JPH0413102A - Reflecting mirror for synchrotron radiation light - Google Patents

Reflecting mirror for synchrotron radiation light

Info

Publication number
JPH0413102A
JPH0413102A JP11735490A JP11735490A JPH0413102A JP H0413102 A JPH0413102 A JP H0413102A JP 11735490 A JP11735490 A JP 11735490A JP 11735490 A JP11735490 A JP 11735490A JP H0413102 A JPH0413102 A JP H0413102A
Authority
JP
Japan
Prior art keywords
base material
film
sic
heat resistant
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11735490A
Other languages
Japanese (ja)
Other versions
JP2522584B2 (en
Inventor
Hiroshi Yamazaki
拓 山崎
Shinichi Inoue
井上 新一
Teruo Sugai
菅井 照夫
Shiro Hotate
保立 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2117354A priority Critical patent/JP2522584B2/en
Publication of JPH0413102A publication Critical patent/JPH0413102A/en
Application granted granted Critical
Publication of JP2522584B2 publication Critical patent/JP2522584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To lessen the peeling of an SiC film and the deformation of a metallic film with forcedly cooling by providing grooves or through-holes for forcedly cooling in a heat resistant ceramics base material. CONSTITUTION:The heat resistant ceramics base material is coated with the SiC film 2 by a CVD method and the surface thereof is optically polished; further, the metallic film is deposited by evaporation thereon. The grooves 4 or through-holes 5 for forcedly cooling are provided in the heat resistant ceramics base material 1. While carbon base materials, SiC base materials, etc., are usable for this heat resistant ceramics base material 1, the SiC base materials are more preferable as these materials have small coefft. of thermal expansion with the SiC film 2. The grooves 4 or through-holes 5 for forcedly cooling are provided in the heat resistant ceramics base material in such a manner, by which the peeling of the SiC film and the deformation of the metallic film are effectively prevented even if the thermal load received by the reflecting mirror is increased by the higher energy of an SOR device.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はシンクロトロン放射光用反射ミラーに関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a reflection mirror for synchrotron radiation.

〔従来の技術〕[Conventional technology]

近年、シンクロトロン放射光(SOR)の応用研究が急
速な進歩を遂げている。その応用分野は、半導体製造、
医学、化学及び物理と広範囲にわたっている。また、S
OR装置の大型化、高エネルギー化も著しくなってきて
いる。この結果、SOR用の反射ミラーに対する要求も
ますます厳しくなってきている。この用途の反射ミラー
には、耐熱性セラミック基材にCVD法によりSiCM
をコーティングしてその表面を光学研磨し、更に金属膜
を蒸着したものが用いられている。
In recent years, applied research on synchrotron radiation (SOR) has made rapid progress. Its application fields include semiconductor manufacturing,
It covers a wide range of fields including medicine, chemistry, and physics. Also, S
OR devices are becoming larger and more energy efficient. As a result, requirements for SOR reflecting mirrors are becoming increasingly strict. The reflective mirror for this purpose is made of SiCM made by CVD method on a heat-resistant ceramic base material.
The surface is optically polished, and a metal film is further deposited on the surface.

従来、耐熱性セラミック基材としては、カーボン基材又
はSiC基材が用いられている。
Conventionally, a carbon base material or a SiC base material has been used as a heat-resistant ceramic base material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、SOR装置の高エネルギー化により反射ミラー
の受ける熱負荷が大きくなるのに伴い、熱衝撃が主な原
因となって生じるSiC膜の剥離、金属膜の変形が問題
になってきている。
However, as the thermal load on the reflecting mirror increases due to the increase in the energy of SOR devices, peeling of the SiC film and deformation of the metal film, which are mainly caused by thermal shock, have become problems.

本発明はこれらの問題を解決するためになされたもので
あり、強制冷却によりSiC膜の剥離や金属膜の変形が
生じにくいシンクロトロン放射光用反射ミラーを提供す
ることを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a reflection mirror for synchrotron radiation that is unlikely to cause peeling of the SiC film or deformation of the metal film due to forced cooling.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のシンクロトロン放射光用反射ミラーは、耐熱性
セラミック基材にCVD法によりSiC膜をコーティン
グしてその表面を光学研磨し、更に金属膜を蒸着したシ
ンクロトロン放射光用反射ミラーにおいて、前記耐熱性
セラミック基材に強制冷却用の溝又は貫通孔を設けたこ
とを特徴とするものである。
The reflection mirror for synchrotron radiation of the present invention is a reflection mirror for synchrotron radiation, in which a heat-resistant ceramic base material is coated with a SiC film by the CVD method, the surface thereof is optically polished, and a metal film is further deposited. It is characterized by having grooves or through holes for forced cooling in the heat-resistant ceramic base material.

本発明において、耐熱性セラミック基材としてはカーボ
ン基材、SiC基材などを用いることができる。ただし
、SiC基材の方がSiC膜との熱膨張係数が差が小さ
いので好ましい。
In the present invention, a carbon base material, a SiC base material, etc. can be used as the heat-resistant ceramic base material. However, the SiC base material is preferable because it has a smaller difference in thermal expansion coefficient from the SiC film.

本発明において、金属膜としては、例えばCr下地層の
上にpt又はAuを形成したものが挙げられる。また、
特定波長のX線を反射するために、pt又はAuの代わ
りに、Ni、Co、Cu。
In the present invention, examples of the metal film include one in which PT or Au is formed on a Cr underlayer. Also,
Ni, Co, Cu instead of PT or Au to reflect X-rays of specific wavelengths.

Fe、ReSZnSWSMnz Tas Auなどの重
元素とBe、、Mg、Sn、5bSVSTeなどの軽元
素とを組み合わせた多層膜を用いてもよい。
A multilayer film may be used in which a heavy element such as Fe, ReSZnSWSMnz Tas Au is combined with a light element such as Be, Mg, Sn, or 5bSVSTe.

なお、Cr下地層は必ずしも設ける必要はない。Note that it is not necessary to provide the Cr underlayer.

〔作 用〕[For production]

本発明のシンクロトロン放射光用反射ミラーは、耐熱性
セラミック基材に強制冷却用の溝又は貫通孔を設けてい
るので、SOR@置の高エネルギー化により反射ミラー
の受ける熱負荷が大きくなっても、SiC膜の剥離、金
属膜の変形を有効に防止することができる。
The reflection mirror for synchrotron radiation of the present invention has grooves or through holes for forced cooling in the heat-resistant ceramic base material, so that the heat load on the reflection mirror increases due to the high energy of SOR@ placement. Also, peeling of the SiC film and deformation of the metal film can be effectively prevented.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図(a)及び(b)に示すように、長さ12cm。Example 1 As shown in FIGS. 1(a) and (b), the length is 12 cm.

幅10c+ns厚さ2 、5cmのSiCからなる基材
1の裏面には強制冷却用の溝4が形成されている。また
基材1の反射面側には、CVD法により膜厚的100−
のSiC膜2、及びイオンブレーティング法によりCr
下地層とPtとからなる膜厚0.11の金属膜3が順次
形成されてSOR用反射ミラーが構成されている。
Grooves 4 for forced cooling are formed on the back surface of a base material 1 made of SiC with a width of 10 c+ns and a thickness of 2 cm and 5 cm. Furthermore, on the reflective surface side of the base material 1, a film with a thickness of 100-
SiC film 2 of
A metal film 3 having a thickness of 0.11 and consisting of a base layer and Pt is successively formed to constitute an SOR reflecting mirror.

この場合、基材1の裏面の表面積が、反射面の表面積(
本実施例では120an2)の1.2〜4.0倍となる
ように、溝4を形成することが望ましい。
In this case, the surface area of the back surface of the base material 1 is the surface area of the reflective surface (
In this embodiment, it is desirable to form the groove 4 so that the width is 1.2 to 4.0 times 120an2).

このSOR用反射ミラーは、第2図に示すように、固定
盤lO上に載せられ、溝4が開口している側面にフラン
ジ11を取り付けられ、冷却水が流される。冷却水は基
材1の裏面に設けられた満4の内部を通過するので、基
材1は有効に冷却される。
As shown in FIG. 2, this SOR reflecting mirror is placed on a stationary plate 1O, a flange 11 is attached to the side surface where the groove 4 is open, and cooling water is flowed therethrough. Since the cooling water passes through the inside of the tube provided on the back surface of the base material 1, the base material 1 is effectively cooled.

なお、基材の強度を保持しつつ、裏面の表面積を大きく
するためには、第3図(a)及び(b)に示すように、
湾曲した形状の溝4を設けることが望ましい。
In addition, in order to increase the surface area of the back side while maintaining the strength of the base material, as shown in FIGS. 3(a) and (b),
It is desirable to provide the groove 4 with a curved shape.

実施例2 第4図(a)及び(b)に示すように、長さ12cm。Example 2 As shown in FIGS. 4(a) and (b), the length is 12 cm.

幅10 cm s厚さ2.5国のSiCからなる基材1
には強制冷却用の貫通孔5が形成されている。貫通孔5
はミラーの短辺に沿った方向に複数個設けられている。
Base material 1 made of SiC with a width of 10 cm and a thickness of 2.5 mm.
A through hole 5 for forced cooling is formed in. Through hole 5
A plurality of are provided in the direction along the short side of the mirror.

これらの貫通孔5は、側面の開口部から中心側に向かっ
て徐々に径が小さくなる(テーパー形状)とともに、反
射面側へ傾斜して反射面に近づくように形成されている
。また、基材1の反射面側には、CVD法により膜厚的
1001のSiC膜2、及びイオンブレーティング法に
よりCr下地層とPtとからなる膜厚的0.1.の金属
膜4が順次形成されてSOR用反射ミラーが構成されて
いる。
These through-holes 5 are formed so that the diameter gradually decreases from the side opening toward the center (tapered shape) and is inclined toward the reflective surface so as to approach the reflective surface. Further, on the reflective surface side of the base material 1, a SiC film 2 with a thickness of 1001 mm was formed by CVD, and a 0.1 mm thick film made of a Cr underlayer and Pt was formed by ion blating. The metal films 4 are sequentially formed to constitute an SOR reflecting mirror.

基材1の貫通孔5の開口部にはねじ山が切られ、ジヨイ
ントが取り付けられる。このジヨイントに図示しない冷
却管が接続されて冷却水が流され、基材1が有効に冷却
される。
A thread is cut into the opening of the through hole 5 of the base material 1, and a joint is attached thereto. A cooling pipe (not shown) is connected to this joint, through which cooling water flows, and the base material 1 is effectively cooled.

貫通孔の孔径、及び貫通孔の数を種々変化させ、貫通孔
5の内面の表面積と、反射面の面積(本実施例では12
0cm2)との比が異なる複数にSOR用反射ミラーを
作製した。
The diameter of the through-hole and the number of through-holes are varied, and the surface area of the inner surface of the through-hole 5 and the area of the reflective surface (in this example, 12
A plurality of SOR reflecting mirrors having different ratios to 0 cm2) were fabricated.

各反射ミラーをSOR装置に装着し、以下のようにして
耐用寿命を調べた。すなわち、硬X線ウィグラ(20極
、2.4m)を用い、3 W / mm 2の表面パワ
ー密度で60秒間照射して熱負荷を与える操作を繰り返
し、基材とSiC膜との剥離が生じた回数を調べた。そ
して、基材に貫通孔を設けていない場合の回数を100
として、耐用寿命を相対値で表示した。その結果を第1
表に示す。
Each reflective mirror was attached to an SOR device, and its service life was examined as follows. That is, using a hard X-ray wiggler (20 poles, 2.4 m), repeated irradiation for 60 seconds at a surface power density of 3 W/mm2 to apply heat load caused peeling between the base material and the SiC film. I checked the number of times. Then, the number of times when the through hole is not provided in the base material is 100.
The service life is expressed as a relative value. The result is the first
Shown in the table.

第 表 第1表の結果から、貫通孔は以下の要件を満たすことが
望ましいことかわかった。
From the results shown in Table 1, it was found that it is desirable that the through holes satisfy the following requirements.

■貫通孔5の径は基材1の厚みの1/2以下とする。(2) The diameter of the through hole 5 should be 1/2 or less of the thickness of the base material 1.

■貫通孔5の内面の表面積は、反射面の面積の0.65
〜2.00倍とする。0,65倍未満ては冷却効果が小
さい。2,00倍を超えると、基材の強度が著しく低下
する。
■The surface area of the inner surface of the through hole 5 is 0.65 of the area of the reflective surface.
~2.00 times. If it is less than 0.65 times, the cooling effect is small. When it exceeds 2,00 times, the strength of the base material decreases significantly.

本実施例では、第4図に示すように、中心部で反射面側
へ傾斜して反射面に近づくように形成された貫通孔5を
設けた。貫通孔は、第5図に示すように反射面に平行な
もの、又は第6図に示すように中心部で裏面側へ傾斜し
て裏面に近づくように形成されたものでもよいが、これ
らは第4図のものと比較して若干冷却効果が劣る。
In this embodiment, as shown in FIG. 4, a through hole 5 is provided which is formed at the center so as to be inclined toward the reflective surface and approach the reflective surface. The through hole may be formed parallel to the reflective surface as shown in FIG. 5, or may be formed in the center so as to be inclined toward the back surface and approach the back surface as shown in FIG. The cooling effect is slightly inferior to that shown in Fig. 4.

なお、実施例1.2のいずれの場合でも、CVD法によ
るSiC膜をコーティング、溝又は貫通孔の加工、Si
C膜の研磨の各工程の順序を考慮する必要がある。
In any case of Example 1.2, the SiC film is coated by the CVD method, the grooves or through holes are formed, and the Si
It is necessary to consider the order of each step of polishing the C film.

すなわち、CVD法によりSiC膜をコーティングし満
又は貫通孔を加工した後にSiC膜を研磨すると、Si
C膜に蓄えられた応力が緩和され、研磨品が変形する。
In other words, if the SiC film is coated by the CVD method and the SiC film is polished after forming full or through holes, the Si
The stress accumulated in the C film is relaxed and the polished product is deformed.

また、CVD法によりSiC膜をコーティングしSiC
膜を研磨した後に溝又は貫通孔を加工しても、同様に変
形が生じる。
In addition, by coating a SiC film using the CVD method,
Similarly, deformation occurs when grooves or through holes are machined after polishing the membrane.

これに対して、■CVD法により膜厚400〜5001
のSiC膜をコーティングする、■溝又は貫通孔を加工
するとともに、SiC膜を粗研磨する、■CVD法ニヨ
り膜厚100〜150a(7)S i C膜をコーティ
ングする、■SiC膜を仕上げ研磨する、という工程を
採用すれば、SiC膜の変形を抑制することができる。
On the other hand, ■CVD method has a film thickness of 400 to 5001 mm.
■ Machining grooves or through holes and rough polishing the SiC film, ■ Coating the CVD film with a thickness of 100 to 150 a (7) SiC film, ■ Finishing the SiC film By employing the step of polishing, deformation of the SiC film can be suppressed.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明のシンクロトロン放射光用反
射ミラーは、強制冷却によって熱負荷による変形を抑制
することができるので、長期間にわたって使用すること
ができ、SOR装置の高エネルギー化に対応することが
できる。
As detailed above, the reflection mirror for synchrotron radiation of the present invention can suppress deformation due to thermal load through forced cooling, so it can be used for a long period of time and is compatible with higher energy SOR devices. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の実施例1におけるシンクロトロ
ン放射光用反射ミラーの正面図、同図(b)は同側面図
、第2図は同反射ミラーの使用状態を示す側面図、第3
図(a)は本発明の他の実施例におけるシンクロトロン
放射光用反射ミラーの正面図、同図(b)は同側面図、
第4図(a>は本発明の実施例2におけるシンクロトロ
ン放射光用反射ミラーの正面図、同図(b)は同側面図
、第5図及び第6図はそれぞれ本発明の他の実施例にお
けるシンクロトロン放射光用反射ミラーの側面図である
。 1・・・基材、2・・・SiC膜、3・・・金属膜、4
・・・溝、5・・・貫通孔、lO・・・固定盤、11・
・・フランジ。 出願人代理人 弁理士 鈴江武彦 4溝 第 図 第 図 5貫通孔
FIG. 1(a) is a front view of a reflection mirror for synchrotron radiation in Example 1 of the present invention, FIG. 1(b) is a side view of the same, and FIG. Third
Figure (a) is a front view of a reflection mirror for synchrotron radiation in another embodiment of the present invention, Figure (b) is a side view of the same,
FIG. 4(a) is a front view of a reflection mirror for synchrotron radiation in Example 2 of the present invention, FIG. 4(b) is a side view of the same, and FIGS. 5 and 6 are respectively other embodiments of the present invention. It is a side view of a reflection mirror for synchrotron radiation light in an example. 1... Base material, 2... SiC film, 3... Metal film, 4
...Groove, 5...Through hole, lO...Fixed plate, 11.
...Flange. Applicant's representative Patent attorney Takehiko Suzue 4 grooves Figure 5 Through hole

Claims (1)

【特許請求の範囲】[Claims] 耐熱性セラミック基材にCVD法によりSiC膜をコー
ティングしてその表面を光学研磨し、更に金属膜を蒸着
したシンクロトロン放射光用反射ミラーにおいて、前記
耐熱性セラミック基材に強制冷却用の溝又は貫通孔を設
けたことを特徴とするシンクロトロン放射光用反射ミラ
ー。
In a reflective mirror for synchrotron radiation, in which a heat-resistant ceramic base material is coated with a SiC film by CVD, its surface is optically polished, and a metal film is further deposited, the heat-resistant ceramic base material is provided with forced cooling grooves or A reflecting mirror for synchrotron radiation, characterized by having a through hole.
JP2117354A 1990-05-07 1990-05-07 Synchrotron radiation mirror Expired - Fee Related JP2522584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117354A JP2522584B2 (en) 1990-05-07 1990-05-07 Synchrotron radiation mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117354A JP2522584B2 (en) 1990-05-07 1990-05-07 Synchrotron radiation mirror

Publications (2)

Publication Number Publication Date
JPH0413102A true JPH0413102A (en) 1992-01-17
JP2522584B2 JP2522584B2 (en) 1996-08-07

Family

ID=14709615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117354A Expired - Fee Related JP2522584B2 (en) 1990-05-07 1990-05-07 Synchrotron radiation mirror

Country Status (1)

Country Link
JP (1) JP2522584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046078A1 (en) * 2004-09-21 2006-05-04 Bae Systems Plc Heat dissipating layers in de formable mirrors
US7397900B2 (en) 2000-09-27 2008-07-08 Euratom Micro beam collimator for high resolution XRD investigations with conventional diffractometers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397900B2 (en) 2000-09-27 2008-07-08 Euratom Micro beam collimator for high resolution XRD investigations with conventional diffractometers
WO2006046078A1 (en) * 2004-09-21 2006-05-04 Bae Systems Plc Heat dissipating layers in de formable mirrors
US7832879B2 (en) 2004-09-21 2010-11-16 Bae Systems Plc Heat dissipating layers in deformable mirrors

Also Published As

Publication number Publication date
JP2522584B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4915494A (en) Carbon-carbon mirror for space applications
JP3369556B2 (en) Composite products containing oriented microstructures
JPS6098399A (en) Point source x-ray focusing device
EP0309520A1 (en) Lightweight silicon carbide mirror.
EP0807839A1 (en) Optical window and method of manufacturing the same
US4925740A (en) Hollow metal sphere filled stabilized skin structures and method of making
KR20100017443A (en) Method for the production of an optical element by means of a molding process, optical element produced according to said method, collector, and lighting system
JPH0413102A (en) Reflecting mirror for synchrotron radiation light
EP0624807B1 (en) Process of fabrication of a reflector with a metal matrix composite support, and reflector produced this way
US5375015A (en) Heat resisting reflection mirror
JPH0413101A (en) Reflecting mirror for synchrotron radiation light
JPS6155603A (en) High-durability infrared reflecting mirror
EP0181886A1 (en) Multiple planar heat sink
JPH08274359A (en) Solar cell
JP3200959B2 (en) X-ray reflector
Ulmer et al. Grazing incidence and multilayer X-ray optical systems
JP3127037B2 (en) X-ray mask support, X-ray mask structure, and X-ray exposure method
JPS6053037A (en) Multilayer compound metal strip mounting semiconductor element
JPH04158298A (en) Reflecting mirror for synchrotron radiation
TWI226309B (en) Method for fabricating a diamond film having low surface roughness
FR2714156A1 (en) Tubed bottom for heat exchanger with aluminium tubes
JPS62152299A (en) Production of diaphragm for speaker
JPS59144176A (en) Method of producing rectifier
JPS58200692A (en) Diaphragm for speaker
JPH0716981A (en) Metallic composite component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees