JPH06257051A - Fiber composite material - Google Patents

Fiber composite material

Info

Publication number
JPH06257051A
JPH06257051A JP5036448A JP3644893A JPH06257051A JP H06257051 A JPH06257051 A JP H06257051A JP 5036448 A JP5036448 A JP 5036448A JP 3644893 A JP3644893 A JP 3644893A JP H06257051 A JPH06257051 A JP H06257051A
Authority
JP
Japan
Prior art keywords
fiber
fibers
fiber composite
large number
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036448A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamaji
克彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5036448A priority Critical patent/JPH06257051A/en
Publication of JPH06257051A publication Critical patent/JPH06257051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable lightening and improve flame resistance and heat resistance. CONSTITUTION:This fiber composite material is composed of a mixture of many glass fibers and many cotton fibers partly bonded to each other by polyethylene and the mixing ratio of both the fibers is 6:4 on weight base. This fiber composite material contains many voids over the whole body and the average void content is 86%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の天井芯材やド
ア芯材のような自動車用内装材及び建築用内装材等に用
いられる繊維複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber composite used as an interior material for automobiles such as a ceiling core material or a door core material for automobiles and an interior material for construction.

【0002】[0002]

【従来の技術】一般に、上記内装材には、軽量で、剛
性、耐燃焼性、耐熱性、吸音性、成形性等の性能に優れ
た材料が要求される。従来より、この種の材料として、
(イ)多数の無機繊維が相互に部分的に熱可塑性樹脂で
接合されかつ全体にわたって多数の空隙を有している繊
維複合体(特開平1−156562号公報参照)、
(ロ)多数の植物繊維が相互に部分的に熱可塑性樹脂で
接合されかつ全体にわたって多数の空隙を有している繊
維複合体(特開平1−174661号公報参照)及び
(ハ)多数の合成繊維が相互に部分的に熱可塑性樹脂で
接合されかつ全体にわたって多数の空隙を有している繊
維複合体(特開平1−165431号公報参照)が知ら
れている。
2. Description of the Related Art In general, the above interior materials are required to be lightweight and have excellent properties such as rigidity, combustion resistance, heat resistance, sound absorption, and moldability. Conventionally, as this kind of material,
(A) A fiber composite in which a large number of inorganic fibers are partially bonded to each other with a thermoplastic resin and have a large number of voids throughout (see JP-A-1-156562),
(B) A fiber composite (see JP-A-1-174661) in which a large number of plant fibers are partially bonded to each other with a thermoplastic resin and have a large number of voids throughout, and (C) a large number of syntheses. A fiber composite is known in which fibers are partially bonded to each other by a thermoplastic resin and have a large number of voids throughout (see JP-A-1-165431).

【0003】[0003]

【発明が解決しようとする課題】上記(イ)の複合体は
多数の空隙により軽量化されてはいるが、無機繊維が使
用されているため重量があり、一層の軽量化が要望せら
れる。また、上記(ロ)の複合体はすべて植物繊維が使
用されているため、耐燃焼性に問題がある。さらにま
た、上記(ハ)の複合体は無機繊維及び合成繊維が使用
されているため、深絞り成形した場合、両繊維のうち合
成繊維がのびた状態になっており、その結果、高温下で
成形品が用いられると変形する。したがって、耐熱必要
温度を考慮して合成繊維の種類を選定しなければならな
いという面倒がある。
Although the composite of the above (a) is lightened due to a large number of voids, it is heavy due to the use of inorganic fibers, and further weight reduction is demanded. In addition, since the composite fiber of the above (b) uses plant fiber in all, it has a problem in combustion resistance. Furthermore, since the composite of (c) above uses inorganic fibers and synthetic fibers, when deep drawing is performed, the synthetic fibers of both fibers are in a stretched state, and as a result, molding is performed at high temperatures. It transforms when the item is used. Therefore, the kind of synthetic fiber must be selected in consideration of the heat resistance required temperature.

【0004】本発明の目的は、上記した問題をすべて解
決し、自動車用内装材として要求される上述のすべての
性能を満足しうる繊維複合体を提供することにある。
An object of the present invention is to solve all the above problems and to provide a fiber composite which can satisfy all the above-mentioned performances required for interior materials for automobiles.

【0005】[0005]

【課題を解決するための手段】本発明による繊維複合体
は、多数の無機繊維と多数の植物繊維が混在状態で部分
的に熱可塑性樹脂で接合されかつ全体にわたって多数の
空隙を有しており、平均空隙率が65〜95%であるこ
とを特徴とするものである。上記において、繊維複合体
の平均空隙率を65〜95%にしたのは、65%未満で
は軽量性が充分でなくまた95%を超えると強度が乏し
くなるからである。無機繊維の具体例としては、ガラス
繊維、ロックウール、セラミック繊維、炭素繊維等があ
げられ、その長さは後述のマット状物の成形性の点から
5〜200mmが好ましく、またその太さは細くなると
機械的強度が低下し、太くなるとマット成形時に折れ易
くなるので、5〜30μmが好ましく、より好ましくは
9〜17μmである。なお、無機繊維と植物繊維との直
径比が1:5を超えると、後述のカードマシンでの解
繊、混繊が悪くなるので、この比率以下になるように植
物繊維の直径に対応して無機繊維の直径を選定する必要
がある。
The fiber composite according to the present invention has a large number of inorganic fibers and a large number of plant fibers mixed together in a partially bonded state with a thermoplastic resin and has a large number of voids throughout. The average porosity is 65 to 95%. In the above, the reason why the average porosity of the fiber composite is set to 65 to 95% is that if it is less than 65%, the lightness is not sufficient, and if it exceeds 95%, the strength becomes poor. Specific examples of the inorganic fiber include glass fiber, rock wool, ceramic fiber, carbon fiber and the like, and the length thereof is preferably 5 to 200 mm from the viewpoint of moldability of the mat-like material described later, and its thickness is If it is thin, the mechanical strength is lowered, and if it is thick, it tends to be broken during mat molding, so that it is preferably 5 to 30 μm, more preferably 9 to 17 μm. If the diameter ratio of the inorganic fibers to the plant fibers exceeds 1: 5, the defibration and mixing of fibers in the card machine described later will be poor. It is necessary to select the diameter of the inorganic fiber.

【0006】植物繊維の具体例としては、綿、亜麻、ジ
ュートがあげられ、これらは単独にまたは混合して用い
られる。その長さは、綿の場合、10〜60mmの天然
長のままでよく、亜麻の場合、10〜100mmの天然
長のままか、このうち長いものは半分に切断して用いら
れる。天然長10〜200mmのジュートの場合、10
0mm以下のものはそのままで、この値を超えるものは
少なくとも100mm以下になるように切断して用いら
れる。
Specific examples of the vegetable fiber include cotton, flax and jute, which may be used alone or in combination. For cotton, the natural length may be 10 to 60 mm, and for flax, the natural length may be 10 to 100 mm, or the longer one may be cut in half. 10 for jute with a natural length of 10 to 200 mm
Those having a diameter of 0 mm or less are used as they are, and those having a diameter exceeding this value are cut to be at least 100 mm and used.

【0007】植物繊維の直径は天然物であるから様々で
あるが、一般的に、綿は12〜38μm、亜麻は20〜
25μm、ジュートは15〜30μmである。径が40
〜60μm程度のものは、太過ぎて、他の繊維と共に繊
維複合体を得る場合に重量ムラが発生し易いので使用に
適しない。
[0007] The diameter of the plant fiber varies because it is a natural product, but in general, cotton is 12 to 38 µm and flax is 20 to 38 µm.
25 μm, jute is 15 to 30 μm. Diameter is 40
Those having a thickness of about 60 μm are not suitable for use because they are too thick and are likely to cause uneven weight when obtaining a fiber composite with other fibers.

【0008】熱可塑性樹脂としては、ポリエレチン、ポ
リプロピレン、飽和ポリエステル、ポリアミド、塩化ビ
ニル、ポリスチレン等をあげることができる。そして、
繊維複合体を後述のマット状物から得る場合、その両面
にフィルムとして積層する必要がある。このフィルムの
厚さはマット状物を構成する無機繊維及び植物繊維との
割合で適宜決定せられる。
Examples of the thermoplastic resin include polyeletin, polypropylene, saturated polyester, polyamide, vinyl chloride, polystyrene and the like. And
When the fiber composite is obtained from the mat-like material described later, it is necessary to laminate it on both sides thereof as films. The thickness of this film can be appropriately determined by the ratio of the inorganic fibers and the plant fibers constituting the mat-like material.

【0009】繊維複合体を得るためのマット状物の製造
方法は任意であるが、たとえば、まず、無機繊維及び植
物繊維をカードマシンに供給し、解繊、混繊し、つぎ
に、ニードルパンチ処理することによりマット状物を得
る方法があげられる。この際のニードルパンチ密度は、
1cm2 当り50〜100が好ましい。ニードルパンチ
処理により繊維どうしが絡み合う。
The method for producing the mat-like material for obtaining the fiber composite is arbitrary. For example, first, inorganic fibers and plant fibers are fed to a card machine, defibrated and mixed, and then needle punched. A method of obtaining a mat-like material by treatment is mentioned. The needle punch density at this time is
50 to 100 per cm 2 is preferable. The fibers are entangled by the needle punching process.

【0010】マット状物の両面に熱可塑性樹脂フィルム
を積層し、この積層物を加熱加圧圧縮して溶融熱可塑性
樹脂をマット状物に含浸せしめ、その後解圧し、含浸樹
脂が溶融状態にあるうちに積層物を厚さ方向に引っぱっ
て膨らませ、繊維複合体を得るのである。なお、マット
状物を製造する際、繊維相互を接合するためとマット状
物のかさを増すために、ポリエチレン、ポリプロピレ
ン、飽和ポリエステル、ポリアミド、ポリアクリロニト
リル等の熱可塑性有機繊維を添加してもよい。
Thermoplastic resin films are laminated on both surfaces of the mat-like material, and the laminate is heated and compressed to impregnate the mat-like material with the molten thermoplastic resin, and then decompressed, and the impregnated resin is in a molten state. Inside, the laminate is pulled in the thickness direction and inflated to obtain a fiber composite. In the production of the mat-like material, thermoplastic organic fibers such as polyethylene, polypropylene, saturated polyester, polyamide, and polyacrylonitrile may be added to join the fibers to each other and to increase the bulk of the mat-like material. .

【0011】無機繊維と植物繊維との重量比は、熱可塑
性樹脂の割合も関係するので、一概にはいえないが、
3:7〜7:3が好ましい。植物繊維が多すぎると耐燃
焼性が悪くなり、また少なすぎると軽量化しにくくな
る。
The weight ratio of the inorganic fiber to the plant fiber is not unequivocally stated because the ratio of the thermoplastic resin is also involved.
It is preferably 3: 7 to 7: 3. If the amount of vegetable fiber is too large, the flame resistance becomes poor, and if it is too small, it becomes difficult to reduce the weight.

【0012】繊維と熱可塑性樹脂の重量比は2:8〜
6:4が好ましい。繊維が少な過ぎても多過ぎても強度
が乏しくなる。
The weight ratio of fiber to thermoplastic resin is from 2: 8 to.
6: 4 is preferable. If there are too few or too many fibers, the strength will be poor.

【0013】[0013]

【作用】本発明による繊維複合体は、多数の無機繊維と
多数の植物繊維が混在状態で部分的に熱可塑性樹脂で接
合されかつ全体にわたって多数の空隙を有しており、平
均空隙率が65〜95%であるから、無機繊維のみが使
用されている繊維複合体に比べて一層軽量化され、ま
た、植物繊維のみが使用されている繊維複合体に比べて
耐燃焼性に優れ、さらに、無機繊維及び合成繊維の使用
された繊維複合体による深絞り成形品のように熱変形の
問題がない。
In the fiber composite according to the present invention, a large number of inorganic fibers and a large number of plant fibers are mixed and partially bonded with a thermoplastic resin and have a large number of voids throughout, and the average porosity is 65. Since it is ~ 95%, the weight is further reduced as compared with the fiber composite in which only the inorganic fiber is used, and the combustion resistance is excellent as compared with the fiber composite in which only the plant fiber is used. There is no problem of thermal deformation as in the deep-drawing products made of fiber composites with inorganic and synthetic fibers.

【0014】[0014]

【実施例】本発明の実施例を以下に説明する。EXAMPLES Examples of the present invention will be described below.

【0015】実施例1 この実施例の繊維複合体は、長さ50mm、直径9μm
のガラス繊維と長さ10〜60mm、直径12〜38μ
mの綿繊維が重量比6:4の混在状態で部分的にポリエ
チレンで接合されかつ全体にわたって多数の空隙を有し
ており、平均空隙率が86%であるものである。なお、
繊維とポリエチレン(後述のポリエチレン繊維が溶融し
たものも含む)の重量比は3:4である。
Example 1 The fiber composite of this example has a length of 50 mm and a diameter of 9 μm.
Glass fiber and length 10-60mm, diameter 12-38μ
The cotton fibers of m are partially joined with polyethylene in a mixed state of a weight ratio of 6: 4 and have a large number of voids throughout, and the average void ratio is 86%. In addition,
The weight ratio of fiber to polyethylene (including melted polyethylene fiber described later) is 3: 4.

【0016】上記繊維複合体は、つぎのようにして製造
せられたものである。すなわち、長さ50mm、直径9
μmのガラス繊維と、長さ10〜60mm、直径12〜
38μmの綿繊維と、長さ50mm、直径30μmのポ
リエチレン繊維を重量比6:4:5でカードマシンに供
給し、解繊した後1cm2 当り80箇所のニードルパン
チを行なって厚さ7mm、幅1m、長さ1m、平均重量
450g/m2 のマット状物を得た。
The above fiber composite is manufactured as follows. That is, length 50 mm, diameter 9
Glass fiber of μm, length 10 to 60 mm, diameter 12 to
38 μm cotton fiber and 50 mm long, 30 μm diameter polyethylene fiber were supplied to the card machine at a weight ratio of 6: 4: 5, and after being defibrated, needle punching was performed at 80 points per 1 cm 2 to obtain a thickness of 7 mm and a width. A mat-like material having a length of 1 m, a length of 1 m and an average weight of 450 g / m 2 was obtained.

【0017】マット状物の両面に厚さ130μm、重量
125g/m2 の高密度ポリエチレンフィルムを積層
し、得られた積層物を厚さ250μmのポリテトラフル
オロエチレンフィルムの間に挾んで200℃で3分間加
熱した後、200℃に加熱したプレスにより5kg/c
2 の圧力で圧縮し、200℃に保ったまま両面のポリ
テトラフルオロエチレンフィルムを1mm/秒の速度で
厚さ方向に真空吸引し、厚さ4mmになるまで積層物を
膨らませた後冷却し、ポリテトラフルオロエチレンフィ
ルムを積層物から剥離除去して繊維複合体を得た。
A high density polyethylene film having a thickness of 130 μm and a weight of 125 g / m 2 was laminated on both surfaces of the mat-like material, and the obtained laminate was sandwiched between polytetrafluoroethylene films having a thickness of 250 μm at 200 ° C. After heating for 3 minutes, press at 200 ° C to press 5 kg / c
While compressing at a pressure of m 2 and maintaining the temperature at 200 ° C., the polytetrafluoroethylene films on both sides are vacuum-sucked in the thickness direction at a speed of 1 mm / sec, and the laminate is inflated to a thickness of 4 mm and then cooled. Then, the polytetrafluoroethylene film was peeled off from the laminate to obtain a fiber composite.

【0018】実施例2 この実施例は、ガラス繊維と綿繊維の重量比が4:6、
繊維とポリエチレンの重量比が3:4で、平均空隙率が
85%であること以外は実施例1と同じである。
Example 2 In this example, the weight ratio of glass fiber to cotton fiber was 4: 6,
Same as Example 1 except that the weight ratio of fiber to polyethylene is 3: 4 and the average porosity is 85%.

【0019】実施例3 この実施例は、綿繊維の代わりに長さ10〜50mm、
直径20〜25μmの亜麻繊維を使用し、平均空隙率が
86%であること以外は実施例1と同じである。
Example 3 This example shows that instead of cotton fiber, the length is 10 to 50 mm,
The same as Example 1 except that flax fibers having a diameter of 20 to 25 μm were used and the average porosity was 86%.

【0020】実施例4 この実施例は、綿繊維の代わりに長さ10〜50mm、
直径15〜30μmのジュート繊維を使用し、平均空隙
率が86%であること以外は実施例1と同じである。
Example 4 This example shows that instead of cotton fiber, the length is 10 to 50 mm,
Same as Example 1 except that jute fibers having a diameter of 15 to 30 μm were used and the average porosity was 86%.

【0021】比較例1 この比較例は、ガラス繊維を用いず、綿繊維とポリエチ
レンの重量比が3:4で、平均空隙率が84%であるこ
と以外は実施例1と同じである。
Comparative Example 1 This comparative example is the same as Example 1 except that glass fiber is not used, the weight ratio of cotton fiber to polyethylene is 3: 4, and the average porosity is 84%.

【0022】比較例2 この比較例は、綿繊維を用いず、ガラス繊維とポリエチ
レンの重量比が3:4で、平均空隙率が86%であるこ
と以外は実施例1と同じである。
Comparative Example 2 This comparative example is the same as Example 1 except that cotton fiber is not used, the weight ratio of glass fiber to polyethylene is 3: 4, and the average porosity is 86%.

【0023】比較例3 この比較例は、ガラス繊維を用いず、亜麻繊維とポリエ
チレンの重量比が3:4で、平均空隙率が84%である
こと以外は実施例1と同じである。
Comparative Example 3 This comparative example is the same as Example 1 except that glass fiber was not used, the weight ratio of flax fiber to polyethylene was 3: 4, and the average porosity was 84%.

【0024】比較例4 この比較例は、ガラス繊維を用いず、ジュート繊維とポ
リエチレンの重量比が3:4で、平均空隙率が84%で
あること以外は実施例1と同じである。
Comparative Example 4 This comparative example is the same as Example 1 except that glass fiber was not used, the weight ratio of jute fiber to polyethylene was 3: 4, and the average porosity was 84%.

【0025】比較例5 この比較例は、長さ50mm、直径10μmのガラス繊
維と、長さ50mm、直径10μm(2デニール)のポ
リエステル繊維を重量比6:4で使用し、繊維とポリエ
チレンの重量比が3:4で、平均空隙率が85%である
こと以外は実施例1と同じである。
Comparative Example 5 In this comparative example, a glass fiber having a length of 50 mm and a diameter of 10 μm and a polyester fiber having a length of 50 mm and a diameter of 10 μm (2 denier) were used at a weight ratio of 6: 4, and the weight of the fiber and the polyethylene was set. Same as Example 1 except the ratio is 3: 4 and the average porosity is 85%.

【0026】各実施例及び各比較例の繊維複合体を幅5
0mm、長さ150mmに切断し、JIS K−722
1に準拠して曲げ試験を行なった。また、各実施例及び
各比較例における幅50mmの繊維複合体を一端から燃
焼させ、250mm燃焼する時間を測定し、平均速度
(cm/分)を求めた。これを10回繰返して測定し、
最大値を示す。なお、自動車の天井材に用いる場合はこ
れが10cm/分以下の準不燃グレードであることが必
要である。
The fiber composites of Examples and Comparative Examples were made to have a width of 5
Cut to 0 mm and length 150 mm, JIS K-722
A bending test was performed according to 1. In addition, the fibrous composites having a width of 50 mm in each example and each comparative example were burned from one end, the time for burning 250 mm was measured, and the average speed (cm / min) was obtained. Repeat this 10 times to measure,
Indicates the maximum value. When used as a ceiling material for automobiles, it must be a quasi-incombustible grade of 10 cm / min or less.

【0027】さらに、各実施例及び各比較例における幅
50mm、長さ400mmの繊維複合体を170℃に加
熱し、図1に示す逆L形形状にプレス成形した。これを
105℃で100時間放置し、端末の変形σ(戻り)を
測定した。図1において、(1) は台、(2) は逆L形に成
形せられた繊維複合体で、実線は変形前を、鎖線は変形
後を示す。
Further, the fiber composites having a width of 50 mm and a length of 400 mm in each example and each comparative example were heated to 170 ° C. and press-formed into an inverted L shape shown in FIG. This was left at 105 ° C. for 100 hours, and the deformation σ (return) of the terminal was measured. In FIG. 1, (1) is a base, (2) is a fiber composite molded into an inverted L shape, the solid line shows before deformation, and the chain line shows after deformation.

【0028】以上の測定結果を表1にまとめて示す。The above measurement results are summarized in Table 1.

【0029】[0029]

【表1】 表1より明らかなように、本発明によれば無機繊維だけ
を使った場合に比べ軽量化を図れ(実施例1〜3対比較
例2)、植物繊維だけを使用した場合に比べ耐燃焼性が
向上しており(実施例1及び2対比較例1。実施例3及
び4対比較例3及び4)、耐熱性もガラス繊維だけを使
用した場合と同等で、合成繊維を用いた場合より向上し
ている(実施例1〜4対比較例2及び5)。
[Table 1] As is clear from Table 1, according to the present invention, it is possible to reduce the weight as compared with the case of using only the inorganic fiber (Examples 1 to 3 vs. Comparative Example 2), and the combustion resistance as compared with the case of using only the plant fiber. Is improved (Examples 1 and 2 vs. Comparative Example 1. Examples 3 and 4 vs. Comparative Examples 3 and 4), and the heat resistance is the same as when only glass fiber is used, compared with the case where synthetic fiber is used. Improved (Examples 1 to 4 vs. Comparative Examples 2 and 5).

【0030】[0030]

【発明の効果】本発明の繊維複合体によれば、無機繊維
のみが使用されている繊維複合体に比べて一層軽量化さ
れ、また、植物繊維のみが使用されている繊維複合体に
比べて耐燃焼性に優れ、さらに、無機繊維及び合成繊維
の使用された繊維複合体による深絞り成形品のように熱
変形の問題がないから、軽量で、剛性、耐燃焼性、耐熱
性、吸音性、成形性等の性能に優れた材料が要求される
自動車用内装材及び建築用内装材に好適である。
According to the fiber composite of the present invention, the weight is further reduced as compared with the fiber composite in which only the inorganic fiber is used, and in comparison with the fiber composite in which only the plant fiber is used. It is excellent in combustion resistance, and because it does not have the problem of thermal deformation unlike the deep-drawing molded product made of a fiber composite that uses inorganic fibers and synthetic fibers, it is lightweight, and has rigidity, combustion resistance, heat resistance, and sound absorption. It is suitable for interior materials for automobiles and interior materials for construction, which require materials having excellent performance such as moldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐熱変形試験における成形繊維複合体の垂直断
面図である。
FIG. 1 is a vertical sectional view of a molded fiber composite in a heat distortion test.

【符号の説明】[Explanation of symbols]

1:台 2:繊維複合体 1: Stand 2: Fiber composite

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B60R 13/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // B60R 13/02 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多数の無機繊維と多数の植物繊維が混在
状態で部分的に熱可塑性樹脂で接合されかつ全体にわた
って多数の空隙を有しており、平均空隙率が65〜95
%であることを特徴とする繊維複合体。
1. A large number of inorganic fibers and a large number of plant fibers are partially joined by a thermoplastic resin in a mixed state and have a large number of voids throughout, and the average porosity is 65 to 95.
%, A fiber composite.
JP5036448A 1993-02-25 1993-02-25 Fiber composite material Pending JPH06257051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036448A JPH06257051A (en) 1993-02-25 1993-02-25 Fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036448A JPH06257051A (en) 1993-02-25 1993-02-25 Fiber composite material

Publications (1)

Publication Number Publication Date
JPH06257051A true JPH06257051A (en) 1994-09-13

Family

ID=12470098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036448A Pending JPH06257051A (en) 1993-02-25 1993-02-25 Fiber composite material

Country Status (1)

Country Link
JP (1) JPH06257051A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211138A1 (en) * 2000-11-30 2002-06-05 HAN IL E HWA Co., Ltd. Thermoplastic felt structure for automobile interior substrate
JP2002287767A (en) * 2001-03-23 2002-10-04 Shinnikka Rock Wool Kk Acoustic material for vehicle and method of manufacturing the same
FR2836490A1 (en) * 2002-02-27 2003-08-29 Saint Gobain Vetrotex Ceramic fiber aggregate used as heat resistant packaging and cushioning material, has specified fiber bulkiness dispersed in water and specified shot content, used as holding material of catalyst converter for vehicles
CN102770267A (en) * 2010-01-18 2012-11-07 帝人高科技产品株式会社 Laminated fabric for protective clothing and protective clothing using same
EP1713633B1 (en) * 2004-01-26 2013-11-06 SABIC Innovative Plastics IP B.V. Method of forming a layered article
US20140050886A1 (en) * 2011-03-23 2014-02-20 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
JP2017071204A (en) * 2015-10-10 2017-04-13 日本グラスファイバー工業株式会社 Printing molding and method for manufacturing the same
CN108085868A (en) * 2017-12-29 2018-05-29 东莞市海纳森非织造科技有限公司 The preparation method for the carbon fiber fireproof heat insulating acoustic material that bullet train uses

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211138A1 (en) * 2000-11-30 2002-06-05 HAN IL E HWA Co., Ltd. Thermoplastic felt structure for automobile interior substrate
JP2002287767A (en) * 2001-03-23 2002-10-04 Shinnikka Rock Wool Kk Acoustic material for vehicle and method of manufacturing the same
FR2836490A1 (en) * 2002-02-27 2003-08-29 Saint Gobain Vetrotex Ceramic fiber aggregate used as heat resistant packaging and cushioning material, has specified fiber bulkiness dispersed in water and specified shot content, used as holding material of catalyst converter for vehicles
WO2003072867A1 (en) * 2002-02-27 2003-09-04 Saint-Gobain Vetrotex France S.A. Mat made from natural fibres and glass
EP1713633B1 (en) * 2004-01-26 2013-11-06 SABIC Innovative Plastics IP B.V. Method of forming a layered article
CN102770267A (en) * 2010-01-18 2012-11-07 帝人高科技产品株式会社 Laminated fabric for protective clothing and protective clothing using same
US20140050886A1 (en) * 2011-03-23 2014-02-20 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
US9586380B2 (en) * 2011-03-23 2017-03-07 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
JP2017071204A (en) * 2015-10-10 2017-04-13 日本グラスファイバー工業株式会社 Printing molding and method for manufacturing the same
CN108085868A (en) * 2017-12-29 2018-05-29 东莞市海纳森非织造科技有限公司 The preparation method for the carbon fiber fireproof heat insulating acoustic material that bullet train uses

Similar Documents

Publication Publication Date Title
US7749595B2 (en) Thermoformable acoustic sheet
JP5215841B2 (en) Process for producing semi-finished products reinforced with thermoplastic deformed fibers
US5134016A (en) Fiber reinforced porous sheets
JP2004515662A (en) Method and product for controlling thermo-hysteresis during thermoforming of a three-dimensional fiber composite structure
EP0390193A1 (en) Nonwoven fabric for reinforcing resin and moldable sheet utilizing the same
JPH06257051A (en) Fiber composite material
US5194106A (en) Method of making fiber reinforced porous sheets
JPH06218859A (en) Laminate and production thereof
JP2564041B2 (en) Method for producing fiber composite
JPS6335862A (en) Fiber molded body
JP2986252B2 (en) Fiber composite
JP3128368B2 (en) Fiber composite
AU2007202503C1 (en) A thermoformable acoustic sheet
JP3121652B2 (en) Automotive ceiling materials
JP3050979B2 (en) Fiber composite material and method for producing the same
JPH0791763B2 (en) Sound absorbing material and method for manufacturing the same
JP2545499B2 (en) Fiber composite
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JPH079619A (en) Laminated composite
JPH01292158A (en) Production of fibrous form
JP2953856B2 (en) Fiber composite
JPH062976B2 (en) Method for producing fiber molding for thermoforming
IE904008A1 (en) Energy-absorbing, formable fibrous compositions
JPH0827654A (en) Production of thermally moldable composite fiber material
JPH0361028A (en) Preparation of interior material for car