JPH04131381A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH04131381A
JPH04131381A JP2254522A JP25452290A JPH04131381A JP H04131381 A JPH04131381 A JP H04131381A JP 2254522 A JP2254522 A JP 2254522A JP 25452290 A JP25452290 A JP 25452290A JP H04131381 A JPH04131381 A JP H04131381A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
pulse
thin film
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2254522A
Other languages
Japanese (ja)
Other versions
JP2995339B2 (en
Inventor
Shoji Miyanaga
昭治 宮永
Toru Inoue
亨 井上
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2254522A priority Critical patent/JP2995339B2/en
Priority to KR1019910016843A priority patent/KR930011413B1/en
Publication of JPH04131381A publication Critical patent/JPH04131381A/en
Priority to US08/463,058 priority patent/US5626922A/en
Priority to US09/262,853 priority patent/US6110542A/en
Application granted granted Critical
Publication of JP2995339B2 publication Critical patent/JP2995339B2/en
Priority to US09/636,222 priority patent/US6660342B1/en
Priority to US10/728,987 priority patent/US7125588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To remarkably reduce electric power consumption and to allow the formation of a thin film even on the side faces of an object having a rugged surface by imparting limited pulse forms to a microwave electric field and magnetic field generating electric power and further having a perfect synchronization in both pulse forms. CONSTITUTION:A magnetic field-possessing plasma CVD device is constituted by forming the microwave (1.5 to 300KW average electric power) for plasma generation and the magnetic field generating electric power for the purpose of generating plasma in the form of pulses and forming these pulses in such a manner that both pulse waveforms have the state respectively simultaneously turning on and simultaneously turning off. The atoms excited in the high energy state exist even in the position apart by 10 to 50cm from the region where the microwave electric field is maximized, i.e., the high-density plasma generating region if energy is kept applied to active species by simultaneously irradiating the active species with light in order to maintain the higher energy state even before the arrival of the high-density plasma on an object surface after this plasma is generated by the interaction between the pulse microwaves and the magnetic field. The thin film is thus formed in the larger space.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波電界を加えるとともに、外部磁場を
加え、それらの相互作用を用いた空間またはその近傍に
反応性気体を導入せしめ、プラズマにより活性化、分解
または反応せしめ、薄膜形成用物体の全表面に被膜を形
成せしめる薄膜形成において、マイクロ波電界および磁
場発生電力に対し限定されたパルス形を付与すること、
さらに両者のパルス形か完全なる同期を育している事に
より、大幅な消費電力域を実現した薄膜合成方法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention applies a microwave electric field and an external magnetic field, and uses their interaction to introduce a reactive gas into a space or its vicinity, which is activated by plasma. imparting a limited pulse shape to microwave electric field and magnetic field generation power in forming a thin film by causing oxidation, decomposition or reaction to form a film on the entire surface of a thin film forming object;
Furthermore, it relates to a thin film synthesis method that achieves a significant power consumption range by developing complete synchronization of both pulse shapes.

〔従来技術〕[Prior art]

従来より薄膜の形成は多くの手段を以て試みられており
、CVD法、スパッタ法、MBE法等、その形式の多様
化は多くの可能性を導き出すものと言える。中でもプラ
ズマを用いた活性化・分解・反応によって薄膜の形成を
試みるプラズマCVD法では、機構解析を含めた活発な
研究開発が成されており、高周波励起・マイクロ波励起
・磁場による混成共鳴等、多くが提案されている。特に
磁場による共鳴を用いたCVD法(以下、有磁場プラズ
マCVD法)では従来よりも遥かに高密度のプラズマを
利用して高い効率で成膜出来るため、開発も進められ、
多方面での応用も期待されてきた。しかし、実際の工業
生産分野においては、育磁場ブラダマCVD法ならばこ
れまでにない高品質の成膜か可能にも関わらず、応用は
進展していない。
Conventionally, attempts have been made to form thin films using many methods, and it can be said that the diversification of methods such as CVD, sputtering, and MBE has led to many possibilities. In particular, active research and development including mechanism analysis is being carried out on the plasma CVD method, which attempts to form thin films through activation, decomposition, and reaction using plasma. Many have been proposed. In particular, the CVD method that uses magnetic field resonance (hereinafter referred to as magnetic field plasma CVD method) uses plasma with a much higher density than conventional methods and can form films with high efficiency, so development is progressing.
It has also been expected to be applied in many fields. However, in the field of actual industrial production, the application of the magnetic field Bradama CVD method has not progressed, even though it is possible to form a film of unprecedented high quality.

それはひとえに該有磁場プラズマCVD法か巨大な電力
消費を伴うからに他ならない。
This is simply because the magnetic field plasma CVD method involves huge power consumption.

〔目的〕〔the purpose〕

本発明は、高品質の成膜か可能な有磁場プラズマCVD
法が、生産技術としてより高い実用性を持ちうるよう、
有効な運用技術を提供することである。
The present invention utilizes magnetic field plasma CVD, which enables high-quality film formation.
In order for the law to have higher practicality as a production technology,
The goal is to provide effective operational technology.

〔発明の構成〕[Structure of the invention]

本発明によれば、このような有磁場プラズマCVD装置
に対し、マイクロ波の投入と磁場の発生電力をパルス波
形を有することをもって行うことにより目的は達成でき
る。
According to the present invention, the object can be achieved by injecting microwaves and generating power of a magnetic field into such a magnetic field plasma CVD apparatus so as to have a pulse waveform.

ここで、マイクロ波・磁場電力に与えられるパルス波形
を第3図に示す。(A)は単一矩形パルスの例であり、
(B)は多段矩形パルスの例である。
Here, the pulse waveform given to the microwave/magnetic field power is shown in FIG. (A) is an example of a single rectangular pulse;
(B) is an example of a multistage rectangular pulse.

この様な多段パルスを利用できるのは、例えばダイヤモ
ンド薄膜がある。ここで、ダイヤモンドや硬質炭素膜に
おいてはSP3結合によって構成された構造か好ましい
とされており、成膜中に同時に生成される、SP2結合
の除去か重要である。通常その為にH,0プラズマによ
る選択的なエツチングを行っている。本発明者らによれ
ば、SP3結合とSP2結合の解離エネルギーは、はぼ
6・5てあり第1ピークを5〜50KWと第2ピークよ
りも強く第2ピークをその5/6である4、6〜46K
Wと設定することによって、さらに確実にSP3結合の
増加を実現できる。なお第3図において示したような矩
形波たけてはなく、針状のピーク波であっても合成条件
などにおいて許されるならば構わない。
Such multi-stage pulses can be used, for example, in diamond thin films. Here, in diamond or hard carbon films, it is said that a structure constituted by SP3 bonds is preferable, and it is important to remove SP2 bonds, which are simultaneously generated during film formation. For this purpose, selective etching using H,0 plasma is usually performed. According to the present inventors, the dissociation energy of SP3 bond and SP2 bond is approximately 6.5, and the first peak is 5 to 50 KW, which is stronger than the second peak, which is 5/6 of 4. , 6-46K
By setting it to W, it is possible to more reliably increase the number of SP3 connections. It should be noted that, instead of a rectangular wave as shown in FIG. 3, a needle-like peak wave may be used as long as it is permitted under the synthesis conditions.

本発明における有磁場プラズマCVD装置は、通常EC
RプラズマCVD装置として知られているものよりもは
るかに高い、0.3〜30torr好ましくは0゜3〜
3 torrの圧力で「混成共鳴」を用いた高密度プラ
ズマを利用して被膜形成を行うものであり、この被膜を
大面積の基板の全表面に均一な厚さてコーティングせん
とするものである。
The magnetic field plasma CVD apparatus in the present invention usually uses EC
Much higher than what is known as R plasma CVD equipment, 0.3~30torr preferably 0°3~
The film is formed using high-density plasma using "hybrid resonance" at a pressure of 3 Torr, and the film is intended to be coated to a uniform thickness over the entire surface of a large-area substrate.

これらの被膜形成用物体を混成共鳴空間またはそれより
離れた活性状態を保持した空間内に配設し、反応生成物
を物体の表面にコーティングさせる。この目的のため、
マイクロ波電力の電界強度が最も大きくなる領域または
その近傍に被形成面を有する物体を配設する。また、高
密度プラズマを0.03〜30torrの高い圧力で発
生、持続させるために、カラムを有する空間にまずlX
l0−’〜1×10−’torrの低真空下でECR(
電子サイクロトロン共鳴)を生せしめる。気体を導入し
、0.03〜30torr好ましくは0.3〜3 to
rrと高い空間圧力にプラズマ状態を持続しつつ変化せ
しめ、この空間の生成物気体の単位空間あたりの濃度を
これまでのECRCVD法に比べ102〜104倍程度
の高濃度にする。
These film-forming objects are placed in the hybrid resonance space or a space apart from it that maintains an active state, and the reaction product is coated on the surface of the object. For this purpose,
An object having a surface to be formed is disposed in or near a region where the electric field strength of microwave power is maximum. In addition, in order to generate and sustain high-density plasma at a high pressure of 0.03 to 30 torr, the space containing the column is first filled with 1X
ECR (
(electron cyclotron resonance). Introducing gas, 0.03 to 30 torr, preferably 0.3 to 3 torr
The plasma state is maintained and changed to a high space pressure of rr, and the concentration of product gas per unit space in this space is about 102 to 104 times higher than that of the conventional ECRCVD method.

するとかかる高い圧力においてのみ初めて分解または反
応をさせることができる材料の被膜形成が可能となる。
This makes it possible to form a film of a material that can only decompose or react under such high pressure.

例えば、前述のダイヤモンド、i−カーボン(ダイヤモ
ンドまたは微結晶粒を有する炭素被膜)、高融点の金属
または絶縁性セラミック被膜である。また、圧力か高い
ため、反応性気体の平均自由行程か短くなり、反応性気
体が四方へ方に発散しやすくなり、凹凸表面を有する物
体の側部に対しても被膜形成か可能となる。
For example, the aforementioned diamond, i-carbon (diamond or carbon coating with microcrystalline grains), high melting point metal or insulating ceramic coating. Furthermore, since the pressure is high, the mean free path of the reactive gas becomes short, making it easier for the reactive gas to diverge in all directions, making it possible to form a film even on the sides of objects with uneven surfaces.

すなわち本発明は従来より知られたマイクロ波を用いた
プラズマCVD法に磁場の力を加え、マイクロ波の電場
と磁場との相互作用を用いている。
That is, the present invention adds the force of a magnetic field to the conventionally known plasma CVD method using microwaves, and uses the interaction between the electric field and the magnetic field of the microwaves.

しかし、I X 10−’ 〜I X 10−’tor
rて有効なECR(ルクトロンサイクロトロン共鳴)条
件を用いていない。本発明は0.03〜30torrの
高い圧力の「混成共鳴」の発生する高い圧力で高密度高
エネルギのプラズマを利用した被膜形成を行わしめたも
のである。その混成共鳴空間での高エネルギ状態を利用
して、再現性に優れた薄膜材料の形成を可能としたもの
である。
However, I X 10-' ~ I X 10-'tor
Effective ECR (Luctron Cyclotron Resonance) conditions were not used. The present invention utilizes high-density, high-energy plasma to form a film at a high pressure of 0.03 to 30 torr at which "hybrid resonance" occurs. By utilizing the high energy state in the hybrid resonance space, it has become possible to form thin film materials with excellent reproducibility.

さて本発明は、前述の様に該有磁場プラズマCVD装置
に対して、プラズマ発生の為のマイクロ波(平均電力1
.5〜30KW)と磁場発生電力をパルスとし、両者を
完全に同期せしめる事を特徴とするものである。このよ
うなパルス波によるマイクロ波・磁場の投入は、この場
合約5.0〜50kWのピーク尖端値をもって投入する
ことか可能なため、該有磁場プラズマCVD装置に対し
て、通常の連続波によって1.5〜30KWの電力を投
入した場合と比較すると約30〜40%の効率向上を達
成できることになり、該有磁場プラズマCVD装置の省
電力か可能となる。パルス波のパルス波長は1〜10m
5、好ましくは3〜6msとすべきである。また加える
磁場はその強さを任意に変更可能な為、電子のみではな
く特定のイオンの共鳴条件を設定することかできる特徴
かある。
Now, as mentioned above, the present invention provides a magnetic field plasma CVD apparatus with microwaves (average power 1
.. The magnetic field generation power is pulsed (5 to 30 KW), and the two are completely synchronized. In this case, it is possible to input microwaves and magnetic fields using pulse waves with a peak peak value of about 5.0 to 50 kW, so it is possible to input microwaves and magnetic fields using pulse waves with a peak value of approximately 5.0 to 50 kW. Compared to the case where power of 1.5 to 30 KW is input, an efficiency improvement of about 30 to 40% can be achieved, and the power consumption of the magnetic field plasma CVD apparatus can be reduced. Pulse wavelength of pulse wave is 1-10m
5, preferably 3-6 ms. Furthermore, since the strength of the applied magnetic field can be changed arbitrarily, it is possible to set resonance conditions not only for electrons but also for specific ions.

さらに該有磁場プラズマCVD装置にパルスを用いた場
合、形成される薄膜材料の結晶粒か緻密化し、また被膜
形成用物体の凹凸に左右されず、均一な付着・堆積を示
すという利点かあることもあきらかとなった。
Furthermore, when pulses are used in the magnetic field plasma CVD apparatus, there is an advantage that the crystal grains of the formed thin film material become denser and uniform adhesion/deposition is achieved regardless of the unevenness of the film forming object. It also became clear.

また本発明の構成に付加して、パルスマイクロ波と磁場
との相互作用により高密度プラズマを発生させた後、物
体面上まで至るまでの間でも高エネルギ状態をより保持
するため、光(例えば紫外光)を同時に照射し、活性種
にエネルギを与えつづけると、マイクロ波電界の最大と
なる領域即ち高密度プラズマ発生領域より10〜50c
mも離れた位置(反応性気体の活性状態を保持てきる位
置)においても高エネルギ状態に励起された原子か存在
して、より大きな空間で薄膜を形成することが可能であ
る。本発明はかかる空間に筒状のカラムを配設し、二〇
カラム内に被膜形成用物体を配設し、その表面に被膜形
成を行った。
Additionally, in addition to the configuration of the present invention, after generating high-density plasma through the interaction of pulsed microwaves and a magnetic field, the high-energy state is maintained even before reaching the object surface, so that light (e.g. When irradiated with ultraviolet light (ultraviolet light) at the same time and continuing to give energy to the active species, the area where the microwave electric field is maximum, that is, the area where high-density plasma is generated, is 10 to 50 cm away.
Even at a position as far away as m (a position where the active state of the reactive gas can be maintained), atoms excited to a high energy state exist, making it possible to form a thin film in a larger space. In the present invention, a cylindrical column was disposed in such a space, a film-forming object was disposed inside the twenty columns, and a film was formed on the surface thereof.

以下に実施例を示し、さらに本発明を説明する。Examples will be shown below to further explain the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマCVD装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1)、補助空間(2)、 lクルス磁場を
発生する電磁石(5)、 (5”)およびその電源(2
5)。
In the same figure, this device consists of a plasma generation space (1) that can be maintained in a reduced pressure state, an auxiliary space (2), an electromagnet (5) that generates an L Curs magnetic field (5"), and its power source (2).
5).

パルスマイクロ波発振器(4)、排気系を構成するター
ボ分子ポンプ(8)、 ロータリーポンプ(14)、圧
力調整バルブ(11)、基板ホルダ(10“)、被膜形
成用物体(10)、マイクロ波導入窓(15)、ガス系
(6)、 (7)、水冷系(18)、 (18’ )、
ハロゲンランプ(20)、反射鏡(21)。
Pulse microwave oscillator (4), turbo molecular pump (8) that constitutes the exhaust system, rotary pump (14), pressure adjustment valve (11), substrate holder (10''), film forming object (10), microwave Introduction window (15), gas system (6), (7), water cooling system (18), (18'),
Halogen lamp (20), reflecting mirror (21).

加熱用空間(3)より構成されている。It consists of a heating space (3).

まず薄膜形成用物体(10)を基板ホルダ(10’)、
上に設置し、ゲート弁(16)よりプラズマ発生空間(
1)に配設する。この基板ホルダ(10’)はマイクロ
波および磁場をできるたけ乱させないため石英製とした
First, the thin film forming object (10) is placed on the substrate holder (10'),
Plasma generation space (
1). This substrate holder (10') was made of quartz so as not to disturb the microwave and magnetic field as much as possible.

作製工程として、まずこれら全体をターボ分子ポンプ(
8)、ロータリーポンプによりI X 1.0−’to
rr以下に真空排気する。次に非生成物気体(分解反応
後置体を構成しない気体)例えば水素(6)を303C
CMガス系(7)を通してプラズマ発生領域(1)に導
入し、この圧力をI X 10−’torrとする。図
面において気体は上より下方向に流れるようにした。
As part of the fabrication process, the entire structure was first assembled using a turbo molecular pump (
8), I X 1.0-'to by rotary pump
Evacuate to below rr. Next, a non-product gas (a gas that does not constitute a post-decomposition reaction body), for example, hydrogen (6), is added to 303C
It is introduced into the plasma generation region (1) through the CM gas system (7), and the pressure is set to I x 10-'torr. In the drawing, the gas flows from the top to the bottom.

しかし下側より上側方向であっても、左より右方向であ
っても、右より左方向であってもよい。
However, it may be from the bottom to the top, from the left to the right, or from the right to the left.

ここに、外部より2.45GHzの周波数のマイクロ波
を5KWの尖端値のパルスとして8msの周期で加える
。磁場を約2にガウスをの尖端値のパルスとして磁石(
5)、 (5”)より同様に8msの周期で印加し、両
者を完全に同期させて高密度プラズマをプラズマ発生空
間(1)にて発生させる。
Here, a microwave with a frequency of 2.45 GHz is applied from the outside as a pulse with a peak value of 5 KW at a period of 8 ms. Magnet (
5) and (5'') are similarly applied at a period of 8 ms, and both are completely synchronized to generate high-density plasma in the plasma generation space (1).

この高密度プラズマ領域より高エネルギを持つ非生成物
気体または電子が基板ホルダ(10’ )上の物体(1
0)の表面上に到り、表面を清浄にする。次にこの非生
成物気体を導入しつつ、ガス系(ア)より気体特に例え
ば生成物気体(分解・反応後置体を構成する気体)例え
ば炭化物気体(アセチレン(C2H2)、エチレン(C
2H,)またはメタン(CH,)、メチルアルコール(
CH30H)、エチルアルコール(C2H50H)等)
を20SCCMの流量で導入する。すると、空間の圧力
をすでに発生しているプラズマ状態を保持しつツ0.0
3〜30tOrr好ましくは0.1〜3tOrr例えば
0、5torrの圧力に変更させる。この空間の圧力を
高くすることにより、単位空間あたりの生成物気体の濃
度を大きくでき被膜成長速度を大きくてきる。また同時
に気体の廻りこみを太き(することかできる。かくの如
く一度低い圧力でプラズマを発生させ、そのプラズマ状
態を保持しつつ生成物気体の活性濃度を大きくできる。
From this high-density plasma region, high-energy non-product gas or electrons are released into the object (10') on the substrate holder (10').
0) and clean the surface. Next, while introducing this non-product gas, gases such as product gas (gas constituting the post-decomposition/reaction gas) such as carbide gas (acetylene (C2H2), ethylene (C
2H,) or methane (CH,), methyl alcohol (
CH30H), ethyl alcohol (C2H50H), etc.)
is introduced at a flow rate of 20 SCCM. Then, the pressure in the space is reduced to 0.0 while maintaining the already generated plasma state.
The pressure is changed to 3 to 30 torr, preferably 0.1 to 3 torr, for example 0.5 torr. By increasing the pressure in this space, the concentration of product gas per unit space can be increased and the film growth rate can be increased. At the same time, the circulation of gas can be increased. In this way, plasma can be generated once at a low pressure, and the active concentration of the product gas can be increased while maintaining the plasma state.

そして高エネルギの励起原子が生成され、基板ホルダ(
10°)上の物体(10)上に薄膜が形成される。
Then, high-energy excited atoms are generated and the substrate holder (
A thin film is formed on the object (10) above (10°).

第1図において、磁場は2つのリング状の磁石(5)、
 (5”)を用いたヘルムホルツコイル方式を採用した
。さらに、4分割した空間(30)に対し電場・磁場の
強度を調べた結果を第2図に示す。
In Figure 1, the magnetic field consists of two ring-shaped magnets (5),
A Helmholtz coil system using (5") was adopted.Furthermore, the strength of the electric and magnetic fields was investigated for the space (30) divided into four. The results are shown in Figure 2.

第2図(A)において、横軸(X軸)は空間(30)の
横方向(反応性気体の放出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
磁位面を示す。そしてその線上に示されている数字は磁
石(5)が約2000ガウスの時に得られる磁場の強さ
を示す。磁石(5)の強度を調整すると、電極・磁場の
相互作用を有する空間(100)(875ガウス±18
5ガウス以内)で大面積において磁場の強さを基板の被
形成面の広い面積にわたって概略均一にさせることがで
きる。図面は等磁場面を示し、特に線(26)が875
ガウスとなるECR(電子サイクロトロン共鳴)条件を
生ずる等磁場面である。
In FIG. 2 (A), the horizontal axis (X-axis) is the horizontal direction of the space (30) (reactive gas release direction), and the vertical axis (R-axis)
indicates the diameter direction of the magnet. The curves in the drawings indicate equipotential surfaces of the magnetic field. The number shown on the line indicates the strength of the magnetic field obtained when the magnet (5) is about 2000 Gauss. By adjusting the strength of the magnet (5), the space (100) (875 Gauss ± 18
(within 5 Gauss), it is possible to make the strength of the magnetic field approximately uniform over a large area over a wide area of the formation surface of the substrate. The drawing shows an isomagnetic scene, in particular the line (26) at 875
It is an isomagnetic scene that produces Gaussian ECR (electron cyclotron resonance) conditions.

この共鳴条件を生ずる空間(100)は第2図(B)に
示す如く、電場が最大となる領域となるようにしている
。第2図(B)の横軸は第2図(A)と同じく反応性気
体の流れる方向を示し、縦軸は電場(電界強度)の強さ
を示す。
The space (100) that produces this resonance condition is designed to be a region where the electric field is maximum, as shown in FIG. 2(B). The horizontal axis in FIG. 2(B) indicates the direction in which the reactive gas flows, as in FIG. 2(A), and the vertical axis indicates the strength of the electric field (electric field strength).

すると電界領域(100)以外に領域(100”)も最
大となる領域に該当する。しかし、ここに対応する磁場
(第2図(A))はきわめて等磁場面か多く存在してい
る。即ち領域(100’ )では基板の被形成面の直径
方向(第2図(A)における縦軸方向)での膜厚のばら
つきか大きくなり、(26′)の共鳴条件を満たすEC
R条件部分て良質の被膜かできるのみである。結果とし
て均一かつ均質な被膜を期待てきない。
Then, in addition to the electric field region (100), the region (100") also corresponds to the region where the maximum occurs. However, the magnetic field corresponding to this region (Fig. 2 (A)) exists in many isomagnetic fields. That is, In the region (100'), the variation in film thickness in the diametrical direction (vertical axis direction in FIG. 2(A)) of the surface of the substrate becomes large, and the EC satisfies the resonance condition of (26').
Only a good quality film could be formed under the R condition. As a result, a uniform and homogeneous coating cannot be expected.

もちろんドーナツ型に被膜を形成せんとする場合はそれ
てもよい。
Of course, if you want to form a donut-shaped coating, you may do otherwise.

領域(100)に対してその原点対称の反対の側にも電
場が最大であり、かつ磁場が広い領域にわたって一定と
なる領域を有する。基板の加熱を行う必要がない場合は
かかる空間での被膜形成も育効である。しかしパルスマ
イクロ波の電場を乱すことなく加熱を行う手段か得にく
い。
There is also a region on the opposite side of the origin symmetrical to region (100) where the electric field is maximum and the magnetic field is constant over a wide region. When there is no need to heat the substrate, forming a film in such a space is also effective for growth. However, it is difficult to find a way to heat without disturbing the electric field of pulsed microwaves.

これらの結果、基板の出し入れ、加熱の容易さを考慮し
、均一かつ均質な被膜とするためには第2図(A)の領
域(100)が3つの領域の中では最も工業的に量産性
の優れた位置であった。
As a result, considering the ease of loading and unloading the substrate and the ease of heating, the area (100) in Figure 2 (A) is the most industrially mass-producible of the three areas in order to obtain a uniform and homogeneous coating. It was an excellent location.

この結果、本発明では領域(100)に基板(10)を
配設すると、この基板が円形であった場合、半径100
mmまで、好ましくは半径50mmまでの大きさで均一
、均質に被膜形成が可能となった。
As a result, in the present invention, when the substrate (10) is disposed in the area (100), if this substrate is circular, the radius is 100.
It became possible to uniformly and homogeneously form a film with a radius of up to 50 mm, preferably up to 50 mm in radius.

さらに大面積とするには、例えばこの4倍の面積におい
て同じく均一な膜厚とするには、周波数を2.45GH
zではなく 1.225GHzとすればこの空間の直径
(第2図(A)のR方向)を2倍とすることかてきる。
For an even larger area, for example, to achieve the same uniform film thickness over an area four times larger than this, the frequency should be set to 2.45 GH.
If the frequency is set to 1.225 GHz instead of z, the diameter of this space (direction R in FIG. 2(A)) can be doubled.

本実施例では、本方式を用いて水素希釈メタノールを出
発原料として平均マイクロ波出力1.5kW(尖端値3
.4kW)・パルス周期8msにてダイヤモンド薄膜の
合成を試みた。その結果形成された薄膜を、走査型電子
顕微鏡により断面を観察したところ、粒状に結晶ダイヤ
モンドが成長していた。特にその粒の大きさは定常値(
連続波)のマイクロ波を用いた場合に比べ、5〜10倍
も大きかった。
In this example, using this method and using hydrogen-diluted methanol as a starting material, the average microwave output was 1.5 kW (peak value 3
.. Synthesis of a diamond thin film was attempted using a pulse cycle of 8 ms (4 kW) and a pulse period of 8 ms. When the cross section of the resulting thin film was observed using a scanning electron microscope, it was found that crystalline diamond had grown in the form of grains. In particular, the size of the grain is a steady value (
It was 5 to 10 times larger than when using continuous wave (continuous wave) microwaves.

またこれまでは成長初期が小さな径を持ち、厚さか増す
につれて一部のダイヤモンドが太くなってしまうため、
被形成面との密着性か悪かった。しかし本発明のパルス
波法においては、被形成面でのダイヤモンドの太さも太
く、結晶として密着性か大きいことがモホロジ的にも推
定できた。また電子線回折像をとったところ、ダイヤモ
ンド(単結晶粒)のスポットがみられ、平均出力電力1
.5KWまたはそれ以上でダイヤモンド構造がより明確
となった被膜となった。
Also, until now, some diamonds had a small diameter at the initial stage of growth, and as the thickness increased, some diamonds became thicker.
Adhesion to the surface to be formed was poor. However, in the pulse wave method of the present invention, the thickness of the diamond on the formation surface was large, and it was morphologically estimated that the diamond had good adhesion as a crystal. Furthermore, when an electron beam diffraction image was taken, diamond (single crystal grain) spots were observed, and the average output power was 1.
.. At 5KW or more, a film with a clearer diamond structure was obtained.

その他本発明方式を用いる事によって、基板上に炭化珪
化物気体(メチルシラン)を用い炭化珪素の多結晶膜を
作ることができる。ホウ素化物と窒素化物とを同時に流
し、例えばジボランと窒素との反応により窒化ホウ素被
膜を作ることもてきる。Bi(ビスマス)系、YBCO
系、Tl(タリウム)系、■(バナジウム、非銅)系の
酸化物超伝導材料薄膜の形成を行ってもよい。窒化アル
ミニューム、酸化アルミニューム、ジルコニア、リン化
ホウ素も同様に作製可能である。またこれらとダイヤモ
ンドとの多層膜の作成も可能である。タンクステン、チ
タン、モリブデンまたはそれらの珪化物の高融点導体の
膜の物体上での形成もこれら金属のハロゲン化物または
水素化物それ自体の分解反応によりまたはこれらとシラ
ンとの反応により作ることもできる。
In addition, by using the method of the present invention, a polycrystalline film of silicon carbide can be formed on a substrate using a silicon carbide gas (methylsilane). It is also possible to flow the boronide and nitride simultaneously to form a boron nitride film, for example, by reaction of diborane with nitrogen. Bi (bismuth) type, YBCO
A thin film of an oxide superconducting material such as Tl (thallium) type, Tl (thallium) type, or (vanadium, non-copper) type oxide may be formed. Aluminum nitride, aluminum oxide, zirconia, and boron phosphide can also be produced in the same way. It is also possible to create a multilayer film of these and diamond. The formation on objects of films of high-melting point conductors of tanksten, titanium, molybdenum or their silicides can also be produced by decomposition reactions of the halides or hydrides of these metals themselves or by reaction of these with silane. .

〔発明の効果〕〔Effect of the invention〕

本発明におけるパルスマイクロ波・磁場プラズマCVD
法による薄膜作成技術は、これまでの定常連続波を用い
る方法に比べ均一な薄膜材料をより低い投入電力によっ
て作成することが出来ることか明らかになった。すなわ
ち本発明におけるパルス化の効果は、低エネルギー消費
の実現と、凹凸面を有する物体の側面に対しても被膜形
成可能ならしめた事である。
Pulsed microwave/magnetic field plasma CVD in the present invention
It has become clear that thin film fabrication technology using this method can produce uniform thin film materials with lower input power than conventional methods using steady continuous waves. That is, the effects of pulsing in the present invention are that low energy consumption is realized and that a film can be formed even on the side surface of an object having an uneven surface.

本発明か実験的に見出した方法を取ることにより、薄膜
作成に非常に有望な有磁場マイクロ波プラズマCVD法
を、幅広く応用する事か可能となった。また従来法に比
べて、凹凸を有する大面積の表面に均一な薄膜を形成さ
せることか可能となった。
By adopting the method of the present invention or experimentally discovered, it has become possible to widely apply the magnetic field microwave plasma CVD method, which is very promising for thin film production. Furthermore, compared to conventional methods, it has become possible to form a uniform thin film on a large surface with irregularities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図はマイクロ波・磁場電力のパルス形の例を示す。 1・・・・プラズマ発生空間 4・・・・マイクロ波発振器 5.5゛・・・外部磁場発生器 8・・・・ターボ分子ポンプ 10・・・・被膜形成用物体または基板10  ・・・
基板ホルダ 20・・・・ハロゲンランプ 21・・・・反射鏡
FIG. 1 schematically shows a microwave CVD apparatus using magnetic field/electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. FIG. 3 shows an example of the pulse form of microwave/magnetic field power. 1... Plasma generation space 4... Microwave oscillator 5.5''... External magnetic field generator 8... Turbo molecular pump 10... Film forming object or substrate 10...
Substrate holder 20...Halogen lamp 21...Reflector

Claims (2)

【特許請求の範囲】[Claims] 1.磁場を使用し、高密度プラズマを発生させる形式で
あるプラズマCVD法を用いた薄膜の作成において、プ
ラズマ発生のための投入電力および磁場発生のための投
入電力が、各々パルス波形を有しており、かつ両者のパ
ルス波形が完全に同期しているものであることを特徴と
する薄膜の作成方法。
1. In the production of thin films using the plasma CVD method, which uses a magnetic field to generate high-density plasma, the input power for plasma generation and the input power for magnetic field generation each have a pulse waveform. , and the pulse waveforms of both are completely synchronized.
2.特許請求の範囲第1項における電力投入が、マイク
ロ波によって行われることを特徴とする薄膜の作成方法
2. A method for producing a thin film, characterized in that the power input according to claim 1 is performed by microwaves.
JP2254522A 1990-09-25 1990-09-25 How to make a thin film Expired - Fee Related JP2995339B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2254522A JP2995339B2 (en) 1990-09-25 1990-09-25 How to make a thin film
KR1019910016843A KR930011413B1 (en) 1990-09-25 1991-09-25 Plasma cvd method for using pulsed waveform
US08/463,058 US5626922A (en) 1990-09-25 1995-06-05 Plasma processing method
US09/262,853 US6110542A (en) 1990-09-25 1999-03-05 Method for forming a film
US09/636,222 US6660342B1 (en) 1990-09-25 2000-08-10 Pulsed electromagnetic energy method for forming a film
US10/728,987 US7125588B2 (en) 1990-09-25 2003-12-08 Pulsed plasma CVD method for forming a film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254522A JP2995339B2 (en) 1990-09-25 1990-09-25 How to make a thin film

Publications (2)

Publication Number Publication Date
JPH04131381A true JPH04131381A (en) 1992-05-06
JP2995339B2 JP2995339B2 (en) 1999-12-27

Family

ID=17266212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254522A Expired - Fee Related JP2995339B2 (en) 1990-09-25 1990-09-25 How to make a thin film

Country Status (1)

Country Link
JP (1) JP2995339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362959A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362959A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same

Also Published As

Publication number Publication date
JP2995339B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
JPH0623430B2 (en) Carbon production method
JPS63195266A (en) Timepiece coated with carbon film
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH06293593A (en) Synthesis method by plasma cvd method and epitaxial aln synthesized by the method
JPH04131381A (en) Formation of thin film
JPS63121667A (en) Device and method for forming thin film
JP2676091B2 (en) How to make a thin film
JPH0420985B2 (en)
JPS63210010A (en) Production of carbon
JPH04132684A (en) Method for forming diamond thin film
JPS63169387A (en) Formation of thin film
JP2660244B2 (en) Surface treatment method
JPH0226894A (en) Method and device for synthesizing diamond in vapor phase
JPH03174397A (en) Method and device for synthesizing rigid substance
JP3291274B2 (en) Carbon coating method
JP3091466B2 (en) Thin film manufacturing method
JP2000026193A (en) Thin film
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JPH0449520B2 (en)
JPS60116781A (en) Production of boron nitride film having high hardness
JP2739286B2 (en) Plasma processing method
JPS63169386A (en) Formation of thin film
JPS63282200A (en) Method of chemical vapor growth for diamond
JPH01100092A (en) Diamond vapor-phase synthesis and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees