JPH04131761U - Total internal reflection fluorescent X-ray analyzer - Google Patents

Total internal reflection fluorescent X-ray analyzer

Info

Publication number
JPH04131761U
JPH04131761U JP4680491U JP4680491U JPH04131761U JP H04131761 U JPH04131761 U JP H04131761U JP 4680491 U JP4680491 U JP 4680491U JP 4680491 U JP4680491 U JP 4680491U JP H04131761 U JPH04131761 U JP H04131761U
Authority
JP
Japan
Prior art keywords
sample
distance
fluorescent
measurement
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4680491U
Other languages
Japanese (ja)
Other versions
JPH084606Y2 (en
Inventor
幸雄 迫
昌剋 北田
悦久 山本
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP4680491U priority Critical patent/JPH084606Y2/en
Publication of JPH04131761U publication Critical patent/JPH04131761U/en
Application granted granted Critical
Publication of JPH084606Y2 publication Critical patent/JPH084606Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

(57)【要約】 【目的】全反射蛍光X線分析装置において、試料表面Ws
のうねりを補正して、分析精度を向上させる。 【構成】図3(a)のように、距離検出器20は、第1の測定
点aから基準高さHまでの第1の測定距離T1を検出す
る。ついで、試料Wを径方向r(左側)に、図3(b)のよ
うに、若干移動させた後、距離検出器20が第2の測定点
bから基準高さHまでの第2の測定距離T2を検出する。
この後、上記2つの測定点a,b 間の水平距離L1に対する
両測定距離T1,T2 の差ΔT、つまり、試料表面Wsの傾斜
に対応する角度だけ試料Wを傾斜させて、図3(c)のよう
に、分析を行う測定範囲A1における試料表面Wsを水平に
する。
(57) [Summary] [Purpose] In a total internal reflection fluorescence X-ray analyzer, the sample surface Ws
Improve analysis accuracy by correcting undulations. [Structure] As shown in FIG. 3(a), a distance detector 20 detects a first measurement distance T1 from a first measurement point a to a reference height H. Next, after slightly moving the sample W in the radial direction r (left side) as shown in FIG. 3(b), the distance detector 20 performs a second measurement from the second measurement point b to the reference height H. Detect distance T2.
After this, the sample W is tilted by an angle corresponding to the difference ΔT between the measurement distances T1 and T2 with respect to the horizontal distance L1 between the two measurement points a and b, that is, the inclination of the sample surface Ws, and ), the sample surface Ws in the measurement range A1 to be analyzed is made horizontal.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、試料表面に一次X線を微小な入射角度で照射して、試料の表面層 からの蛍光X線を分析する全反射蛍光X線分析装置に関するものである。 This idea irradiates the sample surface with primary X-rays at a small incident angle to This invention relates to a total internal reflection fluorescent X-ray analyzer that analyzes fluorescent X-rays from.

【0002】0002

【従来の技術】[Conventional technology]

従来より、全反射蛍光X線分析装置は、たとえば、半導体のウエハに注入され たひ素や、表面層に付着したステンレス粒子などの不純物を検出する装置として 用いられている(たとえば、特開昭63-78056号公報参照) 。この種の装置の一例 を図4に示す。 Traditionally, total internal reflection fluorescence X-ray spectrometers have been used, for example, to analyze As a device to detect impurities such as arsenic and stainless steel particles attached to the surface layer. (For example, see Japanese Patent Application Laid-Open No. 63-78056). An example of this type of device is shown in Figure 4.

【0003】 図4において、X線源51から出た一次X線B1は、平行光学系52により平行光線 にされた後、ウエハからなる試料Wの表面Wsに微小な入射角度α(たとえば、0. 05°) で照射される。入射した一次X線B1は、その一部が全反射されて反射X線 B2となり、他の一部が試料Wを励起して、試料Wを構成する元素固有の蛍光X線 B3を発生させる。蛍光X線B3は、試料表面Wsに対向して配置した蛍光X線検出器 60に入射する。この入射した蛍光X線B3は、蛍光X線検出器60において、そのX 線強度が検出された後、多重波高分析器61によって目的とするX線スペクトルが 得られる。0003 In FIG. 4, primary X-rays B1 emitted from an X-ray source 51 are converted into parallel rays by a parallel optical system 52. After that, the surface Ws of the sample W consisting of a wafer is exposed to a small incident angle α (for example, 0. 05°). Part of the incident primary X-ray B1 is totally reflected and becomes reflected X-ray B2, and the other part excites the sample W, causing fluorescent X-rays unique to the elements that make up the sample W. Generate B3. Fluorescent X-ray B3 is detected by a fluorescent X-ray detector placed opposite the sample surface Ws. Enter 60. This incident fluorescent X-ray B3 is detected by the fluorescent X-ray detector 60. After the ray intensity is detected, the desired X-ray spectrum is determined by the multiple pulse height analyzer 61. can get.

【0004】 この種の全反射蛍光X線分析装置は、一次X線B1の入射角度αが微小であるこ とから、反射X線B2および散乱X線が蛍光X線検出器60に入射しにくく、蛍光X 線検出器60により検出される蛍光X線B3の出力レベルに比べてノイズが小さいと いう利点がある。つまり、大きなS/N 比が得られ、そのため、分析精度が良く、 たとえば、微量の不純物でも検出できるという利点がある。0004 This type of total internal reflection fluorescent X-ray analyzer is characterized by the fact that the incident angle α of the primary X-ray B1 is minute. Therefore, reflected X-rays B2 and scattered X-rays are difficult to enter the fluorescent X-ray detector 60, and the fluorescent If the noise is small compared to the output level of fluorescent X-ray B3 detected by the radiation detector 60, There is an advantage. In other words, a large signal-to-noise ratio can be obtained, resulting in good analysis accuracy and For example, it has the advantage of being able to detect even minute amounts of impurities.

【0005】 また、一次X線B1の入射角度αが微小であることから、一次X線B1の大部分が 試料Wの表面Ws層に達するのみで、試料Wの内部へは進入しにくい。したがって 、試料Wの内部からは蛍光X線B3が発生しにくいので、試料表面Wsの分析精度が 良いという利点を有する。[0005] In addition, since the incident angle α of the primary X-ray B1 is small, most of the primary X-ray B1 It only reaches the surface Ws layer of the sample W, and it is difficult to enter the inside of the sample W. therefore , since fluorescent X-rays B3 are difficult to generate from inside the sample W, the analysis accuracy of the sample surface Ws is It has the advantage of being good.

【0006】[0006]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

ところが、ウエハなどの試料の表面Wsには、かなり平坦なものでも、図5の拡 大図に示すように、ミクロ的にはうねりがある。そのため、一次X線B1の実際の 入射角度αには、予め設定した入射角度(所定値)に対し誤差が生じる。したが って、この図に示すように、実際の入射角度αが大きい場合は、一次X線B1が試 料Wの内部に進入して、測定対象でない内部の元素からの蛍光X線や散乱X線を 発生させる結果、試料表面Wsの正確な分析が不可能になる。 However, even if the surface Ws of a sample such as a wafer is quite flat, the magnification shown in Fig. 5 may occur. As shown in the diagram, there are microscopic undulations. Therefore, the actual value of primary X-ray B1 is An error occurs in the incident angle α with respect to a preset incident angle (predetermined value). However, Therefore, as shown in this figure, when the actual incident angle α is large, the primary X-ray B1 The fluorescent X-rays and scattered X-rays from internal elements that are not the target of measurement enter the inside of the material W. As a result, accurate analysis of the sample surface Ws becomes impossible.

【0007】 この考案は上記従来の問題に鑑みてなされたもので、試料表面の分析精度を向 上させることができる全反射蛍光X線分析装置を提供することを目的とする。[0007] This idea was made in view of the conventional problems mentioned above, and it improves the accuracy of analysis of the sample surface. An object of the present invention is to provide a total internal reflection fluorescent X-ray analyzer that can perform

【0008】[0008]

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この考案は、試料表面における2つの測定点から 基準高さまでの各々の鉛直方向の距離を検出する距離検出器と、試料を載置する 試料台を傾斜させる駆動装置と、制御装置とを備えている。上記制御装置は、距 離検出器からの測定信号を受けて、2つの測定点の間の水平距離に対する鉛直距 離の差に基づき駆動装置を制御して、入射角度を所定値に設定する。 In order to achieve the above purpose, this device uses two measurement points on the sample surface. Place the sample on a distance detector that detects each vertical distance to the reference height. It includes a drive device for tilting the sample stage and a control device. The above control device Receiving the measurement signal from the distance detector, calculate the vertical distance relative to the horizontal distance between the two measurement points. The driving device is controlled based on the distance difference to set the incident angle to a predetermined value.

【0009】[0009]

【作用】[Effect]

この考案によれば、試料表面における2つの測定点の間の水平距離に対する鉛 直距離の差、つまり、試料表面の傾斜に基づいて駆動装置を制御して、試料台を 所定の角度に傾斜させるので、試料表面のうねりに拘わらず、試料表面を水平に することで、一次X線の入射角度を微小な所定の角度に保つことができる。 According to this idea, the lead value for the horizontal distance between two measurement points on the sample surface is The drive device is controlled based on the direct distance difference, that is, the slope of the sample surface, and the sample stage is moved. Since it is tilted at a predetermined angle, the sample surface can be kept horizontal regardless of the waviness of the sample surface. By doing so, the incident angle of the primary X-ray can be kept at a small predetermined angle.

【0010】0010

【実施例】【Example】

以下、この考案の一実施例を図1ないし図3にしたがって説明する。 図1において、照射装置50はX線源51と、平行光学系52とを備えている。X線 源51から出射された一次X線B1は、平行光学系52により平行光線にされて、試料 Wに微小な入射角度αで照射される。上記試料Wは、たとえば、シリコン基板に ひ素などの不純物を注入したウエハからなり、その表面Wsに緩やかなうねりを有 している場合があり(図3(a) 参照) 、試料台40に載置されている。 An embodiment of this invention will be described below with reference to FIGS. 1 to 3. In FIG. 1, an irradiation device 50 includes an X-ray source 51 and a parallel optical system 52. X-ray The primary X-ray B1 emitted from the source 51 is made into a parallel beam by the parallel optical system 52, and is directed to the sample. The light is irradiated onto W at a small incident angle α. The sample W is, for example, a silicon substrate. It consists of a wafer implanted with impurities such as arsenic, and its surface Ws has gentle undulations. (See FIG. 3(a)) and is placed on the sample stage 40.

【0011】 上記蛍光X線検出器60の近傍には、距離検出器20が配置されている。この距離 検出器20と上記蛍光X線検出器60は、図2の平面図で示すように、一次X線B1の 照射方向であって、試料台40の直径を通る直線R上に並んでおり、図1のように 、試料台40に対向して配置されている。上記距離検出器20は、後述するように、 試料台40が径方向rに移動し、かつ周方向θ(図2)に回転することで、試料表 面Wsにおける2つの測定点a, bから基準高さHまでの各々の鉛直方向の距離T1, T2を検出して、各々の距離T1, T2を距離信号t1, t2として制御装置21に出力する ものである。なお、この実施例では、距離検出器20は、たとえば、光を試料表面 Wsに向かって出射し、その反射光の強さによって距離を検出する変位センサから なる。[0011] A distance detector 20 is arranged near the fluorescent X-ray detector 60. this distance The detector 20 and the fluorescent X-ray detector 60 are connected to the primary X-ray B1 as shown in the plan view of FIG. It is the irradiation direction and is lined up on the straight line R passing through the diameter of the sample stage 40, as shown in Figure 1. , are arranged facing the sample stage 40. The distance detector 20, as described later, By moving the sample stage 40 in the radial direction r and rotating in the circumferential direction θ (Fig. 2), the sample table Each vertical distance T1 from the two measurement points a and b on the surface Ws to the reference height H, Detects T2 and outputs the respective distances T1 and T2 to the control device 21 as distance signals t1 and t2. It is something. Note that in this embodiment, the distance detector 20, for example, directs light to the sample surface. From a displacement sensor that emits light toward Ws and detects the distance based on the intensity of the reflected light. Become.

【0012】 上記試料台40は、旋回ベース10に回転自在に取り付けられている。上記旋回ベ ース10は、スライドベース11上を水平に摺動自在に設けられており、図2(a)のよ うに、その摺動方向rが一次X線B1の照射方向と同一方向に設定されている。し たがって、試料台40は径方向rおよび周方向θに移動するので、後述するように 、試料W上の任意の測定箇所Aが、図1の蛍光X線検出器60および距離検出器20 の下方に移動される。0012 The sample stage 40 is rotatably attached to the rotating base 10. The above rotating base The base 10 is provided so as to be able to slide horizontally on the slide base 11, as shown in Fig. 2(a). In addition, the sliding direction r is set to be the same direction as the irradiation direction of the primary X-ray B1. death Therefore, since the sample stage 40 moves in the radial direction r and the circumferential direction θ, as will be described later, , any measurement point A on the sample W is detected by the fluorescent X-ray detector 60 and the distance detector 20 in FIG. is moved below.

【0013】 上記スライドベース11は、中央の支点31を中心に、駆動装置30により、傾斜角 度が任意に設定される。つまり、上記駆動装置30は、上記スライドベース11の中 央部に設けられた支点31を中心に、スライドベース11の右端部に設けた昇降部33 を、モータMにより上下動させて、試料台40の傾斜角度を変化させる。[0013] The slide base 11 is tilted at an angle of inclination by a drive device 30 around a central fulcrum 31. The degree can be set arbitrarily. In other words, the drive device 30 is located inside the slide base 11. An elevating section 33 provided at the right end of the slide base 11 is centered around a fulcrum 31 provided at the center. are moved up and down by a motor M to change the inclination angle of the sample stage 40.

【0014】 上記制御装置21は、たとえばマイクロコンピュータからなり、上記第1および 第2の測定信号t1, t2を受けて、図3(b)に示す2つの測定点a, bの間の上記水平 距離L1に対する鉛直距離T1, T2の差ΔTに基づいて、図1の上記駆動装置30に制 御信号dを出力して、上記駆動装置30を制御することにより、入射角度αを所定 値に設定する。 その他の構成は、従来例と同様であり、同一部分または相当部分に同一符号を 付してその詳しい説明を省略する。[0014] The control device 21 is composed of, for example, a microcomputer, and includes the first and Upon receiving the second measurement signals t1 and t2, the horizontal Based on the difference ΔT between the vertical distances T1 and T2 with respect to the distance L1, the drive device 30 shown in FIG. 1 is controlled. By outputting the control signal d and controlling the drive device 30, the incident angle α is set to a predetermined value. Set to value. The rest of the configuration is the same as the conventional example, and the same or equivalent parts are designated by the same reference numerals. The detailed explanation will be omitted.

【0015】 つぎに、図2(a)の斜線を施した測定部分A1を分析する際の動作について説明す る。 まず、試料台40を周方向θに回転させて、測定箇所A1を図2(b)のように、上記 直線R上に移動させる。この移動後、図2(c) のように、試料台40を径方向r ( 左側)に移動させ、図3(a) のように、測定箇所A1内の第1の測定点aを、距離 検出器20の真下に移動させる。[0015] Next, we will explain the operation when analyzing the diagonally shaded measurement area A1 in Figure 2(a). Ru. First, rotate the sample stage 40 in the circumferential direction θ and place the measurement point A1 as shown in Figure 2(b). Move it on straight line R. After this movement, the sample stage 40 is moved in the radial direction r ( left side), and as shown in Figure 3(a), move the first measurement point a within measurement point A1 to the distance Move it directly below the detector 20.

【0016】 この移動後、距離検出器20が、第1の測定点aから基準高さHまでの第1の測 定距離T1を検出して、第1の測定信号t1を制御装置21に出力する。この後、試料 台40 (図1)を径方向r(左側)に若干移動させて、図3(b)のように、第2の測 定点bを距離検出器20の真下に対向させる。この移動後、距離検出器20は、第2 の測定点bから基準高さHまでの第2の測定距離T2を検出して、測定信号t2を制 御装置21に出力する。[0016] After this movement, the distance detector 20 performs the first measurement from the first measurement point a to the reference height H. A constant distance T1 is detected and a first measurement signal t1 is output to the control device 21. After this, the sample Move the table 40 (Fig. 1) slightly in the radial direction r (left side) and perform the second measurement as shown in Fig. 3(b). The fixed point b is placed opposite to the distance detector 20 directly below. After this movement, the distance detector 20 Detects the second measurement distance T2 from the measurement point b to the reference height H and controls the measurement signal t2. Output to control device 21.

【0017】 両信号t1, t2を受けた制御装置21は、両測定距離T1,T2 の差ΔTを求め、さら に下記の式から、図1の昇降部33の昇降距離Dを近似的に求める。 D=ΔT・L2/L1 L2:駆動装置30の昇降部33と支点31間の距離 制御装置21は、求めた昇降距離Dを制御信号dとして、駆動装置30に出力する 。[0017] The control device 21 that receives both signals t1 and t2 calculates the difference ΔT between both measured distances T1 and T2, and further calculates the difference ΔT between the two measured distances T1 and T2. From the following formula, the lifting distance D of the lifting section 33 in FIG. 1 is approximately determined. D=ΔT・L2/L1 L2: Distance between the lifting part 33 of the drive device 30 and the fulcrum 31 The control device 21 outputs the determined vertical distance D to the drive device 30 as a control signal d. .

【0018】 上記制御信号dを受けた駆動装置30は、昇降部33を昇降距離Dだけ下降させて 、上記支点31を中心として、試料台40を時計回りに若干回動させる。この回動で 、図3(c)のように、測定箇所A1が水平な状態になる。この後、測定箇所A1をこの 図のように蛍光X線検出器60の下方まで移動させた後、測定箇所A1にX線B1を照 射して、測定箇所A1の分析を行う。[0018] Upon receiving the control signal d, the drive device 30 lowers the elevating section 33 by an elevating distance D. , rotate the sample stage 40 slightly clockwise about the fulcrum 31. With this rotation , the measurement point A1 becomes horizontal as shown in FIG. 3(c). After this, measure point A1 like this. After moving it to the bottom of the fluorescent X-ray detector 60 as shown in the figure, shine and analyze measurement point A1.

【0019】 このように、この考案は、試料表面Wsのうねりによる傾きに応じて、図1の試 料台40を傾斜させることができる。したがって、試料表面Wsを水平に保って、上 記入射角度αを所定値に設定して分析を行うことができる。その結果、試料Wの 内部からの蛍光X線や、散乱X線が蛍光X線検出器60に入射するおそれがないの で、試料表面Wsの分析精度が向上する。[0019] In this way, this idea can be applied to the sample shown in Fig. 1 according to the inclination caused by the waviness of the sample surface Ws. The feeding table 40 can be tilted. Therefore, while keeping the sample surface Ws horizontal, Analysis can be performed by setting the incident angle α to a predetermined value. As a result, the sample W There is no risk of fluorescent X-rays or scattered X-rays entering the fluorescent X-ray detector 60 from inside. This improves the accuracy of analyzing the sample surface Ws.

【0020】 また、この実施例では、試料台40を移動させることによって、一つの距離検出 器20で、2つの測定点a,b における鉛直距離T1,T2 を順次測定するので、高価な 距離検出器20を2個設置する必要がないから、コストが安価になる。[0020] In addition, in this embodiment, one distance detection can be performed by moving the sample stage 40. Since vertical distances T1 and T2 at two measurement points a and b are sequentially measured using the instrument 20, expensive Since it is not necessary to install two distance detectors 20, the cost is reduced.

【0021】 なお、上記実施例では、測定点a,b を測定箇所A内の任意の2点としたが、図 2(d)のように、測定箇所A内の径方向rと直交する方向Zに、測定点a,b を複数 設けてもよい。この場合、距離の差ΔT(図3(b))は、左側の測定点a1,a2 …an における第1の測定距離の平均値と、右側の測定点b1,b2 …bnにおける第2の測 定距離の平均値との差で求める。[0021] In the above example, measurement points a and b were any two points within measurement point A, but As shown in 2(d), multiple measurement points a and b are placed in the direction Z perpendicular to the radial direction r within the measurement location A. It may be provided. In this case, the distance difference ΔT (Fig. 3(b)) is the left measurement point a1, a2...an The average value of the first measurement distance at the measurement points b1, b2 ...bn on the right side Calculated by the difference from the average value of a fixed distance.

【0022】[0022]

【考案の効果】[Effect of the idea]

以上説明したように、この考案によれば、試料表面における2つの測定点の間 の水平距離に対する鉛直距離の差、つまり、試料表面の傾斜に基づいて駆動装置 を制御して、試料台を傾斜させるので、試料表面のうねりに拘わらず、試料表面 を水平にすることができる。したがって、一次X線の入射角度を微小な所定の角 度に保つことができるので、試料内部からの蛍光X線や散乱X線が発生するのを 防止できるから、試料表面の分析精度が向上する。 As explained above, according to this invention, between two measurement points on the sample surface The drive device is based on the difference in vertical distance to horizontal distance, that is, the slope of the sample surface. Since the sample stage is tilted by controlling the can be made horizontal. Therefore, the incident angle of the primary X-ray can be set to a small predetermined angle. Since it can be kept at a certain temperature, fluorescent X-rays and scattered X-rays from inside the sample are prevented. Since this can be prevented, the accuracy of analysis of the sample surface is improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この考案の一実施例を示す全反射蛍光X線分析
装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a total internal reflection fluorescent X-ray analyzer showing an embodiment of this invention.

【図2】(a),(b),(c) は、測定箇所の移動方法を示す平
面図、(d) は測定範囲における測定点を示す平面図であ
る。
[Fig. 2] (a), (b), and (c) are plan views showing a method of moving measurement points, and (d) is a plan view showing measurement points in the measurement range.

【図3】うねりの補正方法を示す工程図である。FIG. 3 is a process diagram showing a waviness correction method.

【図4】従来の全反射蛍光X線分析装置の概略構成図で
ある。
FIG. 4 is a schematic configuration diagram of a conventional total internal reflection fluorescent X-ray analyzer.

【図5】試料表面の拡大図である。FIG. 5 is an enlarged view of the sample surface.

【符号の説明】[Explanation of symbols]

20…距離検出器、21…制御装置、30…駆動装置、40…試
料台、50…照射装置、60…蛍光X線検出器、 a,b…測定
点、B1…一次X線、B3…蛍光X線、H…基準高さ、L1…
水平距離、 T1,T2…鉛直距離、 t1,t2…測定信号、ΔT
…鉛直距離の差、W…試料、Ws…試料表面、α…入射角
度。
20...Distance detector, 21...Control device, 30...Drive device, 40...Sample stage, 50...Irradiation device, 60...Fluorescent X-ray detector, a, b...Measurement point, B1...Primary X-ray, B3...Fluorescence X-ray, H...Reference height, L1...
Horizontal distance, T1,T2...Vertical distance, t1,t2...Measurement signal, ΔT
...difference in vertical distance, W...sample, Ws...sample surface, α...incident angle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 試料表面に一次X線を微小な入射角度で
照射する照射装置と、上記一次X線を受けた試料からの
蛍光X線を検出する蛍光X線検出器とを備え、この蛍光
X線検出器での検出結果に基づいて上記蛍光X線を分析
する全反射蛍光X線分析装置において、上記蛍光X線検
出器の近傍に上記試料表面における2つの測定点から基
準高さまでの各々の鉛直方向の距離を検出する距離検出
器と、上記試料を載置する試料台を傾斜させる駆動装置
と、上記距離検出器からの測定信号を受けて、2つの測
定点の間の水平距離に対する鉛直距離の差に基づき上記
駆動装置を制御して、上記入射角度を所定値に設定する
制御装置とを備えた全反射蛍光X線分析装置。
1. An irradiation device that irradiates a sample surface with primary X-rays at a minute angle of incidence, and a fluorescent X-ray detector that detects fluorescent In a total internal reflection fluorescent X-ray analyzer that analyzes the fluorescent X-rays based on the detection results from the X-ray detector, there are two measurement points on the sample surface located near the fluorescent a distance detector that detects the vertical distance between the two measurement points; a drive device that tilts the sample stage on which the sample is placed; A total internal reflection fluorescent X-ray analyzer comprising: a control device that controls the drive device based on the difference in vertical distance and sets the incident angle to a predetermined value.
JP4680491U 1991-05-24 1991-05-24 Total reflection X-ray fluorescence analyzer Expired - Lifetime JPH084606Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4680491U JPH084606Y2 (en) 1991-05-24 1991-05-24 Total reflection X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4680491U JPH084606Y2 (en) 1991-05-24 1991-05-24 Total reflection X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH04131761U true JPH04131761U (en) 1992-12-04
JPH084606Y2 JPH084606Y2 (en) 1996-02-07

Family

ID=31926158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4680491U Expired - Lifetime JPH084606Y2 (en) 1991-05-24 1991-05-24 Total reflection X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JPH084606Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222463A (en) * 2008-03-14 2009-10-01 Rigaku Corp Total reflection fluorescent x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222463A (en) * 2008-03-14 2009-10-01 Rigaku Corp Total reflection fluorescent x-ray analyzer
JP4681018B2 (en) * 2008-03-14 2011-05-11 株式会社リガク Total reflection X-ray fluorescence analyzer

Also Published As

Publication number Publication date
JPH084606Y2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP2984232B2 (en) X-ray analyzer and X-ray irradiation angle setting method
US6453006B1 (en) Calibration and alignment of X-ray reflectometric systems
JP5031215B2 (en) Multifunctional X-ray analysis system
US5457726A (en) Analyzer for total reflection fluorescent x-ray and its correcting method
JP3889851B2 (en) Film thickness measurement method
JP3109789B2 (en) X-ray reflectance measurement method
JPH05322804A (en) Method and device for measuring reflected profile of x ray
JP4677217B2 (en) Sample inspection method, sample inspection apparatus, cluster tool for manufacturing microelectronic devices, apparatus for manufacturing microelectronic devices
JPH05126768A (en) Fluorescent x-ray analyzing method
JPH04131761U (en) Total internal reflection fluorescent X-ray analyzer
JP2905448B2 (en) Method and apparatus for setting position of sample stage in X-ray analysis
JPH05196583A (en) Total reflection x-ray analyzer
JP3286010B2 (en) X-ray fluorescence analyzer and X-ray irradiation angle setting method
JP3950642B2 (en) X-ray analyzer with electronic excitation
JPH03246452A (en) Total reflecting fluorescent x-ray analyzing instrument
JP2551728Y2 (en) Height adjustment dummy for total reflection X-ray fluorescence spectrometer
JPH10282021A (en) Method and apparatus for setting angle of incidence in totally reflected fluorescent x-ray analysis
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JP2921910B2 (en) Total reflection X-ray fluorescence analyzer
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP2978460B2 (en) Method and apparatus for setting incident angle in total reflection X-ray fluorescence analysis
JP3422751B2 (en) X-ray fluorescence analysis method and apparatus
JPS6383647A (en) Surface-analysis of sample
JPH04208900A (en) Setting of irradiation angle of energy beam
JP2653084B2 (en) Surface analyzer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term