angle difference (electrical angle) of the first rotating body 10 and the third rotating body 22 with respect to the rotation angle (mechanical angle). FIG. 7C shows the absolute rotation angle (mechanical angle) of the fourth rotating body 24. The rotation angle (electrical angle) of the first rotating body 10 is shown.
[0097] 第 1の回転体 10および第 3の回転体 22の回転角度検出には、機械的な誤差や素 子回路の誤差等が含まれる。よって、第 1の回転体 10および第 3の回転体 22の回転 角度差にも検出誤差 (E1)が含まれる。  [0097] The rotation angle detection of the first rotating body 10 and the third rotating body 22 includes mechanical errors, element circuit errors, and the like. Therefore, the detection error (E1) is also included in the rotation angle difference between the first rotating body 10 and the third rotating body 22.
[0098] この検出誤差 (E1)は、回転角度差力も第 4の回転体 24の絶対回転角度 (機械角) を算出する時に、検出誤差 (E2)として表れる。回転検出範囲が広くなると、回転角 度 (機械角)の特性波形 48の勾配が小さくなるので、第 1の回転体 10および第 3の回 転体 22の回転角度差に含まれる検出誤差 (El)が第 4の回転体 24の絶対回転角度 の検出に与える影響は大きくなる。 This detection error (E1) also appears as a detection error (E2) when calculating the absolute rotation angle (mechanical angle) of the fourth rotating body 24 as well as the rotation angle differential force. As the rotation detection range becomes wider, the gradient of the characteristic waveform 48 of the rotation angle (mechanical angle) decreases, so the first rotating body 10 and the third rotation The influence of the detection error (El) included in the rotation angle difference of the rolling element 22 on the detection of the absolute rotation angle of the fourth rotating body 24 becomes large.
[0099] ここで、第 4の回転体 24の絶対回転角度の検出誤差 (E2)が第 1の回転体 10の回 転角度検出における三角波の周期 (W1)よりも小さければ、回転角度差から特性波 形 48にもとづいて周期(W1)の位置を決定することができるが、図 7A〜Cに示した 場合には、検出誤差 (E2)が周期 (W1)よりも大きいので、特性波形 48から第 1の回 転体 10の周期 (W1)の位置を正確に決定することが難しい。よって、特性波形 48の 回転検出範囲を狭くして (精度を上げて)検出誤差 (E2)を小さくする必要がある。  [0099] Here, if the detection error (E2) of the absolute rotation angle of the fourth rotating body 24 is smaller than the period (W1) of the triangular wave in the rotation angle detection of the first rotating body 10, the rotation angle difference The position of the period (W1) can be determined based on the characteristic waveform 48, but in the case shown in FIGS. 7A to 7C, the detection error (E2) is larger than the period (W1). Therefore, it is difficult to accurately determine the position of the period (W1) of the first rotating body 10. Therefore, it is necessary to narrow the rotation detection range of the characteristic waveform 48 (increase the accuracy) and reduce the detection error (E2).
[0100] そこで、図 7A〜Cに示す場合には、第 4の回転体 24の回転角度の検出誤差 (E2) は第 3の回転体 22の回転角度検出における三角波の周期 (W2)よりも小さいので、 まず、特性波形 48より第 3の回転体 22の周期 (W2)の位置を決定し、次に、特性波 形 46と特性波形 44との関係から第 1の回転体 10の回転角度検出周期 (W1)の位置 を決定する。  Therefore, in the case shown in FIGS. 7A to 7C, the detection error (E2) of the rotation angle of the fourth rotating body 24 is larger than the period (W2) of the triangular wave in the detection of the rotation angle of the third rotating body 22. First, the position of the period (W2) of the third rotator 22 is determined from the characteristic waveform 48, and then the rotation angle of the first rotator 10 is determined from the relationship between the characteristic waveform 46 and the characteristic waveform 44. Determine the position of the detection cycle (W1).
[0101] ここで、図 7Aに示したように、第 3の回転体 22の回転角度の検出誤差 (E3)に対応 する第 4の回転体 24の回転角度の検出誤差 (E4)は、第 3の検出部 23の回転検出 範囲が狭く(分解能が高く)、特性波形 46の勾配が大きいので、第 1の回転体 10の 回転角度検出周期 (W1)よりも小さくすることができる。  Here, as shown in FIG. 7A, the rotation angle detection error (E4) of the fourth rotating body 24 corresponding to the rotation angle detection error (E3) of the third rotating body 22 is Since the rotation detection range of the third detector 23 is narrow (resolution is high) and the gradient of the characteristic waveform 46 is large, the rotation angle detection cycle (W1) of the first rotating body 10 can be made smaller.
[0102] よって、トルク検出装置 1によれば、図 7Bの関係にもとづいて算出された第 4の回転 体の絶対回転角度 (機械角)を用いて、図 7Aに示した特性波形 46から第 3の回転体 の絶対回転角度 (機械角)を算出し、さらにその後に、特性波形 46を用いて特性波 形 44における周期 W1の位置を決定して第 1の回転体 10の絶対回転角度 (機械角) を検出することができる。  [0102] Thus, according to the torque detection device 1, the absolute rotation angle (mechanical angle) of the fourth rotating body calculated based on the relationship of FIG. 7B is used to obtain the characteristics from the characteristic waveform 46 shown in FIG. 7A. The absolute rotation angle (mechanical angle) of the rotating body 3 is calculated, and then the position of the period W1 in the characteristic waveform 44 is determined using the characteristic waveform 46 to determine the absolute rotation angle ( (Mechanical angle) can be detected.
[0103] この方法によれば、特性波形 48の回転検出範囲を変えることなぐ第 1の回転体 1 0の絶対回転角度 (機械角)の検出精度を高めることができる。  [0103] According to this method, the detection accuracy of the absolute rotation angle (mechanical angle) of the first rotating body 10 without changing the rotation detection range of the characteristic waveform 48 can be increased.
[0104] 次に、第 1の回転体 10および第 2の回転体 12の回転角度を常に比較して、トルク 検出装置 1の異常を検知する方法について説明する。  [0104] Next, a method of detecting an abnormality of the torque detection device 1 by constantly comparing the rotation angles of the first rotating body 10 and the second rotating body 12 will be described.
[0105] トルク検出装置 1においては、第 1の回転体 10が回転すると第 2の回転体 12もトー シヨンバー 2を介して回転する。入力軸 4と出力軸 6との間には、所定のトルク値を超 えるトルクが力からない構造になっているため、第 1の回転体 10と第 2の回転体 12と の回転角度差が所定の値を超える場合には、機構上の異常または素子回路上の異 常等の異常だと判断することができる。この所定の値は、当業者であれば、経験的に 、または所定のトルク値力 の演算等によって定めることができる。 In the torque detection device 1, when the first rotating body 10 rotates, the second rotating body 12 also rotates via the torsion bar 2. Between the input shaft 4 and the output shaft 6, a predetermined torque value is exceeded. If the rotational angle difference between the first rotating body 10 and the second rotating body 12 exceeds a predetermined value, the mechanical error or the element circuit It can be judged as an abnormality. Those skilled in the art can determine the predetermined value empirically or by calculating a predetermined torque value force.
[0106] トルク検出装置 1では、第 1の回転体 10が回転すると第 1のターゲット 14も回転する 。この第 1のターゲット 14の回転と共に磁界も変化し、この磁界変化が第 1の検出部 1 1で検出される。第 1の検出部 11からは、この磁界変化に対して図 4Aに示したような 正弦波信号 38と余弦波信号 40とが出力される。  [0106] In the torque detection device 1, when the first rotating body 10 rotates, the first target 14 also rotates. As the first target 14 rotates, the magnetic field also changes, and this magnetic field change is detected by the first detector 11. The first detector 11 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG. 4A in response to this magnetic field change.
[0107] これらの信号は、増幅器 30を介して CPU32に入力され、 CPU32において、正弦 波信号 38と余弦波信号 40より逆正接信号が算出され、図 4Bに示したような第 1の回 転体 10の回転角度 (電気角)が算出される。  [0107] These signals are input to the CPU 32 via the amplifier 30, and the CPU 32 calculates an arctangent signal from the sine wave signal 38 and the cosine wave signal 40, and the first rotation as shown in FIG. 4B. The rotation angle (electrical angle) of the body 10 is calculated.
[0108] 同様に、第 2の回転体 12が回転すると第 2のターゲット 16も回転する。この第 2のタ 一ゲット 16の回転と共に磁界も変化し、この磁界変化が第 2の検出部 13で検出され る。第 2の検出部 13からは、この磁界変化に対して図 4Aに示したような正弦波信号 3 8と余弦波信号 40とが出力される。  Similarly, when the second rotating body 12 rotates, the second target 16 also rotates. The magnetic field changes with the rotation of the second target 16, and this magnetic field change is detected by the second detector 13. The second detector 13 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG.
[0109] これらの信号は、増幅器 30を介して CPU32に入力され、 CPU32において、正弦 波信号 38と余弦波信号 40より逆正接信号が算出され、第 2の回転体 12の回転角度 (電気角)が算出される。  [0109] These signals are input to the CPU 32 via the amplifier 30, and the CPU 32 calculates an arctangent signal from the sine wave signal 38 and the cosine wave signal 40, and the rotation angle (electrical angle) of the second rotating body 12 is calculated. ) Is calculated.
[0110] さらに、 CPU32は、図 5A〜Cに示した関係から、第 4の回転体 24の絶対回転角度  [0110] Further, the CPU 32 calculates the absolute rotation angle of the fourth rotating body 24 from the relationships shown in FIGS.
(機械角)に対する、第 1の回転体 10と第 2の回転体 12との回転角度差 (電気角差) 力 第 1の回転体 10と第 2の回転体 12の絶対回転角度を算出する。この第 1の回転 体 10と第 2の回転体 12との絶対回転角度 (機械角)の原点を一致させておけば、第 1の回転体 10および第 2の回転体 12の絶対回転角度の差は、格別の異常がない限 り所定の値以下の値となるものである。  Difference in rotation angle between first rotating body 10 and second rotating body 12 (electrical angle difference) with respect to (mechanical angle) Force Calculate absolute rotation angle between first rotating body 10 and second rotating body 12 . If the origins of the absolute rotation angles (mechanical angles) of the first rotating body 10 and the second rotating body 12 are matched, the absolute rotation angles of the first rotating body 10 and the second rotating body 12 The difference will be less than or equal to a predetermined value unless there is a particular abnormality.
[0111] CPU32は、この第 1の回転体 10と第 2の回転体 12との絶対回転角度差 (機械角) を検知して、その値が所定の値を超えたときに、異常を知らせる信号を発生する。  [0111] The CPU 32 detects the absolute rotation angle difference (mechanical angle) between the first rotating body 10 and the second rotating body 12, and notifies the abnormality when the value exceeds a predetermined value. Generate a signal.
[0112] 次に、第 1の回転体 10と第 3の回転体 22の絶対回転角度を常に比較して、装置の 異常を検知する方法につ!、て説明する。 [0113] トルク検出装置 1では、第 1の回転体 10が回転すると、第 1の回転体 10に嵌合した 第 4の回転体 24も回転する。第 1の回転体 10が回転すると第 1のターゲット 14も回転 する。ここで、第 1のターゲット 14の表面に c個の磁極が着磁してあるとすると、第 1の 検出部 11からは図 4Aに示すような出力信号が出力される。 [0112] Next, a method for detecting an abnormality of the apparatus by constantly comparing the absolute rotation angles of the first rotating body 10 and the third rotating body 22 will be described. In the torque detection device 1, when the first rotating body 10 rotates, the fourth rotating body 24 fitted to the first rotating body 10 also rotates. When the first rotating body 10 rotates, the first target 14 also rotates. Here, assuming that c magnetic poles are magnetized on the surface of the first target 14, an output signal as shown in FIG. 4A is output from the first detection unit 11.
[0114] 第 1の回転体 10が(360Zc) deg回転する毎に正弦波信号 38と余弦波信号 40が[0114] Each time the first rotating body 10 rotates (360 Zc) deg, the sine wave signal 38 and the cosine wave signal 40
1周期(電気角で 180deg)変化する。すなわち、第 1の回転体 10の(360Zc) deg毎 の回転角度 (電気角)を得ることができる。 It changes by 1 period (180deg in electrical angle). That is, the rotation angle (electrical angle) of the first rotating body 10 every (360 Zc) deg can be obtained.
[0115] ここで、第 4の回転体 24の歯車と第 3の回転体 22の歯車との歯数比を bZaとすると[0115] Here, if the gear ratio of the gear of the fourth rotating body 24 and the gear of the third rotating body 22 is bZa,
、図 4Aおよび図 4Bにおいて第 4の回転体 24が(360 X (bZa)Z2) deg回転する毎 に、第 3の検出部 23から、正弦波信号 38と余弦波信号 40がー周期(電気角 180de g)変化する信号が出力されることとなる。 4A and 4B, every time the fourth rotating body 24 rotates (360 X (bZa) Z2) deg, the third detector 23 generates a sine wave signal 38 and a cosine wave signal 40 for a period (electrical). Angle 180deg) A changing signal will be output.
[0116] 図 5A〜Cにおいて、第 1の回転体 10と第 3の回転体 22との回転角度差は、回転角 度の原点を一致させて特性波形 48と特性波形 46の勾配を一周期の回転角度比(([0116] In FIGS. 5A to C, the rotation angle difference between the first rotating body 10 and the third rotating body 22 is equal to the rotation angle origin, and the gradient of the characteristic waveform 48 and the characteristic waveform 46 is equal to one cycle. Rotation angle ratio ((
360/c): (360 X (bZa)Z2))にて補正することにより、装置に異常がない限り規 定値以下の値となる。この規定値については、実験的に算出することができる。 360 / c): By correcting with (360 X (bZa) Z2)), the value will be below the specified value as long as there is no abnormality in the device. This specified value can be calculated experimentally.
[0117] CPU32は、この第 1の回転体 10と第 3の回転体 22との回転角度差 (電気角)の差 を検知して、その値が所定の値を超えたときに、異常を知らせる信号を発生する。 [0117] The CPU 32 detects a difference in rotational angle difference (electrical angle) between the first rotating body 10 and the third rotating body 22, and when the value exceeds a predetermined value, Generate a notification signal.
[0118] 次に、第 1〜第 3の磁気検知素子 18, 20, 28および増幅部 30等の感度ばらつきを 抑え、装置動作時の回転検出誤差の発生を防止する方法について説明する。図 8は[0118] Next, a method for suppressing the variation in sensitivity of the first to third magnetic sensing elements 18, 20, 28, the amplifying unit 30 and the like and preventing the occurrence of a rotation detection error during device operation will be described. Figure 8
、この方法について説明するための図である。 FIG. 5 is a diagram for explaining this method.
[0119] トルク検出装置 1では、第 1の回転体 10が回転すると第 1のターゲット 14も回転する[0119] In the torque detector 1, when the first rotating body 10 rotates, the first target 14 also rotates.
。この第 1のターゲット 14の回転と共に磁界も変化し、この磁界変化が第 1の検出部 1. As the first target 14 rotates, the magnetic field also changes.
1で検出される。 Detected at 1.
[0120] 第 1の検出部 11からは、この磁界変化に対して図 4Aに示すような正弦波信号 38と 余弦波信号 40とが出力される。これらの信号は増幅器 30を介して CPU32に入力さ れ、 CPU32において正弦波信号 38および余弦波信号 40にもとづいて逆正接信号 が算出される。  [0120] The first detector 11 outputs a sine wave signal 38 and a cosine wave signal 40 as shown in FIG. These signals are input to the CPU 32 via the amplifier 30, and the arc tangent signal is calculated based on the sine wave signal 38 and the cosine wave signal 40 in the CPU 32.
[0121] し力しながら、図 8に示すように、正弦波信号 38の信号レベル (S1)および余弦波 信号 40の信号レベル (S2)が、第 1の磁気検知素子 18や増幅部 30の感度ばらつき により微妙に変化してくると、算出される逆正接信号の精度が落ちてくる。なお、ここ では、正弦波信号 38および余弦波信号 40について、その振幅の最大値が信号レべ ルであるとして説明を行う。 [0121] As shown in Fig. 8, the signal level (S1) of the sine wave signal 38 and the cosine wave are applied. If the signal level (S2) of the signal 40 slightly changes due to sensitivity variations of the first magnetic sensing element 18 and the amplifying unit 30, the accuracy of the calculated arctangent signal decreases. Here, description will be made assuming that the maximum value of the amplitude of the sine wave signal 38 and the cosine wave signal 40 is the signal level.
[0122] まず、図 3に示すように、スィッチ 49を操作して感度記憶モードにしたときに、第 1の 回転体 10および第 2の回転体 12を(360Zc) deg以上回転させて、第 1の検出部 11 から出力される正弦波信号 38および余弦波信号 40の信号レベル (感度)を算出し、 不揮発性のメモリである EEPROM34に記憶する。同様に、第 2の回転体 12の回転 角度を検出する第 2の検出部 13の信号レベルにっ 、ても不揮発性のメモリである E EPROM34に記憶する。  First, as shown in FIG. 3, when the switch 49 is operated to enter the sensitivity memory mode, the first rotating body 10 and the second rotating body 12 are rotated by at least (360 Zc) deg. The signal levels (sensitivities) of the sine wave signal 38 and the cosine wave signal 40 output from the detection unit 11 of 1 are calculated and stored in the EEPROM 34 which is a nonvolatile memory. Similarly, the signal level of the second detection unit 13 that detects the rotation angle of the second rotating body 12 is stored in the EEPROM 34 that is a non-volatile memory.
[0123] 通常の回転角度値の算出時には、スィッチ 49を操作して感度記憶モードをオフと する。 CPU32は正規ィ匕部として機能し、第 1の検出部 11および第 2の検出部 13そ れぞれの出力の正弦波信号 38および余弦波信号 40の信号レベルと、記憶した信号 レベルとがー致するように正規ィ匕して力 逆正接信号を算出して回転角度値を求め る。  [0123] When the normal rotation angle value is calculated, switch 49 is operated to turn off the sensitivity memory mode. The CPU 32 functions as a normal part, and the first detection unit 11 and the second detection unit 13 have a signal level of the output sine wave signal 38 and cosine wave signal 40 and the stored signal level. -Calculate the rotation angle value by calculating the force tangent signal by normalizing it to match.
[0124] また、トルク検出装置 1においては、第 3の検出部 23から出力される信号について も、素子等の感度ばらつきを抑制させることが可能である。  [0124] Also, in the torque detection device 1, it is possible to suppress variations in sensitivity of elements and the like for the signal output from the third detection unit 23.
[0125] この場合には、スィッチ 49を操作して感度記憶モードにしたときに、第 3の回転体 2 2が 180deg以上回転するように第 4の回転体 24を回転させる。そして、第 3の検出部 23から算出される、図 4Aに示す正弦波信号 38と余弦波信号 40の信号レベル (感 度)を算出して、不揮発性のメモリである EEPROM34に記憶する。  In this case, when the switch 49 is operated to enter the sensitivity memory mode, the fourth rotating body 24 is rotated so that the third rotating body 22 rotates by 180 degrees or more. Then, the signal levels (sensitivity) of the sine wave signal 38 and the cosine wave signal 40 shown in FIG. 4A calculated from the third detection unit 23 are calculated and stored in the EEPROM 34 which is a nonvolatile memory.
[0126] そして、 CPU32は、通常モードでは、前述したように記憶した信号レベルと第 3の 検出部 23から出力された正弦波信号 38および余弦波信号 40の信号レベルとがー 致するように正規化し、逆正接信号を算出して回転角度値を求める。  [0126] Then, in the normal mode, the CPU 32 matches the signal level stored as described above with the signal levels of the sine wave signal 38 and the cosine wave signal 40 output from the third detection unit 23. Normalize and calculate the arc tangent signal to determine the rotation angle value.
[0127] これにより、磁気検知素子や増幅部 30の感度ばらつきによる信号レベルの違いを 補正することが可能となる。  This makes it possible to correct a difference in signal level due to variations in sensitivity of the magnetic detection element and the amplification unit 30.
[0128] また、図 8において、第 1〜第 3の検出部 11, 13, 23それぞれからの出力の振幅の 最大値が、基準範囲(S3)内に無い場合には、素子の温度特性等によって十分に出 力が変化しな力つたものと考えられ、このような場合には、回転角度の演算に必要な 分解能が得られな 、場合もある。 [0128] In FIG. 8, if the maximum value of the output amplitude from each of the first to third detectors 11, 13, and 23 is not within the reference range (S3), the temperature characteristics of the element, etc. Fully out by It is considered that the force did not change. In such a case, the resolution required for calculating the rotation angle may not be obtained.
[0129] そこで、出力の信号レベルが基準範囲(S3)内にあることを比較確認する確認部( 図示しない)を用いて確認することにより誤出力の防止が可能になる。また、この確認 は CPU32が確認部として機能することにより行ってもよい。  Therefore, it is possible to prevent erroneous output by confirming using a confirmation unit (not shown) for confirming that the output signal level is within the reference range (S3). This confirmation may be performed by the CPU 32 functioning as a confirmation unit.
[0130] なお、図 8において、信号レベルの代わりに、第 1〜第 3の検出部 11, 13, 23から の出力の振幅中心 (Ol) , (02)の値を利用して、正規ィ匕部によってあら力じめメモリ に記憶した値を用いて実際に出力される値を正規ィ匕したり、確認部によって振幅中 心が基準範囲内にある力否かを確認したりすることによつても、特性ばらつきによる誤 出力の防止が可能になる。  [0130] In FIG. 8, instead of the signal level, the values of the amplitude centers (Ol) and (02) of the outputs from the first to third detectors 11, 13, and 23 are used to obtain the normal signal. The value that is actually output using the value stored in the memory by the head part is normalized, and the confirmation part is used to check whether the force is within the reference range. However, erroneous output due to characteristic variations can be prevented.
[0131] さらに、信号レベルや振幅中心を用いた演算を行う際に、複数回ずつの出力をサ ンプリングしてそれらの平均値を取ったり、または、複数回ずつの出力の最大値およ び最小値を除 、た平均値を取ったりしてから、正規化処理や基準範囲との比較処理 を行うことにより、より高い精度での誤出力の防止が可能となる。  [0131] Furthermore, when performing computations using the signal level and the center of amplitude, the output is sampled multiple times and the average value is obtained, or the maximum value It is possible to prevent erroneous output with higher accuracy by performing normalization processing and comparison processing with the reference range after taking the average value excluding the minimum value.
[0132] また、本実地の形態におけるトルク検出装置 1を用いて、回転体の所望の位置での 第 1〜第 3の検出部 11, 13, 23からの信号出力値、または、これらの信号出力より算 出される絶対回転角度の値をメモリに記憶しておくことにより、所望の位置力 の絶対 回転角度を検出することが可能となる。また、トルクをかけない状態でこれらの値を記 憶しておくことによりトルク検出の際の原点を設定することができる。  [0132] Further, by using the torque detection device 1 in the present embodiment, the signal output values from the first to third detection units 11, 13, and 23 at desired positions of the rotating body, or these signals By storing the absolute rotation angle value calculated from the output in the memory, it is possible to detect the absolute rotation angle of the desired position force. Also, by storing these values without applying torque, the origin for torque detection can be set.
[0133] さらに、このとき、図 3に示したように、外部装置 52から、特定位置決定用信号線 50 のように電気信号で、回転体の位置が所望の位置であることの信号を送れば、機械 的な動作を行うことなく特定位置の指定ができる。  Further, at this time, as shown in FIG. 3, a signal indicating that the position of the rotating body is a desired position can be sent from the external device 52 as an electrical signal, as in the specific position determination signal line 50. For example, a specific position can be specified without performing mechanical operation.
[0134] さらに、特定位置決定用の電気信号を複数回読み込んだのちに、エラーチェックす る、または、シリアル信号等で送るようにすることもできる。このようにすれば、ノイズな どにより誤った信号が入った場合にもその影響を除去することができる。  [0134] Furthermore, after an electrical signal for determining a specific position is read a plurality of times, an error check can be performed, or a serial signal or the like can be sent. In this way, even if an incorrect signal is input due to noise or the like, the effect can be eliminated.
[0135] なお、特定位置決定用信号線 50を有さずに、出力信号線 36を利用して特定位置 の指定を行うことも可能である。  It is also possible to designate a specific position using the output signal line 36 without having the specific position determining signal line 50.
[0136] (第 2の実施の形態) 次に、本発明の第 2の実施の形態について図面を参照しながら説明する。 [0136] (Second Embodiment) Next, a second embodiment of the present invention will be described with reference to the drawings.
[0137] 図 9は、本発明の第 2の実施の形態におけるトルク検出装置 3の断面図であり、図 1FIG. 9 is a cross-sectional view of the torque detection device 3 according to the second embodiment of the present invention.
0は、トルク検出装置 3の図 9における A— A断面を矢印の方向に見た矢視図である。 FIG. 0 is an arrow view of the AA section in FIG.
[0138] また、図 11Aは、図 9の A部における第 1、第 2の磁気検知素子 18, 20と故障判断 用磁気検知素子 29との配置関係の一例を示す斜視図であり、図 11Bは、同側面図 であり、図 12は同トルク検出装置 3の電気的な構成を示すブロック図である。 FIG. 11A is a perspective view showing an example of an arrangement relationship between the first and second magnetic detection elements 18 and 20 and the failure detection magnetic detection element 29 in part A of FIG. FIG. 12 is a side view of the same, and FIG. 12 is a block diagram showing an electrical configuration of the torque detector 3.
[0139] トルク検出装置 3において、第 1の実施の形態で説明したトルク検出装置 1と共通す る構成要件については、同じ符号を付して、その説明を省略する。 In the torque detection device 3, the same components as those in the torque detection device 1 described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0140] トルク検出装置 3がトルク検出装置 1と異なるところは、トルク検出装置 3が、第 1の検 出部 11、第 2の検出部 13、第 1のターゲット 14および第 2のターゲット 16等の装置の 故障を判断する故障判断機能を備えている点である。 [0140] The torque detection device 3 differs from the torque detection device 1 in that the torque detection device 3 includes the first detection unit 11, the second detection unit 13, the first target 14, the second target 16, and the like. It is equipped with a failure judgment function that judges the failure of the equipment.
[0141] 図 11Aに示したように、トルク検出装置 3においては、第 2の磁気検知素子 20に対 して、第 2の回転体 12の回転方向にずらした位置に、第 2のターゲット 16に配置した 磁極と対向させて故障判断用磁気検知素子 29を設けている。 As shown in FIG. 11A, in the torque detector 3, the second target 16 is positioned at a position shifted in the rotational direction of the second rotating body 12 with respect to the second magnetic sensing element 20. A failure detection magnetic sensing element 29 is provided so as to face the magnetic pole arranged in FIG.
[0142] CPU32は、第 2の磁気検知素子 20から検知した磁界変化、および、故障判断用 磁気検知素子 29から検知した磁界変化を比較して故障を判断する故障判断部とし て機能する。 The CPU 32 functions as a failure determination unit that determines a failure by comparing the magnetic field change detected from the second magnetic detection element 20 and the magnetic field change detected from the failure detection magnetic detection element 29.
[0143] 図 11Aおよび図 11Bに示すように、トルク検出装置 3においては、第 1の磁気検知 素子 18が、第 1のターゲット 14の周面中心よりも下方側(軸 8に沿った方向のより入 力軸 4側)にずらして設けられている。また、第 2の磁気検知素子 20が、第 2のターゲ ット 16の周面中心よりも上方側(軸 8に沿った方向のより出力軸 6側)にずらして設け られている。  As shown in FIGS. 11A and 11B, in the torque detection device 3, the first magnetic sensing element 18 is located below the center of the peripheral surface of the first target 14 (in the direction along the axis 8). The input shaft is shifted to 4). The second magnetic sensing element 20 is provided so as to be shifted from the center of the peripheral surface of the second target 16 to the upper side (the output shaft 6 side in the direction along the shaft 8).
[0144] さらに、前述のように、故障判断用磁気検知素子 29が、第 2の磁気検知素子 20〖こ 対して、第 2の回転体 12の回転方向にずれた位置に隣接配置されている。  [0144] Further, as described above, the failure detection magnetic detection element 29 is disposed adjacent to the second magnetic detection element 20 at a position shifted in the rotation direction of the second rotating body 12. .
[0145] ここで、トルク検出装置 3が装置の故障を判断する機能について説明する。 [0145] Here, the function of the torque detection device 3 determining a device failure will be described.
[0146] CPU32は、第 2の磁気検知素子により検知された磁界変化と、第 2のターゲット 16 の近傍に配置した故障判断用磁気検知素子 29により検知された磁界変化との比較 にもとづ!/ヽて故障を判断する。 [0147] 例えば、第 2のターゲット 16に金属等の付着物が付着した場合、第 2の磁気検知素 子 20および故障判断用磁気検知素子 29のいずれか一方は、他方よりも先に、付着 物に起因して磁気的影響を受けた磁極の磁界変化を検知するが、他方は、磁気的 影響を受けて 、な 、状態での磁極の磁界変化を検知する。 The CPU 32 is based on the comparison between the magnetic field change detected by the second magnetic detection element and the magnetic field change detected by the failure determination magnetic detection element 29 arranged in the vicinity of the second target 16. ! / Hurry to judge the failure. [0147] For example, when a deposit such as a metal adheres to the second target 16, either the second magnetic detection element 20 or the failure detection magnetic detection element 29 adheres before the other. The magnetic field change of the magnetic pole that is magnetically affected due to the object is detected, while the other detects the magnetic field change of the magnetic pole in the state under the magnetic influence.
[0148] すなわち、第 2のターゲット 16に付着物がなければ、第 2の磁気検知素子 20と故障 判断用磁気検知素子 29とは、互いに配置された周方向の角度差に応じて、位相差 の異なる磁界変化を検知するが、付着部がある場合や第 2の検知部 13が故障してい るような場合には、この特性波形の位相差が変化したり振幅が変化したりする。 CPU 32は、この変化を検知することによって故障を判断する。  That is, if there is no deposit on the second target 16, the second magnetic sensing element 20 and the failure determination magnetic sensing element 29 have a phase difference in accordance with the circumferential angle difference between them. However, when there is an adhering portion or when the second detecting portion 13 is out of order, the phase difference of this characteristic waveform changes or the amplitude changes. The CPU 32 determines a failure by detecting this change.
[0149] なお、上述の例では、第 2の磁気検知素子 20の近傍に故障判断用磁気検知素子 29を設ける例を示したが、本発明はこの例に限定されない。故障判断用磁気検知素 子 29を、第 1の磁気検知素子 18の近傍に設けることもできる。  In the above-described example, the example in which the failure detection magnetic detection element 29 is provided in the vicinity of the second magnetic detection element 20 is shown, but the present invention is not limited to this example. A failure detection magnetic detection element 29 may be provided in the vicinity of the first magnetic detection element 18.
[0150] この場合には、 CPU32は、第 1の磁気検知素子 18により検知した磁界変化と、故 障判断用磁気検知素子 29により検知した磁界変化との比較にもとづいて、第 1のタ 一ゲット 14に対する金属物の付着や第 1の検出部 11の故障を判断する。  [0150] In this case, the CPU 32 determines the first type based on the comparison between the magnetic field change detected by the first magnetic detection element 18 and the magnetic field change detected by the failure determination magnetic detection element 29. Judgment of adhesion of metal objects to the get 14 or failure of the first detection unit 11 is made.
[0151] 他にも、第 1の磁気検知素子 18、第 2の磁気検知素子 20および故障判断用磁気 検知素子 29の配置構成については、図 13〜図 16に示す例がある。図 13〜図 16は 、それぞれ第 1の磁気検知素子 18、第 2の磁気検知素子 20および故障判断用磁気 検知素子 29の他の配置構成を示す概略図である。  [0151] In addition, examples of the arrangement configuration of the first magnetic detection element 18, the second magnetic detection element 20, and the failure determination magnetic detection element 29 are shown in FIGS. FIGS. 13 to 16 are schematic views showing other arrangement configurations of the first magnetic detection element 18, the second magnetic detection element 20, and the failure determination magnetic detection element 29, respectively.
[0152] まず、図 13における故障判断用磁気検知素子 29は、第 1のターゲット 14に対して 第 1の磁気検知素子 18が設けられた側と反対側に配置されている。  First, the failure determination magnetic sensing element 29 in FIG. 13 is arranged on the opposite side of the first target 14 from the side where the first magnetic sensing element 18 is provided.
[0153] また、図 14に示した例では、二つの故障判断用検知素子 29が、第 1のターゲット 1 4および第 2のターゲット 16に対して、第 1の磁気検知素子 18および第 2の磁気検知 素子 20が設けられた位置と反対側の位置にそれぞれ配置されている。  In addition, in the example shown in FIG. 14, the two failure determination detection elements 29 have the first magnetic detection element 18 and the second target 16 with respect to the first target 14 and the second target 16, respectively. The magnetic sensing element 20 is disposed at a position opposite to the position where it is provided.
[0154] さらに、図 15に示した例では、二つの故障判断用検知素子 29が、第 1の磁気検知 素子 18に対して第 1のターゲット 14の回転方向にずらした位置、および、第 2の磁気 検知素子 20に対して第 2のターゲット 16の回転方向にずらした隣接位置にそれぞれ 配置されている。 [0155] さらに、図 16に示した例では、第 1の磁気検知素子 18が、第 1のターゲット 14の周 面中心よりも下方側にずらして設けられ、第 2の磁気検知素子 20が、第 2のターゲットFurther, in the example shown in FIG. 15, the two failure determination detecting elements 29 are shifted in the rotational direction of the first target 14 with respect to the first magnetic detecting element 18, and the second The magnetic sensing elements 20 are arranged at adjacent positions shifted in the rotation direction of the second target 16. Furthermore, in the example shown in FIG. 16, the first magnetic sensing element 18 is provided shifted downward from the peripheral center of the first target 14, and the second magnetic sensing element 20 is Second target
16の周面中心よりも上方側にずらして設けられている。 It is provided so as to be shifted upward from the center of 16 peripheral surfaces.
[0156] この場合において、故障判断用磁気検知素子 29を、第 1のターゲット 14の周面中 心と第 2のターゲット 16の周面中心との間の位置に設ければ、第 1の磁気検知素子 1In this case, if the failure detection magnetic sensing element 29 is provided at a position between the center of the circumferential surface of the first target 14 and the center of the circumferential surface of the second target 16, the first magnetic field is detected. Sensing element 1
8および第 2の磁気検知素子 20と一つの故障判断用磁気検知素子 29を用いて故障 を判断することができる。 A failure can be determined using the 8 and second magnetic detection elements 20 and one failure detection magnetic detection element 29.
[0157] なお、トルク検出装置 3においては、故障判断を行う場合に、故障判断用磁気検知 素子 29を用いずに、第 1の磁気検知素子 18および第 3の磁気検知素子 28により検 知した磁界変化を比較して、故障を判断することも可能である。 [0157] In the torque detection device 3, when making a failure determination, the failure was detected by the first magnetic detection element 18 and the third magnetic detection element 28 without using the failure detection magnetic detection element 29. It is also possible to judge failure by comparing magnetic field changes.
[0158] 第 1の回転体 10および第 3の回転体 22は同期回転しているので、第 1の磁気検知 素子 18および第 3の磁気検知素子 28が検知する磁極の磁界変化の周期それぞれ は一定である。第 1の回転体 10の回転周期を基準にした場合、互いの周期の違いに よって一定の位相差が生じる。 [0158] Since the first rotating body 10 and the third rotating body 22 rotate synchronously, the period of the magnetic field change of the magnetic pole detected by the first magnetic sensing element 18 and the third magnetic sensing element 28 is It is constant. When the rotation cycle of the first rotating body 10 is used as a reference, a certain phase difference is generated due to the difference in the cycle.
[0159] 磁界変化に影響が生じた場合には、この一定の位相差に異常が生じるので、 CPU[0159] If there is an effect on the change in the magnetic field, this constant phase difference will be abnormal.
32は、この異常を検知することにより、第 1のターゲット 14または第 3のターゲット 26 に付着物が付着して故障していると判断することができる。 By detecting this abnormality 32, it can be determined that a deposit has adhered to the first target 14 or the third target 26 and has failed.
[0160] なお、第 1〜第 3の磁気検知素子 18, 20, 28および故障判断用磁気検知素子 29 として、それぞれが同じ性能の磁気検知素子を用いることもできる。 It should be noted that, as the first to third magnetic sensing elements 18, 20, 28 and the failure determination magnetic sensing element 29, magnetic sensing elements having the same performance can be used.
産業上の利用可能性  Industrial applicability
[0161] 以上述べたように、本発明によれば、検知精度の高いトルク検出装置および回転 角度検出装置を提供することができるという格別な効果を奏することができるので、各 種車両のパワーステアリング等に用いられるトルク検出装置および回転角度検出装 置等として有用である。 [0161] As described above, according to the present invention, since it is possible to provide a special effect that it is possible to provide a torque detection device and a rotation angle detection device with high detection accuracy, it is possible to provide power steering for various types of vehicles. It is useful as a torque detection device and a rotation angle detection device used for the above.

Claims

請求の範囲 The scope of the claims
[1] 検出対象となる軸部の入力軸側に連結される第 1の回転体と、  [1] a first rotating body coupled to the input shaft side of the shaft portion to be detected;
前記軸部の出力軸側に連結される第 2の回転体と、  A second rotating body connected to the output shaft side of the shaft portion;
前記第 1の回転体の回転角度を検出する第 1の検出部と、  A first detector for detecting a rotation angle of the first rotating body;
前記第 2の回転体の回転角度を検出する第 2の検出部と、  A second detection unit for detecting a rotation angle of the second rotating body;
前記第 1の回転体および前記第 2の回転体の回転角度差からトルクを検出するトルク 検出部とを備えたことを特徴とするトルク検出装置。  A torque detection device comprising: a torque detection unit configured to detect torque from a rotation angle difference between the first rotating body and the second rotating body.
[2] 請求項 1に記載のトルク検出装置と、 [2] The torque detection device according to claim 1,
前記第 1の回転体と同期回転する第 3の回転体と、  A third rotating body that rotates synchronously with the first rotating body;
前記第 3の回転体の回転角度を検出する第 3の検出部と、  A third detection unit for detecting a rotation angle of the third rotating body;
前記第 1の回転体および前記第 3の回転体の回転角度差から前記第 1の回転体およ び前記第 3の回転体の絶対回転角度を検出する絶対角度検出部とを備えたことを特 徴とする回転角度検出装置。  An absolute angle detector configured to detect absolute rotation angles of the first rotating body and the third rotating body from a rotation angle difference between the first rotating body and the third rotating body. Features a rotation angle detection device.
[3] 前記絶対角度検出部は、前記第 2の回転体および前記第 3の回転体の回転角度差 力 前記第 2の回転体の絶対回転角度を検出することを特徴とする請求項 2に記載 の回転角度検出装置。 [3] The absolute angle detection unit may detect an absolute rotation angle of the second rotating body. The rotational angle difference between the second rotating body and the third rotating body. The rotation angle detection device according to claim.
[4] 前記第 1の回転体は周方向に極性の異なる磁極を交互に配置した第 1のターゲット を有し、  [4] The first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in a circumferential direction,
前記第 2の回転体は周方向に極性の異なる磁極を交互に配置した第 2のターゲット を有し、  The second rotating body has a second target in which magnetic poles having different polarities are alternately arranged in the circumferential direction,
前記第 3の回転体は周方向に極性の異なる磁極を交互に配置した第 3のターゲット を有し、  The third rotating body has a third target in which magnetic poles having different polarities are alternately arranged in the circumferential direction,
前記第 1の検出部、前記第 2の検出部および前記第 3の検出部それぞれは、前記第 1のターゲット、前記第 2のターゲットおよび前記第 3のターゲットそれぞれに配置され た磁極の磁界変化を検出することを特徴とする請求項 2に記載の回転角度検出装置  Each of the first detection unit, the second detection unit, and the third detection unit is configured to detect a magnetic field change of a magnetic pole disposed in each of the first target, the second target, and the third target. The rotation angle detection device according to claim 2, wherein the rotation angle detection device detects the rotation angle.
[5] 前記第 1のターゲットおよび前記第 2のターゲットは、外周面に極性の異なる磁極を 交互に配置した多極リング磁石力 なり、前記第 3のターゲットは棒磁石力 なること を特徴とする請求項 4に記載の回転角度検出装置。 [5] The first target and the second target have a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged on the outer peripheral surface, and the third target has a bar magnet force. The rotation angle detection device according to claim 4, wherein:
[6] 前記第 1のターゲットの磁極と対向配置された第 1の磁気検知素子と、  [6] a first magnetic sensing element disposed opposite to the magnetic pole of the first target;
前記第 2のターゲットの磁極と対向配置された第 2の磁気検知素子と、  A second magnetic sensing element disposed opposite to the magnetic pole of the second target;
前記第 3のターゲットの磁極と対向配置された第 3の磁気検知素子とを備え、 前記第 1の検出部は前記第 1の磁気検知素子により磁界変化を検出し、 前記第 2の検出部は前記第 2の磁気検知素子により磁界変化を検出し、 前記第 3の検出部は前記第 3の磁気検知素子により磁界変化を検出することを特徴 とする請求項 4に記載の回転角度検出装置。  A third magnetic sensing element disposed opposite to the magnetic pole of the third target, the first detection unit detects a magnetic field change by the first magnetic sensing element, and the second detection unit is 5. The rotation angle detection device according to claim 4, wherein a magnetic field change is detected by the second magnetic sensing element, and the third detection unit detects a magnetic field change by the third magnetic sensing element.
[7] 前記軸部に連結され、前記第 1の回転体と同期回転する第 4の回転体を備え、 前記第 3の回転体は、前記第 4の回転体の回転により回転することを特徴とする請求 項 2に回転角度検出装置。  [7] The fourth rotating body is connected to the shaft portion and rotates synchronously with the first rotating body, and the third rotating body rotates by the rotation of the fourth rotating body. The rotation angle detection device according to claim 2.
[8] 前記第 1の回転部および前記第 2の回転部の絶対回転角度を比較して、その差が所 定の値を超えた場合に異常を検知する異常検知部を備えることを特徴とする請求項 3に記載の回転角度検出装置。  [8] The method includes an abnormality detection unit that compares the absolute rotation angles of the first rotation unit and the second rotation unit and detects an abnormality when the difference exceeds a predetermined value. The rotation angle detection device according to claim 3.
[9] 前記第 1の検出部、前記第 2の検出部および前記第 3の検出部から出力される正弦 波信号および余弦波信号の信号レベルを記憶するメモリと、  [9] A memory for storing signal levels of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit;
前記信号レベルによって、前記正弦波信号および前記余弦波信号の正規化を行う 正規ィ匕部とを備えることを特徴とする請求項 2に記載の回転角度検出装置。  The rotation angle detection device according to claim 2, further comprising: a normal part that normalizes the sine wave signal and the cosine wave signal according to the signal level.
[10] 前記第 1の検出部、前記第 2の検出部および前記第 3の検出部から出力される正弦 波信号および余弦波信号の信号レベルが、所定の値以内であるかを確認する確認 部を備えることを特徴とする請求項 9に記載の回転角度検出装置。  [10] Confirmation to confirm whether the signal levels of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit are within a predetermined value 10. The rotation angle detection device according to claim 9, further comprising a unit.
[11] 前記第 1の検出部、前記第 2の検出部および前記第 3の検出部から出力される正弦 波信号および余弦波信号の振幅中心を記憶するメモリと、  [11] A memory that stores the amplitude centers of the sine wave signal and the cosine wave signal output from the first detection unit, the second detection unit, and the third detection unit;
前記振幅中心によって、前記正弦波信号および前記余弦波信号の正規化を行う正 規ィ匕部とを備えることを特徴とする請求項 2に記載の回転角度検出装置。  3. The rotation angle detection device according to claim 2, further comprising: a normal part that normalizes the sine wave signal and the cosine wave signal according to the amplitude center.
[12] 前記第 1の検出部、前記第 2の検出部および前記第 3の検出部から出力される信号 の振幅中心が所定の値以内であるかを確認する確認部を備えることを特徴とする請 求項 11に記載の回転角度検出装置。 [12] The method includes: a confirmation unit that confirms whether an amplitude center of a signal output from the first detection unit, the second detection unit, and the third detection unit is within a predetermined value. The rotation angle detection device according to claim 11.
[13] 前記第 1の回転体は周方向に極性の異なる磁極を交互に配置した第 1のターゲット を有し、 [13] The first rotating body has a first target in which magnetic poles having different polarities are alternately arranged in a circumferential direction,
前記第 2の回転体は周方向に極性の異なる磁極を交互に配置した第 2のターゲット を有し、  The second rotating body has a second target in which magnetic poles having different polarities are alternately arranged in the circumferential direction,
前記第 1のターゲットの磁極と対向配置された第 1の磁気検知素子と、  A first magnetic sensing element disposed opposite to the magnetic pole of the first target;
前記第 2のターゲットの磁極と対向配置された第 2の磁気検知素子と、  A second magnetic sensing element disposed opposite to the magnetic pole of the second target;
前記第 1の磁気検知素子および前記第 2の磁気検知素子の少なくとも一方とずらし た位置に設けられた故障判断用磁気検知素子と、  A failure detection magnetic detection element provided at a position shifted from at least one of the first magnetic detection element and the second magnetic detection element;
前記第 1の磁気検知素子および前記第 2の磁気検知素子の少なくとも一方、ならび に、前記故障判断用磁気検知素子からの出力とを比較することにより故障を判断す る故障判断部とを備えたことを特徴とする請求項 1に記載のトルク検出装置。  A failure determination unit that determines a failure by comparing at least one of the first magnetic detection element and the second magnetic detection element and an output from the failure detection magnetic detection element; The torque detection device according to claim 1, wherein:
[14] 前記第 1の磁気検知素子は、前記第 1のターゲットの周面中心よりも前記軸部に沿つ た方向の前記入力軸側または前記出力軸側にずらした位置に設けられ、 前記第 2の磁気検知素子は、前記第 2のターゲットの周面中心よりも前記軸部に沿つ た方向の前記入力軸側または前記出力軸側にずらした位置に設けられることを特徴 とする請求項 13に記載のトルク検出装置。  [14] The first magnetic sensing element is provided at a position shifted to the input shaft side or the output shaft side in the direction along the shaft portion from the center of the peripheral surface of the first target, The second magnetic sensing element is provided at a position shifted from the center of the peripheral surface of the second target to the input shaft side or the output shaft side in a direction along the shaft portion. Item 14. The torque detection device according to Item 13.
[15] 前記第 1の磁気検知素子は、前記第 1のターゲットの周面中心よりも前記軸部に沿つ た方向の前記入力軸側にずらして設けられ、  [15] The first magnetic sensing element is provided to be shifted to the input shaft side in the direction along the shaft portion from the center of the peripheral surface of the first target,
前記第 2の磁気検知素子は、前記第 2のターゲットの周面中心よりも前記軸部に沿つ た方向の前記出力軸側にずらして設けられ、  The second magnetic sensing element is provided shifted from the center of the peripheral surface of the second target toward the output shaft in the direction along the shaft portion;
前記故障判断用磁気検知素子は、前記第 1のターゲットの周面中心と前記第 2のタ 一ゲットの周面中心との間に設けられたことを特徴とする請求項 14に記載のトルク検 出装置。  15. The torque detection device according to claim 14, wherein the failure detection magnetic detection element is provided between a peripheral surface center of the first target and a peripheral surface center of the second target. Out device.
[16] 前記第 1のターゲットおよび第 2のターゲットは、外周面に極 ¾の異なる磁極を交互 に配置した多極リング磁石力 なることを特徴とする請求項 13に記載のトルク検出装 置。  16. The torque detection device according to claim 13, wherein the first target and the second target have a multipolar ring magnet force in which magnetic poles having different polarities are alternately arranged on an outer peripheral surface.
[17] 前記第 1の回転体と同期回転する第 3の回転体と、  [17] a third rotating body that rotates in synchronization with the first rotating body;
前記第 3の回転体に保持され、前記第 3の回転体の回転方向に極性の異なる磁極を 交互に配置した第 3のターゲットと、 Magnetic poles held by the third rotating body and having different polarities in the rotation direction of the third rotating body A third target arranged alternately,
前記第 3の回転体の回転角度を検出する第 3の検出部と、  A third detection unit for detecting a rotation angle of the third rotating body;
前記第 3のターゲットの磁極と対向配置された第 3の磁気検知素子とを備え、 前記第 3の検出部は、前記第 3の磁気検知素子により磁界変化を検知し、 前記故障判断部は、前記第 1の磁気検知素子および第 3の磁気検知素子により検知 された磁界変化を比較して故障を判断することを特徴とする請求項 13に記載のトル ク検出装置。  A third magnetic sensing element disposed opposite to the magnetic pole of the third target, the third detection unit detects a magnetic field change by the third magnetic detection element, the failure determination unit, 14. The torque detection device according to claim 13, wherein a failure is determined by comparing magnetic field changes detected by the first magnetic detection element and the third magnetic detection element.
[18] 請求項 17に記載のトルク検出装置と、  [18] The torque detection device according to claim 17,
前記第 1の回転体および第 3の回転体の回転角度差から、前記第 1の回転体および 前記第 3の回転体の絶対回転角度を検出する絶対角度検出部とを備えたことを特徴 とする回転角度検出装置。  And an absolute angle detector that detects an absolute rotation angle of the first rotating body and the third rotating body from a difference in rotation angle between the first rotating body and the third rotating body. Rotation angle detection device.
[19] 前記軸部に連結され、前記第 1の回転体と同期回転する第 4の回転体を備え、 前記第 3の回転体は、前記第 4の回転体の回転により回転することを特徴とする請求 項 18に記載の回転角度検出装置。  [19] The fourth rotating body is connected to the shaft portion and rotates synchronously with the first rotating body, and the third rotating body rotates by the rotation of the fourth rotating body. The rotation angle detection device according to claim 18.
PCT/JP2007/051971 2006-02-16 2007-02-06 Torque detector and rotating angle detector WO2007094196A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006039004 2006-02-16
JP2006-039004 2006-02-16
JP2006039003 2006-02-16
JP2006-039003 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094196A1 true WO2007094196A1 (en) 2007-08-23

Family

ID=38371382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051971 WO2007094196A1 (en) 2006-02-16 2007-02-06 Torque detector and rotating angle detector

Country Status (1)

Country Link
WO (1) WO2007094196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038682A (en) * 2008-08-04 2010-02-18 Panasonic Corp Rotation angle detecting device
JP2010139307A (en) * 2008-12-10 2010-06-24 Hitachi Cable Ltd Steering angle/torque sensor device
JP2014153358A (en) * 2013-02-04 2014-08-25 Bourns Inc Rotation angle and torsion angle detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134267A (en) * 1990-09-27 1992-05-08 Aisin Seiki Co Ltd Rotary sensor
JPH04230817A (en) * 1990-05-15 1992-08-19 Shimpo Ind Co Ltd Torque detector
JPH0943072A (en) * 1995-07-28 1997-02-14 Nissan Motor Co Ltd Dynamic quantity sensor
JP2002122495A (en) * 2000-10-12 2002-04-26 Koyo Seiko Co Ltd Rotation angle detector, torque detector and steering system
JP2005098781A (en) * 2003-09-24 2005-04-14 Favess Co Ltd Failure detection method and device of torque sensor
JP2005106613A (en) * 2003-09-30 2005-04-21 Koyo Seiko Co Ltd Rotation angle detecting apparatus and torque detecting apparatus
JP2005257364A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Rotating angle/torque detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230817A (en) * 1990-05-15 1992-08-19 Shimpo Ind Co Ltd Torque detector
JPH04134267A (en) * 1990-09-27 1992-05-08 Aisin Seiki Co Ltd Rotary sensor
JPH0943072A (en) * 1995-07-28 1997-02-14 Nissan Motor Co Ltd Dynamic quantity sensor
JP2002122495A (en) * 2000-10-12 2002-04-26 Koyo Seiko Co Ltd Rotation angle detector, torque detector and steering system
JP2005098781A (en) * 2003-09-24 2005-04-14 Favess Co Ltd Failure detection method and device of torque sensor
JP2005106613A (en) * 2003-09-30 2005-04-21 Koyo Seiko Co Ltd Rotation angle detecting apparatus and torque detecting apparatus
JP2005257364A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Rotating angle/torque detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038682A (en) * 2008-08-04 2010-02-18 Panasonic Corp Rotation angle detecting device
JP2010139307A (en) * 2008-12-10 2010-06-24 Hitachi Cable Ltd Steering angle/torque sensor device
JP2014153358A (en) * 2013-02-04 2014-08-25 Bourns Inc Rotation angle and torsion angle detector

Similar Documents

Publication Publication Date Title
US7583080B2 (en) Rotation angle detection device and rotation angle correction method
JP4474872B2 (en) Absolute rotation angle and torque detector
JP2006220529A (en) Detection device for absolute angle of rotation and torque
JP2006220530A (en) Device for detecting absolute angle of rotation
JP5036520B2 (en) Magnetic absolute encoder
US7200515B2 (en) Rotation angle sensor
US7040025B2 (en) Device and method of detecting rotation angle
WO2007077910A1 (en) Device for detecting rotation angle and torque
US20090320613A1 (en) Rotation angle and torque detection device
US5930905A (en) Method and device for angular measurement of a rotatable body
KR100807179B1 (en) Rotational angle detecting apparatus, torque detecting apparatus and steering apparatus
EP1783036A2 (en) Rotational angle detector
AU1962800A (en) Device and method for detecting the relative position of a rotatable body
JP6445310B2 (en) Multi-turn rotary encoder
US20050075828A1 (en) Rotation angle sensor
WO2007094196A1 (en) Torque detector and rotating angle detector
JP4982925B2 (en) Rotation angle detector
JP2017198515A (en) Magnetic sensor rotation detection device using the same
JP2009276240A (en) Rotation angle detection device
JP2006275558A (en) Torque detector with function detecting absolute rotation angle
JP2005315696A (en) Apparatus for detecting rotation angle of rotating body
JP4759845B2 (en) Rotation angle detector
KR101126373B1 (en) Method for cotnrolling a steering angle dectecting device
JP2007256140A (en) Rotation angle/rotational torque sensor
JP2007187500A (en) Rotational angle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP