JPH04133299A - Evacuation device for light beam take-out line in sor optical system - Google Patents

Evacuation device for light beam take-out line in sor optical system

Info

Publication number
JPH04133299A
JPH04133299A JP25480890A JP25480890A JPH04133299A JP H04133299 A JPH04133299 A JP H04133299A JP 25480890 A JP25480890 A JP 25480890A JP 25480890 A JP25480890 A JP 25480890A JP H04133299 A JPH04133299 A JP H04133299A
Authority
JP
Japan
Prior art keywords
gas
sor
extraction line
light
light extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25480890A
Other languages
Japanese (ja)
Inventor
Nobuo Matsuki
信雄 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25480890A priority Critical patent/JPH04133299A/en
Publication of JPH04133299A publication Critical patent/JPH04133299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To improve efficiency in evacuation by adsorbing ionized gas molecules from a sample chamber after the gas is irradiated SOR with beam through both gate valves opened, by means of a gas adsorption metal film formed on the inner circumferential face of optical beam take-out line with both gate blocked. CONSTITUTION:By closing gate valves 40, 42 and heating a gas adsorption metal 38 inside a gas adsorption metal evaporation tank 36 to evaporate a gas adsorption metal 38', which is deposited on the inner circumferential face 26' of space closed by valves 40, 42 to form a gas adsorption metal film 38''. The valves 40, 42 are thereafter opened to allow soft X-ray SOR beams 29 to be radiated, and they are fed to a sample chamber 28 through a light beam take-out line 26 to be applied to a sample 30. The vacuum level of the chamber 28 is low and also gas is discharged from a sample 30 as it is irradiated with a light beam 29. The molecules of the gas 32 are ionized after being irradiated with light beam 29 to be the molecules of gas 32' and adsorbed on the film 38'' when they flow out in a line 26 from the chamber 28. It is thus possible to improve evacuation efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光取り出しラインの端部を窓材て封止せず
に試料チャンバへ連通させて、SOR光を試料チャンバ
内の試料へ照射するSOR光装置において、試料チャン
バからの気体分子か光取り出しラインを通って電子ビー
ムダクト内に流入するのを防止するための真空排気装置
に関し、簡易な構成でこれを実現したものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention connects the end of a light extraction line to a sample chamber without sealing it with a window material, and irradiates the sample in the sample chamber with SOR light. The present invention relates to a vacuum evacuation device for preventing gas molecules from a sample chamber from flowing into an electron beam duct through a light extraction line in an SOR optical device, and has been realized with a simple configuration.

〔従来の技術〕[Conventional technology]

近年、シンクロトロン装置は、SOR光装置として、超
々LS1回路の作成、医療分野における診断、物性実験
等様々な分野への適用が期待されている。
In recent years, synchrotron devices, as SOR optical devices, are expected to be applied to various fields such as creation of ultra-super LS1 circuits, diagnosis in the medical field, and physical property experiments.

物性実験を行なうSOR光装置の概要を第2図に示す。Figure 2 shows an overview of the SOR optical device used to conduct physical property experiments.

SOR光装置1において、電子発生装置(電子銃等)1
0で発生した電子ビームは直線加速器(ライナック)]
2で光速近くに加速され、ビーム輸送部14の偏向電磁
石16て偏向されて、インフレクタ18を介してシンク
ロトロンの蓄積リング22内に入射される。蓄積リング
22に入射された電子ビームは高周波加速空洞21でエ
ネルギを与えられなから収束電磁石23で収束され、偏
向電磁石24て偏向されて真空ダクト22内を周回し続
ける。偏向電磁石24て偏向される時に発生するSOR
光29は光取り出しライン26を通して出射されて、試
料チャンバ28に送られる。
In the SOR optical device 1, an electron generator (electron gun, etc.) 1
The electron beam generated at 0 is a linear accelerator (linac)]
2, the beam is accelerated to near the speed of light, is deflected by the deflection electromagnet 16 of the beam transport section 14, and enters the storage ring 22 of the synchrotron via the inflector 18. The electron beam incident on the storage ring 22 is not energized by the high frequency acceleration cavity 21, is focused by the focusing electromagnet 23, is deflected by the deflection electromagnet 24, and continues to circulate within the vacuum duct 22. SOR generated when deflected by the deflection electromagnet 24
Light 29 is emitted through light extraction line 26 and sent to sample chamber 28 .

試料チャンバ28内には実験対象の試料が収容されてい
て、この試料にSOR光29が照射されて、その回折光
等から物性が解析される。
A sample to be tested is housed in the sample chamber 28, and the sample is irradiated with SOR light 29, and its physical properties are analyzed from the diffracted light and the like.

軟X線のSOR光を用いた物性実験においては、軟X線
に対して透明な窓材か存在しないため、光取り出しライ
ン26の端部は第3図に示すように窓材で封止せずに試
料チャンバ28内に連通させている。このような構造で
は、蓄積リンク22と試料チャンバ28との真空度の違
いか問題となる。
In physical property experiments using soft X-ray SOR light, there is no window material that is transparent to soft X-rays, so the end of the light extraction line 26 is not sealed with a window material as shown in Figure 3. is communicated with the inside of the sample chamber 28. In such a structure, the difference in the degree of vacuum between the storage link 22 and the sample chamber 28 poses a problem.

すなわち、試料チャンバ28内はもともと蓄積リング2
2内はどの高真空が得られていないうえに、SOR光2
9を試料30に照射することにより試料30からガスが
放出される。これらの気体分子32が光取り出しライン
26を通って蓄積リング22内に流入すると蓄積リング
22内を周回している電子ビームかこの気体分子32に
衝突して消滅してしまい、電子ビームの周回に支障をき
たす。
That is, the inside of the sample chamber 28 was originally the storage ring 2.
No high vacuum is obtained inside 2, and SOR light 2
By irradiating the sample 30 with 9, gas is released from the sample 30. When these gas molecules 32 flow into the storage ring 22 through the light extraction line 26, the electron beam orbiting inside the storage ring 22 collides with the gas molecules 32 and disappears, causing the electron beam to orbit. cause trouble.

そこで、これを防止するため、差動排気を行なって、試
料チャンバ28からの気体分子32か蓄積リング22に
流れ込まないようにする必要がある。
Therefore, in order to prevent this, it is necessary to perform differential pumping to prevent gas molecules 32 from the sample chamber 28 from flowing into the storage ring 22.

従来においては、第3図に示すように、光取り出しライ
ン26の端部付近に外付けの真空ポンプ34を連結して
差動排気を行ない、試料チャンバ28からの気体分子3
2を排気するようにして、蓄積リング22への流入を阻
止していた。
Conventionally, as shown in FIG. 3, an external vacuum pump 34 is connected near the end of the light extraction line 26 to perform differential pumping, and gas molecules 3 from the sample chamber 28 are removed.
2 was evacuated to prevent it from flowing into the storage ring 22.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の真空排気装置では、外付けの真空ポンプ34
を使用するため、装置か大がかりとなるうえに真空排気
効率か悪い欠点があった。
In the conventional vacuum evacuation device, the external vacuum pump 34
Because of this, the equipment was large-scale and had the disadvantage of poor vacuum pumping efficiency.

この発明は、前記従来の技術における問題点を解決して
、試料チャンバからの気体分子を簡易な構成で排気する
ことかできるSOR光装置における光取り出しラインの
真空排気装置を提供しようとするものである。
This invention aims to solve the problems in the conventional technology and provide a vacuum evacuation device for a light extraction line in an SOR optical device that can exhaust gas molecules from a sample chamber with a simple configuration. be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、光取り出しラインの端部を窓材で封止せず
に試料チャンバへ連通させて、SOR光を試料チャンバ
内の試料へ照射するSOR光装置において、前記光取り
出しライン内にガス吸着金属蒸発槽を配設するとともに
、その前後の位置で光取り出しラインを遮断するゲート
バルブをそれぞれ配設してなり、SOR光照射を行なわ
ない時に前記両ゲートバルブを遮断してガス吸着金属蒸
発槽からガス吸着金属を蒸発させて光取り出しラインの
内周面にガス吸着金属膜を形成し、SOR光照射を行な
う時にガス吸着金属の蒸発を停止して前記両ゲートバル
ブを開いてSOR光を前記試料に照射し、この時SOR
光の照射てイオン化された前記試料チャンバからの気体
分子を前記光取り出しライン内周面のガス吸着金属膜で
吸着排気することを特徴とするものである。
This invention provides an SOR optical device in which an end of a light extraction line is communicated with a sample chamber without being sealed with a window material, and the sample in the sample chamber is irradiated with SOR light. In addition to providing an evaporation tank, gate valves for blocking the light extraction line are also provided at the front and rear positions of the evaporation tank, and when SOR light irradiation is not performed, both gate valves are cut off and the gas is removed from the gas adsorption metal evaporation tank. The gas-adsorbing metal is evaporated to form a gas-adsorbing metal film on the inner peripheral surface of the light extraction line, and when SOR light irradiation is performed, the evaporation of the gas-adsorbing metal is stopped and both gate valves are opened to direct the SOR light to the sample. At this time, the SOR
Gas molecules from the sample chamber that have been ionized by light irradiation are adsorbed and exhausted by a gas adsorption metal film on the inner peripheral surface of the light extraction line.

〔作 用〕[For production]

この発明によれば、SOR光照射を行なわない時に光取
り出しラインの両ゲートバルブを遮断してガス吸着金属
蒸発槽からガス吸着金属を蒸発させて光取り出しライン
の内周面にガス吸着膜を形成し、SOR光照射を行なう
時にガス吸着金属の蒸発を停止して前記両ゲートバルブ
、を開いてSOR光を前記試料に照射し、この時SOR
光の照射でイオン化された前記試料チャンバからの気体
分子を前記光取り出しライン内周面のガス吸着金属蒸着
膜で吸着排気することができ、蓄積リング等の電子ビー
ムダクトへの気体分子の流入を阻止することができる。
According to this invention, when SOR light irradiation is not performed, both gate valves of the light extraction line are shut off, the gas adsorption metal is evaporated from the gas adsorption metal evaporation tank, and a gas adsorption film is formed on the inner peripheral surface of the light extraction line. When performing SOR light irradiation, the evaporation of the gas-adsorbed metal is stopped and both gate valves are opened to irradiate the sample with SOR light.
Gas molecules from the sample chamber that have been ionized by light irradiation can be adsorbed and exhausted by the gas adsorption metal vapor deposited film on the inner peripheral surface of the light extraction line, thereby preventing the gas molecules from flowing into the electron beam duct such as the storage ring. can be prevented.

これによれば、光取り出しライン内にガス吸着金属槽と
その前後にゲートバルブを設ければよいので、前記従来
の外付けの真空ポンプを用いたものに比べて簡易に実現
することができるとともに、光取り出しライン内で吸着
排気するので、外付けの真空ポンプを用いた場合に比べ
て真空排気効率が向上する。
According to this, it is only necessary to install a gas adsorption metal tank in the light extraction line and a gate valve before and after it, so it can be realized more easily than the conventional method using an external vacuum pump. Since the light is adsorbed and evacuated within the light extraction line, the evacuation efficiency is improved compared to the case where an external vacuum pump is used.

〔実施例〕〔Example〕

この発明の一実施例を第1図に示す。第1図において、
(a)はガス吸着金属の蒸着膜を形成している状態、(
b)はSOROR光合9料30に照射して物性実験を行
なっている状態である。
An embodiment of this invention is shown in FIG. In Figure 1,
(a) shows a state in which a vapor-deposited film of gas-adsorbed metal is formed; (
b) shows a state in which the SOROR photocombinant 9 material 30 is irradiated to conduct a physical property experiment.

SOR光装置の蓄積リングにおける電子ビームの偏向位
置からは、その接線方向に光取り出しライン26が接続
されている。光取り出しライン26の端部は窓材て封止
せすに試料チャンバ28に連通されている。試料チャン
バ28は外部から密閉された容器で構成され、その中に
物性実験対象の試料30が収容されている。
A light extraction line 26 is connected in a tangential direction from the electron beam deflection position in the storage ring of the SOR optical device. The end of the light extraction line 26 is communicated with a sample chamber 28 while being sealed with a window material. The sample chamber 28 is constituted by a container sealed from the outside, and a sample 30 to be subjected to a physical property experiment is housed therein.

光取り出しライン26内には、その端部付近の側面に凹
状のガス吸着金属槽36か形成され、その中にチタン、
マグネシウム、タングステン等のガス吸着金属38か収
容されている。ガス吸着金属槽36は、収容されている
カス吸着金属38を加熱して昇華させる。
A concave gas adsorption metal tank 36 is formed on the side surface near the end of the light extraction line 26, and titanium, titanium,
A gas adsorption metal 38 such as magnesium or tungsten is accommodated. The gas adsorption metal tank 36 heats and sublimates the contained waste adsorption metal 38 .

光取り出しライン26におけるガス吸着金属槽36の前
後の位置には、光取り出しライン26を遮断するゲート
バルブ40.42か配設されている。
Gate valves 40 and 42 for blocking the light extraction line 26 are disposed at positions before and after the gas adsorption metal tank 36 in the light extraction line 26.

第1図の真空排気装置を使用する場合は、ます同図(a
)のようにゲートバルブ40.42を閉じて、ガス吸着
金属蒸発槽36内のガス吸着金属38を加熱して、昇華
させる。昇華したカス吸着金[38′はゲートバルブ4
0.42て閉しられた空間の内周面に蒸着されて、ガス
吸着金属膜38′を形成する。
When using the vacuum evacuation device shown in Figure 1, please
), the gate valves 40 and 42 are closed, and the gas adsorbing metal 38 in the gas adsorbing metal evaporation tank 36 is heated and sublimated. Sublimated adsorbed gold [38' is gate valve 4]
0.42 and is deposited on the inner peripheral surface of the closed space to form a gas adsorption metal film 38'.

ガス吸着金属膜38′が形成されたら、同図(b)のよ
うにゲートバルブ40.42を開く。
After the gas adsorption metal film 38' is formed, the gate valves 40 and 42 are opened as shown in FIG.

これにより、蓄積リング22(第2図)の偏向位置から
放射された軟X線のSOROR光合9光取り出しライン
26を通って試料チャンバ28に送り込まれて、試料3
0に照射される。試料チャンバ28はもともと蓄積リン
グ22よりも真空度か低いうえに、SOROR光合9射
により試料30からはガスか放出される。これらの気体
分子32は、さらにSOROR光合9射によりイオン化
される。イオン化された気体分子32′は、試料チャン
バ28から光取り出しライン26に流出するとガス吸着
金属膜38′に吸着されるので(吸着された気体分子を
32′で示す。)、蓄積リング22への流入は阻止され
る。
As a result, the soft X-rays emitted from the deflection position of the storage ring 22 (FIG. 2) are sent into the sample chamber 28 through the SOROR beam combination 9 light extraction line 26, and are sent into the sample chamber 28.
irradiated to 0. The sample chamber 28 originally has a lower degree of vacuum than the storage ring 22, and gas is released from the sample 30 due to the SOROR beam combination. These gas molecules 32 are further ionized by SOROR beam combination. When the ionized gas molecules 32' flow out from the sample chamber 28 to the light extraction line 26, they are adsorbed on the gas adsorption metal film 38' (the adsorbed gas molecules are shown as 32'), so that they are absorbed into the storage ring 22. The influx is blocked.

吸着能力が低下したら、再びゲートバルブ40゜42を
閉じて、新たなガス金属吸着膜38′を形成して、吸着
を行なう。
When the adsorption capacity decreases, the gate valves 40 and 42 are closed again, a new gas metal adsorption film 38' is formed, and adsorption is performed.

なお気体分子32に効率よ<SOROR光合9射してイ
オン化を促進するためには、光取り出しライン26は全
体をまたは少くとも試料チャンバ28の出口からマイナ
ス電極36の入口に至るまでの部分の少くとも一部をS
OROR光合9過を妨げない程度に細径に形成するのか
よい。
In order to efficiently irradiate the gas molecules 32 with SOROR light and promote ionization, the light extraction line 26 must be formed in its entirety or at least in a small portion from the exit of the sample chamber 28 to the entrance of the negative electrode 36. Partially S
It is best to form the diameter so small that it does not interfere with the OROR light combination.

〔変更例〕[Example of change]

なお、前記実施例ではガス吸着金属膜38′たけて真空
排気するようにしたが、これだけで足りない場合には、
外付けの真空ポンプを併用することもできる。このよう
にしても、前記第3図の外付けの真空ポンプ34たけて
排気する場合に比べて、外付けの真空ポンプの負担を軽
減することかできるので、外付けの真空ポンプは小型の
もので済むようになる。
In the above embodiment, the gas adsorption metal film 38' was extended to perform vacuum evacuation, but if this alone is insufficient,
An external vacuum pump can also be used. Even if this is done, the burden on the external vacuum pump can be reduced compared to the case where the external vacuum pump 34 is used for evacuation as shown in Fig. 3, so the external vacuum pump should be small. You can get away with it.

また、前記実施例では軟X線のSOR光を使用した物性
実験にこの発明を適用した場合について説明したが、軟
X線以外のSOR光を使用する場合にも窓なしで使用す
る場合にはこの発明を適用することができる。また、物
性実験以外の用途にも適用することができる。
Furthermore, in the above embodiment, the case where the present invention is applied to a physical property experiment using SOR light of soft X-rays was explained, but when using SOR light other than soft X-rays without a window, This invention can be applied. It can also be applied to uses other than physical property experiments.

また、この発明は、ウィグラーやアンジュレータ−等に
おける光取り出しラインにも適用することができる。
The present invention can also be applied to light extraction lines in wigglers, undulators, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、S。 As explained above, according to the present invention, S.

R光照射を行なわない時に光取り出しラインの両ゲート
バルブを遮断してガス吸着金属蒸発槽がらガス吸着金属
を蒸発させて光取り出しラインの内周面にガス吸着膜を
形成し、SOR光照射を行なう時にガス吸着金属の蒸発
を停止して前記両ゲトバルブを開いてSOR光を前記試
料に照射し、この時SOR光の照射でイオン化された前
記試料チャンバからの気体分子を前記光取り出しライン
内周面のガス吸着金属蒸着膜で吸着排気することかでき
、蓄積リング等の電子ビームダクトへの気体分子の流入
を阻止することができる。そして、これによれば、光取
り出しライン内にガス吸着金属槽とその前後にゲートバ
ルブを設ければよいので、前記従来の外付けの真空ポン
プを用いたものに比べて簡易に実現することができると
もに、光取り出しライン内で吸着排気するので、外付け
の真空ポンプを用いた場合に比べて真空排気効率が向上
する。
When R light irradiation is not performed, both gate valves of the light extraction line are shut off, the gas adsorption metal is evaporated from the gas adsorption metal evaporation tank, a gas adsorption film is formed on the inner peripheral surface of the light extraction line, and SOR light irradiation is performed. At this time, the evaporation of the gas-adsorbed metal is stopped, both gate valves are opened, and the sample is irradiated with SOR light, and at this time, the gas molecules from the sample chamber that are ionized by the irradiation with the SOR light are transferred to the inner periphery of the light extraction line. The gas adsorption metal vapor deposited film on the surface can adsorb and exhaust gas molecules, and can prevent gas molecules from flowing into the electron beam duct such as the storage ring. According to this, it is only necessary to install a gas adsorption metal tank in the light extraction line and a gate valve before and after it, so it can be realized more easily than the conventional method using an external vacuum pump. At the same time, since the light is absorbed and evacuated within the light extraction line, the evacuation efficiency is improved compared to the case where an external vacuum pump is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す図で、光取り出し
ラインおよび試料チャンバ内の構成を示す概要図である
。 第2図は、この発明が適用されるSOR光装置概要を示
す平面図である。 第3図は、従来の真空排気装置を示す概要図である。 1・・・SOR光装置、26・・・光取り出しライン、
26′・・・光取り出しライン内周面、28・・・試料
チャンバ 29・・・SOR光、3o・・・試料、32
・・−気体分子、32′・・・イオン化された気体分子
、32′・・・吸着された気体分子、36由ガス吸着金
属蒸発槽、38・・・ガス吸着金属、38′・・・昇華
したガス吸着金属、38′・・・ガス吸着金属膜、40
.42・・・ゲートバルブ。 出願人  石川島播磨重工業株式会社
FIG. 1 is a diagram showing one embodiment of the present invention, and is a schematic diagram showing a light extraction line and the internal configuration of a sample chamber. FIG. 2 is a plan view showing an outline of an SOR optical device to which the present invention is applied. FIG. 3 is a schematic diagram showing a conventional vacuum evacuation device. 1... SOR optical device, 26... Light extraction line,
26'...Inner peripheral surface of light extraction line, 28...Sample chamber 29...SOR light, 3o...Sample, 32
...-Gas molecules, 32'... Ionized gas molecules, 32'... Adsorbed gas molecules, 36 Gas-adsorbed metal evaporator, 38... Gas-adsorbed metal, 38'... Sublimation gas adsorption metal, 38'... gas adsorption metal film, 40
.. 42...Gate valve. Applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 光取り出しラインの端部を窓材で封止せずに試料チャン
バへ連通させて、SOR光を試料チャンバ内の試料へ照
射するSOR光装置において、前記光取り出しライン内
にガス吸着金属蒸発槽を配設するとともに、その前後の
位置で光取り出しラインを遮断するゲートバルブをそれ
ぞれ配設してなり、 SOR光照射を行なわない時に前記両ゲートバルブを遮
断してガス吸着金属蒸発槽からガス吸着金属を蒸発させ
て光取り出しラインの内周面にガス吸着金属膜を形成し
、SOR光照射を行なう時にガス吸着金属の蒸発を停止
して前記両ゲートバルブを開いてSOR光を前記試料に
照射し、この時SOR光の照射でイオン化された前記試
料チャンバからの気体分子を前記光取り出しライン内周
面のガス吸着金属膜で吸着排気することを特徴とするS
OR光装置における光取り出しラインの真空排気装置。
[Scope of Claims] In an SOR optical device in which the end of the light extraction line is communicated with the sample chamber without being sealed with a window material, and the sample in the sample chamber is irradiated with SOR light, a gas is provided in the light extraction line. In addition to installing an adsorbed metal evaporation tank, gate valves for blocking the light extraction line are provided at the front and rear positions of the tank, and when SOR light irradiation is not performed, both gate valves are shut off and the gas adsorbed metal evaporation is performed. A gas-adsorbing metal film is formed on the inner peripheral surface of the light extraction line by evaporating the gas-adsorbing metal from the tank, and when performing SOR light irradiation, the evaporation of the gas-adsorbing metal is stopped and both gate valves are opened to emit the SOR light. SOR light is irradiated onto the sample, and gas molecules from the sample chamber that are ionized by the SOR light irradiation are adsorbed and exhausted by a gas adsorption metal film on the inner peripheral surface of the light extraction line.
A vacuum evacuation device for the light extraction line in an OR optical device.
JP25480890A 1990-09-25 1990-09-25 Evacuation device for light beam take-out line in sor optical system Pending JPH04133299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25480890A JPH04133299A (en) 1990-09-25 1990-09-25 Evacuation device for light beam take-out line in sor optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25480890A JPH04133299A (en) 1990-09-25 1990-09-25 Evacuation device for light beam take-out line in sor optical system

Publications (1)

Publication Number Publication Date
JPH04133299A true JPH04133299A (en) 1992-05-07

Family

ID=17270177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25480890A Pending JPH04133299A (en) 1990-09-25 1990-09-25 Evacuation device for light beam take-out line in sor optical system

Country Status (1)

Country Link
JP (1) JPH04133299A (en)

Similar Documents

Publication Publication Date Title
WO2012057107A1 (en) Laser ion source
JPH04133299A (en) Evacuation device for light beam take-out line in sor optical system
JP2821313B2 (en) Electron beam irradiation device
US5563416A (en) Processing apparatus using fast atom beam
JPS63292553A (en) Plasma scattering prevention mechanism for x-ray generation apparatus
JPH0541296A (en) Impulse wave delay tube
JPH04133300A (en) Evacuation device fo light beam take-out line in sor optical system
JPH04215240A (en) Charged particle beam device
JPH02109299A (en) X-ray generator of lazor excitation type
JP3787279B2 (en) Particle beam extraction method and apparatus
JP2004214480A (en) Aligner
JPS5912597Y2 (en) electron spectrometer
JP2001099999A (en) Electron beam radiator
JPH01225118A (en) X-ray exposure device
JP3263656B2 (en) Synchrotron radiation generator
JPS60244018A (en) Cluster ion beam evaporation device
JPS6132947A (en) Extra-high vacuum element for charged particle beam device
JPH01189839A (en) Ionization of electric field ionized gas and ion source therefor
JPH09148092A (en) X-ray generator
JPH0612604Y2 (en) Electronic beam processing equipment
JP2002277600A (en) Electron beam irradiation device
JP3866272B2 (en) Particle beam extraction device
JPS5845780B2 (en) electron gun
JPS62122039A (en) Generation of negative ion and device thereof
JPH0535218B2 (en)