JPH0413142B2 - - Google Patents

Info

Publication number
JPH0413142B2
JPH0413142B2 JP61107972A JP10797286A JPH0413142B2 JP H0413142 B2 JPH0413142 B2 JP H0413142B2 JP 61107972 A JP61107972 A JP 61107972A JP 10797286 A JP10797286 A JP 10797286A JP H0413142 B2 JPH0413142 B2 JP H0413142B2
Authority
JP
Japan
Prior art keywords
metal
porous
based metal
expanded
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61107972A
Other languages
Japanese (ja)
Other versions
JPS62282922A (en
Inventor
Tooru Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNITSUKUSU KK
Original Assignee
YUNITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNITSUKUSU KK filed Critical YUNITSUKUSU KK
Priority to JP10797286A priority Critical patent/JPS62282922A/en
Priority to US07/048,667 priority patent/US4828932A/en
Priority to GB8711200A priority patent/GB2190417B/en
Priority to CA000536900A priority patent/CA1303471C/en
Priority to AU72746/87A priority patent/AU591777B2/en
Publication of JPS62282922A publication Critical patent/JPS62282922A/en
Priority to US07/153,028 priority patent/US4834281A/en
Publication of JPH0413142B2 publication Critical patent/JPH0413142B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、吸音材、触媒、過および流れ制御
等に利用できる金属多孔質材に関し、特に、加工
性が良好で安価に製造できる金属多孔質材および
その製造方法に関する。 <従来の技術> 従来、金属多孔質材の製造は、主として燒結法
および発泡法が主たる製造法であつた。しかしな
がら、これらの多孔質材は型等の容器の中で燒結
する結合材であるため、曲げ加工等の加工性に乏
しい。 また金属粒子を燒結して多孔質材とする場合
は、多孔質とするために金属粒子に低融点物質を
混合して燒結するため、燒結時の雰囲気にもめん
どうな配慮が必要となりコスト高となる。 <発明が解決しようとする問題点> 本発明の目的は、従来法におけるこれらの欠点
を改善し、加工性が良好で、安価な、比較的幅の
広い長尺物として製造できる金属多孔質材および
その製造方法を提供せんとするものである。 <問題点を解決するための手段> 本発明の第1の態様は、Al系エクスパンドメ
タルとAl系金属繊維層との積層体を圧着してな
ることを特徴とする金属多孔質材を提供するもの
である。 本発明の第2の態様は、Al系エクスパンドメ
タル上にAl系金属繊維層を配設し、その後加圧
して両者を圧着することを特徴とする金属多孔質
材の製造方法を提供するものである。 本発明の第3の態様は、Al系エクスパンドメ
タル上にAl系金属繊維層を配設し、その後加圧
して両者を圧着し、加熱することを特徴とする金
属多孔質材の製造方法を提供するものである。 ここで、前記Al系金属繊維が溶融Al系金属か
ら紡糸法により製造されたものであるのが好まし
い。 また、前記加圧して両者を圧着する工程が突起
を有するロールまたはプレス圧延により行われる
ものである金属多孔質材の製造方法であるのが良
い。 <発明の構成> 以下に本発明を詳細に説明する。 本発明で用いるエクスパンドメタルは、第3図
に斜視図で示すように通常ラス網あるいはパンチ
ングメタルとも呼ばれ、金属薄板に多数の切込み
を入れ、切込みを略直角方向に引張つて全体を網
状にしたものをいう。 Al(アルミニウム)系エクスパンドメタル1
は、金属網のように金属細線を編んだ物でないた
め、金属薄板の切込み断面が、引張り力によつて
ねじれ、金属薄板平面と直角方向のみならず平行
方向、斜方向等にずれているねじれ部分4のた
め、Al系金属繊維層をこの上に圧接すると金属
繊維層とのからみ合いが良く、本発明はこのよう
なエクスパンドメタルの形状特性を利用して金属
多孔質材とするものである。 本発明においては、このようなエクスパンドメ
タルのうちAl系エクスパンドメタルを用いるも
のである。 板厚は特に制限はないが、通常0.2mm〜1mmの
ものが用いられる。 切込み、引張り等の加工程度は、Al系金属繊
維の形状と種類によつて適切な加工程度を選択す
れば、Al系エクスパンドメタルとAl系金属繊維
との圧接状態が良好な金属多孔質材が得られる。 本発明で用いるAl系金属繊維は、Alを繊維状
にしたものをいい、断面は三角形、円形等の任意
の形で有効直径が約20〜200μm、長さ10cm以上
よりなるAl細片の総称をいう。 Al系金属繊維の製造方法は、1例をあげると、 線引きによる機械加工法 Al系溶融金属から紡糸する方法 溶湯より直接Alの金属繊維を作る。密閉容器
中のAl溶湯は、N2ガス等で加圧され、加圧され
た溶湯はノズルより溶湯流となつて無数に噴出
し、目的の繊維径のAl系金属繊維が得られる。 本発明においては、Al系金属繊維として溶融
Al系金属から紡糸されたAl系金属繊維を用いる
と、金属繊維が細く柔軟で、Al系エクスパンド
メタルとのかみ合いが良く、曲げ加工等を行つて
吸音材等に利用する際に細かい金属が欠け落ちる
ことなく環境衛生上も安全である。 また必要に応じてAl系金属網を用いることも
好ましい。 本発明の金属多孔質材は、上記のAl系エクス
パンドメタル、あるいは金属網、およびAl系金
属繊維を用いて以下のように製造する。 第1図に示す断面図を用いて説明する。 Al系金属繊維を面密度500g/m2〜3000g/m2
の不織布状にしておく。 Al系金属繊維を不織布状にするには、所望の
長さのAl系金属繊維を多層に積み重ねた後、加
圧・圧縮して不織布としてもよいが、好ましくは
溶融Alが溶湯流となつてノズルから噴出するAl
系金属繊維を、繊維の噴出方向の直角方向に、例
えば、ノズル口から1m〜2mの位置に設けたつ
いたてで受け、多数の長いAl系金属繊維を積層
した後、圧接して不織布状とする。 この不織布状のAl系金属繊維2の片面または
両面にAl系エクスパンドメタル1を張り、この
Al系金属繊維2とAl系エクスパンドメタル1の
積層体を300Kg/cm2〜2000Kg/cm2でプレスあるい
はロール圧延する。 Al系金属繊維2は直径70〜250μmφの繊維で
あり、引張強さの平均値は、約25Kg/mm2、伸び10
〜20%であるため、Al系エクスパンドメタル1
と積層体を形成し、プレスあるいはロール圧延す
るとAl系エクスパンドメタル1がAl系金属繊維
2にかみこみ密着する。 この時、表面近くのAl系金属繊維2は切断さ
れて短くなる。 Alは伸びが10〜20%あり、塑性変形による弾
性歪が少ないため圧縮により弾性変形を起こすこ
となく、自由に塑性変形が行われる。 さらにAl系エクスパンドメタル1は、Al板を
冷間圧延後、部分的に切断して引き延ばしてエク
スパンドメタルとする。引張強度は50〜70Kg/mm2
程度に上昇し、それが圧縮およびせん断応力を受
けてAl系金属繊維2とAl系エクスパンドメタル
1とが密着する。 Al系エクスパンドメタル1は、Al系金属繊維
層2の両面に張つて積層体としてもよいし、Al
系エクスパンドメタル1の片面あるいは両面に
Al系金属繊維2を圧接して積層体としてもよい。 またAl系エクスパンドメタル1を、Al系金属
繊維層2の一方の面に張り、他面をAl系金網と
してもよい。 さらに積層体を圧延する際に、表面に突起を有
するプレスあるいはロールで圧延すると、積層体
が部分的にさらに圧縮を受けるので、第2図に断
面図で示すように、部分的に圧縮されたAl系エ
クスパンドメタル3ができ、Al系金属繊維2も
さらに部分的に圧縮される(部分的圧縮法)。こ
のため金属が原子間距離近くなるように、圧縮加
工を受けさらに密着強度が強くなる。 また、この原子間距離に近くなつた材料に400
〜550℃の熱を加え、焼成することにより部分的
に圧縮された箇所はさらに密着性が良好となる。 プレスあるいはロール表面な突起は、ロール面
に対して1〜2mmの球状あるいは楕円状突起を10
cm2に対し、1〜2cm2の割合で設けることが好まし
い。 本発明の金属多孔質材を吸音材として用いる場
合は、Al系金属繊維とAl系エクスパンドメタル
あるいはAl系金網を適切に選択し、プレスまた
はロール圧延率を適切に選択することにより、最
終製品として得られる金属多孔質材の密度(多孔
率)を調整し、吸音効率の周波数特性を最適値と
する。 <実施例> 以下に実施例を述べさらに具体的に説明する。 実施例 第1表に示すAl系金属繊維とAl系エクスパン
ドメタルを用いて、第1表に示す本発明の金属多
孔質材を製造した。 用いたAl系金属繊維は以下のものである。
<Industrial Application Field> The present invention relates to a metal porous material that can be used for sound absorbing materials, catalysts, flow control, etc., and particularly relates to a metal porous material that has good workability and can be manufactured at low cost, and a method for manufacturing the same. . <Prior Art> Conventionally, the main manufacturing methods for producing porous metal materials have been sintering and foaming. However, since these porous materials are binding materials that are sintered in a container such as a mold, they have poor workability such as bending. In addition, when metal particles are sintered to make a porous material, a low melting point substance is mixed with the metal particles to make them porous and sintered, so the atmosphere during sintering requires careful consideration, resulting in high costs. Become. <Problems to be Solved by the Invention> The purpose of the present invention is to improve these drawbacks of the conventional methods, and to provide a metal porous material that has good workability, is inexpensive, and can be manufactured as a relatively wide elongated product. The present invention aims to provide a method for manufacturing the same. <Means for Solving the Problems> A first aspect of the present invention provides a metal porous material formed by pressing a laminate of an Al-based expanded metal and an Al-based metal fiber layer. It is something. A second aspect of the present invention provides a method for manufacturing a porous metal material, which comprises disposing an Al-based metal fiber layer on an expanded Al-based metal, and then applying pressure to bond the two together. be. A third aspect of the present invention provides a method for manufacturing a porous metal material, which comprises disposing an Al-based metal fiber layer on an expanded Al-based metal, and then applying pressure to bond the two together and heating. It is something to do. Here, it is preferable that the Al-based metal fiber is manufactured from molten Al-based metal by a spinning method. Moreover, it is preferable that the method for manufacturing a porous metal material is such that the step of pressurizing and crimping the two is performed by a roll having protrusions or by press rolling. <Structure of the Invention> The present invention will be described in detail below. The expanded metal used in the present invention is usually called a lath net or punching metal, as shown in the perspective view in Fig. 3, and is made by making a large number of cuts in a thin metal plate and pulling the cuts in a substantially perpendicular direction to make the whole into a net shape. say something Al (aluminum) expanded metal 1
Because it is not made of woven metal wires like a metal net, the cut cross section of the thin metal sheet is twisted by the tensile force, and the torsion occurs not only at right angles to the plane of the thin metal sheet, but also in parallel, diagonal, etc. For portion 4, when an Al-based metal fiber layer is pressed onto this layer, it intertwines well with the metal fiber layer, and the present invention utilizes such shape characteristics of expanded metal to create a metal porous material. . In the present invention, among such expanded metals, an Al-based expanded metal is used. There are no particular restrictions on the plate thickness, but a plate thickness of 0.2 mm to 1 mm is usually used. If the degree of processing such as cutting and tensioning is selected appropriately depending on the shape and type of the Al-based metal fiber, a metal porous material with good pressure contact between the Al-based expanded metal and the Al-based metal fiber can be created. can get. The Al-based metal fiber used in the present invention refers to a fiber made of Al, and is a general term for Al thin pieces having an arbitrary cross section such as triangular or circular, an effective diameter of about 20 to 200 μm, and a length of 10 cm or more. means. Examples of methods for producing Al-based metal fibers include: A mechanical processing method using wire drawing A method of spinning from molten Al-based metal A method for producing Al metal fibers directly from molten metal. The Al molten metal in the closed container is pressurized with N 2 gas or the like, and the pressurized molten metal is spouted out from the nozzle in a countless number of molten metal streams to obtain Al-based metal fibers with the desired fiber diameter. In the present invention, molten metal fibers are used as Al-based metal fibers.
When using Al-based metal fibers spun from Al-based metals, the metal fibers are thin and flexible, and have good interlocking with Al-based expanded metal, resulting in fine metal chips that are chipped when used for sound absorbing materials after bending. It does not fall and is environmentally safe. Further, it is also preferable to use an Al-based metal mesh as necessary. The metal porous material of the present invention is manufactured as follows using the above-mentioned Al-based expanded metal or metal mesh and Al-based metal fiber. This will be explained using the cross-sectional view shown in FIG. Areal density of Al-based metal fibers is 500g/m 2 to 3000g/m 2
Make it into a non-woven fabric. To make Al-based metal fibers into a non-woven fabric, Al-based metal fibers of a desired length may be piled up in multiple layers and then pressurized and compressed to form a non-woven fabric, but preferably molten Al is turned into a molten metal flow. Al spouted from the nozzle
The Al-based metal fibers are received in a direction perpendicular to the direction in which the fibers are ejected, for example, at a position of 1 m to 2 m from the nozzle opening, and after laminating a large number of long Al-based metal fibers, they are pressed together to form a non-woven fabric. . Al-based expanded metal 1 is applied to one or both sides of this non-woven Al-based metal fiber 2.
A laminate of Al-based metal fibers 2 and Al-based expanded metal 1 is pressed or rolled at 300 Kg/cm 2 to 2000 Kg/cm 2 . The Al-based metal fiber 2 is a fiber with a diameter of 70 to 250 μmφ, and has an average tensile strength of about 25 Kg/mm 2 and an elongation of 10
~20%, so Al-based expanded metal 1
When a laminate is formed and pressed or rolled, the Al-based expanded metal 1 is bitten into the Al-based metal fibers 2 and brought into close contact with them. At this time, the Al-based metal fibers 2 near the surface are cut and shortened. Al has an elongation of 10 to 20% and has little elastic strain due to plastic deformation, so plastic deformation occurs freely without causing elastic deformation due to compression. Further, the Al-based expanded metal 1 is made by cold-rolling an Al plate, then partially cutting it and stretching it. Tensile strength is 50~70Kg/ mm2
The Al-based metal fiber 2 and the Al-based expanded metal 1 are brought into close contact with each other due to compression and shear stress. The Al-based expanded metal 1 may be applied to both sides of the Al-based metal fiber layer 2 to form a laminate, or
On one or both sides of expanded metal 1
It is also possible to form a laminate by press-welding the Al-based metal fibers 2. Alternatively, the Al-based expanded metal 1 may be applied to one side of the Al-based metal fiber layer 2, and the other side may be made of Al-based wire mesh. Furthermore, when rolling the laminate using a press or roll having protrusions on the surface, the laminate partially undergoes further compression, so as shown in the cross-sectional view in Figure 2, the laminate is partially compressed. Al-based expanded metal 3 is produced, and Al-based metal fiber 2 is also partially compressed (partial compression method). For this reason, the metal undergoes compression processing so that the distance between atoms becomes closer, further increasing the adhesion strength. In addition, 400
By applying heat of ~550°C and baking, the adhesion becomes even better in the partially compressed areas. The protrusions on the press or roll surface are 10 to 2 mm spherical or elliptical protrusions on the roll surface.
It is preferable to provide it at a ratio of 1 to 2 cm 2 per cm 2 . When using the metal porous material of the present invention as a sound absorbing material, by appropriately selecting Al-based metal fibers, Al-based expanded metal, or Al-based wire mesh, and appropriately selecting the press or roll rolling rate, the final product can be The density (porosity) of the resulting metal porous material is adjusted to optimize the frequency characteristics of sound absorption efficiency. <Example> Examples will be described below and explained in more detail. Example Using the Al-based metal fibers and Al-based expanded metal shown in Table 1, the metal porous materials of the present invention shown in Table 1 were manufactured. The Al-based metal fibers used are as follows.

【表】 た連続長繊維
得られた金属多孔質材について以下に示す試験
を行い、結果を第1表に示した。 材質試験 (1) 曲げ加工性試験 試験片を規定の内側半径、規定の角度になる
まで曲げ、わん曲部の外側のさけ、きず、その
他の欠点の有無を調べる方法でありJIS−Z−
2204の試験方法に従う。 (2) 耐はがれ性試験 試験片は巾10cm、長さ20cmの材質のうち、長
さ10cmの部分をラス網の一方をはがし、シング
ル・オーバーラツプとし、この部分を試験機で
つかみ引つぱりせん断試験として耐はがれ性試
験とした。 さらに、本発明例1〜4の垂直入射吸音率を測
定し、周波数との関係を第4図に示した。垂直入
射吸音率の測定は、JIS 1405−1963による建築材
料の垂直入射吸音測定法によつた。 Al系エクスパンドメタルの形状は第1表に示
した。また、Al系エクスパンドメタルの切込加
工時の送り巾は1mmで、板厚0.4mmであつた。 用いたAl系金属繊維はすべて溶融紡糸による
不織布であり、径100μmφと一定にした。 なお材質はAl−0.5%Mg−0.4%Siである。ロ
ール圧力は、すべて500Kg/cm2とした。ただし部
分的圧縮法の圧縮部の圧力は1.5ton/cm2の圧縮で
ある。 本発明においては、吸音効率を良好にするため
エクスパンドメタルの穴の形状をAl系金属繊維
不織布の面密度との関係で調整した。 べつに比較例としてAl金属粒子燒結体による
実施例と同様のサイズの多孔質板を作製し、同様
の試験を行い、結果を第1表に示した。 曲げ加工性試験結果は本発明例1〜7につき亀
裂発生はなかつた。一方比較例では15°で亀裂が
発生した。
[Table] Continuous long fibers
The following tests were conducted on the obtained porous metal material, and the results are shown in Table 1. Material test (1) Bending workability test This is a method of bending a test piece until it has a specified inner radius and a specified angle, and examining the outside of the curved part for cracks, flaws, and other defects.
2204 test method. (2) Peeling resistance test The test piece is made of material with a width of 10 cm and a length of 20 cm. One side of the lath mesh is peeled off from a 10 cm long part to create a single overlap, and this part is grabbed with a testing machine and pulled and sheared. The test was a peeling resistance test. Furthermore, the normal incidence sound absorption coefficients of Examples 1 to 4 of the present invention were measured, and the relationship with frequency is shown in FIG. The normal incidence sound absorption coefficient was measured using the normal incidence sound absorption measurement method for building materials according to JIS 1405-1963. The shape of the Al-based expanded metal is shown in Table 1. Furthermore, the feed width during cutting of the Al-based expanded metal was 1 mm, and the plate thickness was 0.4 mm. The Al-based metal fibers used were all melt-spun nonwoven fabrics, and had a constant diameter of 100 μmφ. The material is Al-0.5%Mg-0.4%Si. The roll pressure was 500Kg/cm 2 in all cases. However, the pressure in the compression section of the partial compression method is 1.5 ton/cm 2 compression. In the present invention, in order to improve sound absorption efficiency, the shape of the holes in the expanded metal was adjusted in relation to the areal density of the Al-based metal fiber nonwoven fabric. As a comparative example, a porous plate made of sintered Al metal particles of the same size as the example was prepared, and the same tests were conducted. The results are shown in Table 1. The results of the bending workability test showed that no cracks occurred in Examples 1 to 7 of the present invention. On the other hand, in the comparative example, cracks occurred at 15°.

【表】 第1表の結果から、密着力(耐はがれ性)がそ
れ程要求されない防音壁のような場所に本発明材
を使用する場合は、密着面積が広いので例えば本
発明例1、4を使用し、振動等が加わり密着性を
要求される場合は部分的圧縮法を用いた本発明例
2、5、6を使用する。さらに強度な密着力が必
要な個所には、本発明例3、7の圧縮密度の高い
部分がさらに加熱処理された本発明の製造方法に
よる金属多孔質材が有効であることがわかつた。 <発明の効果> 本発明の金属多孔質材は、Al系金属繊維とAl
系エクスパンドメタル相互のかみ込みを利用した
もので、加工性が良好で安価である。特に曲げ加
工等を行つて吸音材等に利用する際に細かい金属
が欠け落ちることなく環境衛生上も安全である。 本発明の金属多孔質材の製造方法は、製造が安
価であり、しかも加工性の良い吸音効率の高い製
品が得られる。 また、部分的圧縮のできるロールを用いる製造
方法は、製品の密着力が高いので、振動等が加わ
り密着性を要求される部分に用いる多孔質材の製
造に適している。 さらに部分的圧縮後に加熱処理する製造方法に
よれば、さらに密着力の高い製品が得られる。
[Table] From the results in Table 1, when using the inventive material in places such as soundproof walls where adhesion (peel resistance) is not so required, the adhesion area is wide, so inventive examples 1 and 4 are used, for example. Inventive examples 2, 5, and 6 using the partial compression method are used when adhesion is required due to vibrations, etc. It was found that the metal porous materials manufactured by the manufacturing method of the present invention, in which the high compressed density portions of Examples 3 and 7 of the present invention were further heat-treated, were effective in areas where even stronger adhesion was required. <Effects of the Invention> The porous metal material of the present invention has Al-based metal fibers and Al-based metal fibers.
It utilizes the interlocking of expanded metals, has good workability and is inexpensive. In particular, when it is bent and used as a sound absorbing material, fine metal pieces do not chip off, making it safe from an environmental and hygiene perspective. The method for producing a porous metal material of the present invention is inexpensive to produce, and also provides a product with good workability and high sound absorption efficiency. In addition, the manufacturing method using rolls that can be partially compressed has high adhesion of the product, and is therefore suitable for manufacturing porous materials used in areas that are subject to vibrations and require adhesion. Furthermore, according to a manufacturing method in which heat treatment is performed after partial compression, a product with even higher adhesion can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の金属多孔質材の一実施例を
示す断面図である。第2図は、本発明の金属多孔
質材の他の実施例を示す断面図である。第3図
は、Al系エクスパンドメタルの斜視図である。
第4図は、金属多孔質材の垂直入射吸音率と周波
数の関係を示すグラフである。 符号の説明、1……Al系エクスパンドメタル、
2……金属繊維、3……圧縮されたAl系エクス
パンドメタル、4……ねじれ部分。
FIG. 1 is a sectional view showing an embodiment of the metal porous material of the present invention. FIG. 2 is a sectional view showing another example of the porous metal material of the present invention. FIG. 3 is a perspective view of the Al-based expanded metal.
FIG. 4 is a graph showing the relationship between normal incidence sound absorption coefficient and frequency of a metal porous material. Explanation of symbols, 1... Al-based expanded metal,
2...Metal fiber, 3...Compressed Al-based expanded metal, 4...Twisted part.

Claims (1)

【特許請求の範囲】 1 Al系エクスパンドメタルとAl系金属繊維層
との積層体を圧着してなることを特徴とする金属
多孔質材。 2 前記Al系金属繊維が溶融Al系金属から紡糸
法により製造されたものである特許請求の範囲第
1項に記載の金属多孔質材。 3 Al系エクスパンドメタル上にAl系金属繊維
層を配設し、その後加圧して両者を圧着すること
を特徴とする金属多孔質材の製造方法。 4 前記加圧して両者を圧着する工程が突起を有
するロールまたはプレス圧延により行われるもの
である特許請求の範囲第3項に記載の金属多孔質
材の製造方法。 5 前記Al系金属繊維が溶融Al系金属から紡糸
法により製造されたものである特許請求の範囲第
3項または第4項に記載の金属多孔質材の製造方
法。 6 Al系エクスパンドメタル上にAl系金属繊維
層を配設し、その後加圧して両者を圧着し、加熱
することを特徴とする金属多孔質材の製造方法。 7 前記加圧して両者を圧着する工程が突起を有
するロールまたはプレス圧延により行われるもの
である特許請求の範囲第6項に記載の金属多孔質
材の製造方法。 8 前記Al系金属繊維が溶融Al系金属から紡糸
法により製造されたものである特許請求の範囲第
6項または第7項に記載の金属多孔質材の製造方
法。
[Scope of Claims] 1. A metal porous material characterized by being formed by pressing a laminate of an Al-based expanded metal and an Al-based metal fiber layer. 2. The metal porous material according to claim 1, wherein the Al-based metal fiber is produced from molten Al-based metal by a spinning method. 3. A method for producing a metal porous material, which comprises disposing an Al-based metal fiber layer on an Al-based expanded metal, and then applying pressure to bond the two together. 4. The method for producing a porous metal material according to claim 3, wherein the step of pressurizing and crimping the two is performed using a roll having protrusions or press rolling. 5. The method for producing a porous metal material according to claim 3 or 4, wherein the Al-based metal fiber is produced from molten Al-based metal by a spinning method. 6. A method for producing a metal porous material, which comprises disposing an Al-based metal fiber layer on an Al-based expanded metal, and then applying pressure to bond the two together and heating. 7. The method of manufacturing a porous metal material according to claim 6, wherein the step of pressurizing and crimping the two is performed using a roll having projections or press rolling. 8. The method for producing a porous metal material according to claim 6 or 7, wherein the Al-based metal fiber is produced from molten Al-based metal by a spinning method.
JP10797286A 1986-05-12 1986-05-12 Metallic porous material and manufacture thereof Granted JPS62282922A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10797286A JPS62282922A (en) 1986-05-12 1986-05-12 Metallic porous material and manufacture thereof
US07/048,667 US4828932A (en) 1986-05-12 1987-05-11 Porous metallic material, porous structural material and porous decorative sound absorbing material, and methods for manufacturing the same
GB8711200A GB2190417B (en) 1986-05-12 1987-05-12 Porous metallic material and manufacture thereof
CA000536900A CA1303471C (en) 1986-05-12 1987-05-12 Porous metallic material, porous structural material and porous decorative sound absorbing material, and methods for manufacturing the sames
AU72746/87A AU591777B2 (en) 1986-05-12 1987-05-12 Porous metallic material,and methods for manufacturing the same
US07/153,028 US4834281A (en) 1986-05-12 1988-02-19 Porous metallic material, porous structural material and porous decorative sound absorbing material, and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10797286A JPS62282922A (en) 1986-05-12 1986-05-12 Metallic porous material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62282922A JPS62282922A (en) 1987-12-08
JPH0413142B2 true JPH0413142B2 (en) 1992-03-06

Family

ID=14472728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10797286A Granted JPS62282922A (en) 1986-05-12 1986-05-12 Metallic porous material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62282922A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137256A (en) * 1989-10-19 1991-06-11 Arumu:Kk Metallic porous material and its production
JPH0628266Y2 (en) * 1989-12-25 1994-08-03 株式会社ユニックス Sound absorber
JPH0661890B2 (en) * 1990-08-28 1994-08-17 旭ファイバーグラス株式会社 Nonflammable sound absorbing material and manufacturing method thereof
JP6292339B1 (en) * 2016-12-25 2018-03-14 株式会社 静科 Sound absorption panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112330A (en) * 1974-07-22 1976-01-30 Nippon Steel Corp NABEKEIDOSOCHI
JPS5336061A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Differential pressure controller for heat exchanger
JPS59170344A (en) * 1983-03-16 1984-09-26 コマニ−株式会社 Sound absorbing box

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120640Y2 (en) * 1979-12-10 1986-06-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112330A (en) * 1974-07-22 1976-01-30 Nippon Steel Corp NABEKEIDOSOCHI
JPS5336061A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Differential pressure controller for heat exchanger
JPS59170344A (en) * 1983-03-16 1984-09-26 コマニ−株式会社 Sound absorbing box

Also Published As

Publication number Publication date
JPS62282922A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
CA1303471C (en) Porous metallic material, porous structural material and porous decorative sound absorbing material, and methods for manufacturing the sames
JP3578994B2 (en) Method of manufacturing insulating member having sound absorbing function, and insulating member manufactured by this manufacturing method
JP2522604B2 (en) Sound absorbing material and method for manufacturing the same
JPH08504692A (en) Porous sintered laminate containing metal fiber
SK284206B6 (en) A method of producing a mineral fibre-insulating web, a plant for producing mineral fibre-insulating web, and a mineral fibre-insulating plate
JPH0413142B2 (en)
JP2771444B2 (en) Insulation material for polystyrene-based resin foam board and method for applying heat insulation to a building using the insulation material
JP4105784B2 (en) Sound absorbing plate and manufacturing method thereof
JP4219139B2 (en) Composite non-woven wiper
JPH06257051A (en) Fiber composite material
JP6246992B2 (en) Production method of sound absorbing material
JPH02263631A (en) Aluminum composite material and manufacturing thereof
JPH05253418A (en) Sintered type filter
JPH0199730A (en) Manufacture of metallic multi-cellular material
JPH0435584B2 (en)
JP2002036405A (en) Thermoformable core material and automobile ceiling material
JPS63174098A (en) Porous sound absorbing material excellent in decorativeness
JPH06218859A (en) Laminate and production thereof
JP3050979B2 (en) Fiber composite material and method for producing the same
JPH04200885A (en) Lead composite material and its manufacture
JPS62230940A (en) Metallic porous body and its production
JPH0476299B2 (en)
JPS6310286Y2 (en)
JPH0791763B2 (en) Sound absorbing material and method for manufacturing the same
JPH1057223A (en) Carpet for vehicle and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term