JPH0413093B2 - - Google Patents

Info

Publication number
JPH0413093B2
JPH0413093B2 JP62315214A JP31521487A JPH0413093B2 JP H0413093 B2 JPH0413093 B2 JP H0413093B2 JP 62315214 A JP62315214 A JP 62315214A JP 31521487 A JP31521487 A JP 31521487A JP H0413093 B2 JPH0413093 B2 JP H0413093B2
Authority
JP
Japan
Prior art keywords
disk
polishing
jacket
thermal expansion
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62315214A
Other languages
Japanese (ja)
Other versions
JPH01159171A (en
Inventor
Takanobu Nishimura
Motoo Suzuki
Kazuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP62315214A priority Critical patent/JPH01159171A/en
Publication of JPH01159171A publication Critical patent/JPH01159171A/en
Publication of JPH0413093B2 publication Critical patent/JPH0413093B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明はポリツシング、ラツピング等に適用さ
れる研磨定盤に係り、特に研磨面の平坦度向上を
図つた研磨定盤に関する。 (従来の技術) 従来、シリコンウエハ等の半導体基板やガラ
ス、金属板等を精密研磨する手段としてポリツシ
ングが知られている。ポリツシングは、水平面上
で回転駆動される研磨定盤の表面に研磨布を介し
て被研磨物を搭載して摺動させ、その研磨布とシ
リコンウエハとの間に供給される研磨液によつて
研磨を行なうもので、ラツピングと同様に20〜
200℃の温度範囲で研磨が行なわれる。 ポリツシングの研磨液としては、例えば水に砥
粒を混合したものが用いられ、また研磨布として
はポリエステル不織布等が用いられる。そして、
被研磨物は研磨液によつて研磨され、研磨屑は研
磨布で除去される。 ところで、シリコンウエハの如く超精密研磨を
必要とするものでは、砥粒としてSiO2粉末を用
い、シリコンウエハと研磨液との化学反応を伴う
メカノケミカルポリツシングが行なわれる。この
ようなメカノケミカルポリツシングによるシリコ
ンウエハの研磨においては、最適な温度範囲(35
〜45℃)が存在し、研磨部には厳しい温度管理が
必要とされる。 この温度管理の一手段として研磨定盤を液冷却
構造とすることが知られている。即ち、被研磨物
搭載用のデイスクと、このデイスクの裏面に一体
回転可能に取付けられた液冷却用のジヤケツトと
によつて研磨定盤を構成する。そして、研磨熱
(主に摩擦熱)による必要以上の温度上昇を液冷
却によつて抑制するものである。 この液冷却の効果を高めるために、従来ではデ
イスクを熱伝導性の良い黄銅等によつて構成し、
ジヤケツトを比較的熱膨張の少ないねずみ鋳鉄に
よつて構成している。 (発明が解決しようとする問題点) ところが、黄銅製のデイスクとねずみ鋳鉄製の
ジヤケツトとを接合してなる従来の研磨定盤で
は、研磨時の熱膨張の差によつてデイクスが大き
く膨張し、デイスク表面が凸状となる変形を生
じ、その結果、シリコンウエハ等の被研磨物の平
坦度も一定以上に高めることができないという問
題があつた。 本発明はこのような事情に鑑みてなされたもの
で、デイスクの凸状変形を抑制して被加工物の平
坦度を高めることができる研磨定盤を提供するこ
とを目的とする。 〔発明の構成〕 (問題点を解決するための手段および作用) 発明者においては、デイスクおよび被研磨物の
平坦度(上面凸変形高さ)について、デイスクお
よびジヤケツトの構成材料の面から検討を行つ
た。この結果、従来デイスクとして多用されてい
る黄銅の熱膨張係数は約20×10-6/℃、ジヤケツ
トとして多用されているねずみ鋳鉄の熱膨張係数
は約11.5×10-6/℃であり、20〜200℃の温度範
囲のポリツシングを行つた場合、外径900mmの研
磨定盤で平坦度が数百μm程度、また外径100mm
の被研磨物で平坦度が数μmがそれぞれ限界であ
ることが発明者によつて判明した。 近年の、電子部品の小形化傾向に沿うシリコン
ウエハ等としては、平坦度が1μm以下という高
平坦度のものが要求され、上記の従来構造ではそ
の要求に対応することができない。 但し、従来ではデイスク材料として、あくまで
放熱性が重視されており、熱伝導率が黄銅程度で
なければ採用されない傾向がある。そして、その
範囲での平坦度の向上対策がなされているのが実
状である。例えば、研磨時の温度上昇時にデイス
クが高平坦度となるよう、常温で凹形状とする等
の対策である。しかし、このような手段では、平
坦度のばらつきが大きく、確実性に欠ける等の問
題があつた。 そこで、発明者においては、直接的な熱変形防
止対策である低熱膨張材でデイスクを構成するこ
とを考えた。ところが、研磨定盤ではデイスクの
裏面全体がジヤケツトに接合されるものであるた
め、両者の熱膨張係数の関係によつて、必ずしも
平坦度が向上できないものであることが、発明者
によつて分つた。つまり、単純に低熱膨張材でデ
イスクを構成しても、そのデイスクの平坦度が向
上できないことが分かつた。 そこで、さらに検討を行つたところ、デイクス
とジヤケツトとの研磨時における温度上昇は、そ
れぞれ異なり、またこれらの構成材料の熱膨張係
数も異なるので、単に低熱膨張材を採用するだけ
では、平坦度を向上させることは極めて困難であ
ることが判明した。しかも、材料の熱膨張係数
は、温度によつて変化するから、デイスクとジヤ
ケツトとの熱変形の状態は一層複雑となることも
分かつた。 但し、ポリツシングおよびラツピング等の研磨
時の温度は、20〜200℃の範囲であり、この温度
範囲では、金属の熱膨張係数の温度上昇に対する
変化の度合が比較的小さい。したがつて、この温
度範囲内であれば、異材料製のデイスクとジヤケ
ツトとが異なる温度上昇をしても、これらの熱変
形を比較的正確に把握できる可能性がある。よつ
て、発明者においては、温度範囲および基準とな
る熱膨張係数を設定すれば、デイスクおよびジヤ
ケツトの結合からなる研磨定盤でも平坦度を向上
できるとの着想を得た。 本発明は、かかる着想のもとになされたもので
あり、被研磨物を搭載して回転するデイクスと、
このデイスクの裏面に一体回転可能に取付けられ
た液冷却用のジヤケツトとを有する研磨定盤にお
いて、前記デイスクを20〜200℃の平均熱膨張係
数が5×10-6/℃以下の低熱膨張材によつて構成
し、そのデイスクの平均熱膨張係数をα1、研磨時
における温度上昇をT1℃、ジヤケツトの同温度
上昇をT2℃としたとき、ジヤケツト構成材料の
熱膨張係数α2を α2≒T1/T2α1 に設定したことを特徴とする このような本発明によれば、研磨定盤のうち、
得に凸状変形を生じるデイスクを、上記の温度範
囲内での平均熱膨張係数が5×10-6/℃以下の低
熱膨張材で構成したことにより、同部分の変形を
大幅に抑制することができ、そのデイスクの平坦
度の高度維持が図れる。 しかも、デイスクとジヤケツトとの熱膨張係数
α1,α2および温度上昇T1,T2を要素として、上
記式で示したように、研磨時の熱膨張量が、デイ
スクとジヤケツトとで略一致する値となるよう設
定したので、デイスクの平坦度、ひいては被加工
物の平坦度が向上できるようになる。 なお、デイスク材料としての低熱膨張材には、
例えばSi−Ni−Co系鋳鉄(SiO.5〜1.0%、Ni35
%、Co2%)等が適用できる。 また、ジヤケツト材料としては、FC20や
FCD40その他の一般鋳鉄、あるいはSC46等の鋳
鋼等を適用することができる。 (実施例) 以下、本発明の一実施例を第1図〜第4図を参
照して説明する。 第1図はこの実施例を研磨定盤の縦断面形状、
第2図は平面形状をそれぞれ示している。 第1図および第2図に示すように、この実施例
の研磨定盤は被研磨物搭載用のデイスク1の裏面
に略同径の水冷用ジヤケツト2を複数の連結ボル
ト3によつて連結した構成となつている。ジヤケ
ツト2の内部には水冷孔4が形成されている。こ
のジヤケツト2の中央部に回転軸5がボルト6に
よつて連結されている。 デイスク1の肉厚は一定で、その裏面に広範囲
に亘つて水冷孔4が面している。 このものにおいて、デイスク1の構成材料は
0.6Si−36Ni−2Co鋳鉄としている。この鋳鉄の
20〜200℃の平均熱膨張係数α1は2.5×10-6/℃、
ヤング率は12×103Kgf/mm2である。 また、ジヤケツト2の構成材料はFCD45とし
ている。このFCD45の熱膨張係数α2は12.0×
10-6/℃、ヤング率は18.5×103Kgf/mm2である。
第3図は上記の研磨定盤を用いたポリツシング作
用を示す側断面図、第4図のその平面図である。 研磨時には、第3図および第4図に示すよう
に、回転軸5を介して研磨定盤を水平面上で高速
回転させる。この研磨定盤のデイスク1の表面に
例えばポリイエステル不織布等から成る研磨布7
を添装する。そして、デイスク1の上面に複数、
平行に配置されたトツププレート9に、被加工
物、例えばシリコンウエハ8をそれぞれ接着剤に
て保持する。トツププレート9は回転軸10を介
して回転駆動され、これによりシリコンウエハ8
は研磨布7上で摺動回転する。そして、研磨布7
の上面に研磨液供給パイプ11を介して研磨液1
2を供給する。研磨液12は例えば水にSiO2
末を混合したものであり、これによりシリコンウ
エハ8はメカノケミカルポリツシング作用で研磨
される。なお、研磨定盤のデイスク1はジヤケツ
ト2の水冷孔4に供給される冷却水によつて常時
冷却される。 しかして、研磨時の昇温等を調べたところ、研
磨前に15℃であつた研磨定盤は、研磨時には研磨
熱によつて昇温し、デイスク1は45℃、ジヤケツ
ト2は21℃となつた。即ち、デイスク1は30℃昇
温し、ジヤケツト2は6℃昇温した。この温度状
態で外径900mmのデイスク1の平坦度(上面凸変
形高さ)を調べたところ、20μmあり、これは研
磨前と変らない。 このようにデイスク1の平坦度が高く維持でき
るのは、30℃昇温によるデイスク1の熱膨張の度
合(30×2.5×10-6)と6℃の昇温によるジヤケ
ツト2の熱膨張の度合(6×12.0×10-6)とがほ
ぼ等しい値となるためである。 また、上記デイスク1上で研磨したφ100mmウ
エハの平坦度を調べたところ、1〜0.5μmと極め
て高い値が得られた。 以上の実施例の効果と比較するために、従来の
研磨定盤の平坦度等について調べたところ、以下
の結果が得られた。 即ち、デイスク1の構成材料を黄銅とした。黄
銅の20〜200℃における平均熱膨張係数は2×
10-6/℃、ヤング率は9.8×103Kgf/mm2である。
また、ジヤケツト2の構成材料はFC30とした。
FC30の熱膨張係数は11.5×10-6/℃、ヤング率は
13×103Kgf/mm2である。 このような研磨定盤の研磨時における昇温状態
を調べたところ、使用前に15℃であつたものがデ
イスク1で45℃、ジヤケツト2で21℃であり、こ
れは上記実施例と同一である。ところが、この従
来例の場合は、使用前に20μmであつたデイスク
1の平坦度が、使用後は550μmとなり、平坦度
が大きく低下した。また、φ100mmウエハの平坦
度についても7μmと低い値となつた。 以上の比較で明らかなように、上記実施例の研
磨定盤によればデイスクの平坦度が従来のものに
比べて数10倍高くなり、ウエハの平坦度も極めて
高いものとすることが可能となつた。 なお、上記実施例ではデイスク1の構成材料を
0.6Si−36Ni−2Co鋳鉄としたが、本発明はこれ
に限らず、20〜200℃の平均熱膨張係数が5×
10-6/℃以下の低熱膨張材であれば、ASTM
A571−57TypeD−5やニレジストD5で知られる
オーステナイト球状黒鉛鋳鉄等種々の材料を適用
することができる。 下記第1表の1〜4に、これらの成分および熱
膨張係数を示す。 また、ジヤケツト2についてもFCD45を用い
たが、これに限らず、デイスク1とジヤケツト2
との温度差に基づく熱膨張がデイスク1と同等と
なり得る材料、例えばJIS FC20やFCD40材等の
一般鋳鉄あるいはSC46等の鋳鋼等を適用するこ
とができる。 下記第1表の5〜12に、これらの成分および熱
膨張係数を示す。 さらに、下記の第2表にデイスクとジヤケツト
とを各材料で組合わせた場合の平坦度を示す。
[Object of the Invention] (Industrial Application Field) The present invention relates to a polishing surface plate applied to polishing, lapping, etc., and particularly relates to a polishing surface plate that improves the flatness of a polished surface. (Prior Art) Polishing is conventionally known as a means for precisely polishing semiconductor substrates such as silicon wafers, glass, metal plates, and the like. In polishing, the object to be polished is mounted on the surface of a polishing surface plate that is driven to rotate on a horizontal plane through a polishing cloth, and the polishing liquid is supplied between the polishing cloth and the silicon wafer. It performs polishing, and the polishing process is similar to wrapping.
Polishing is carried out in a temperature range of 200°C. As the polishing liquid, for example, water mixed with abrasive grains is used, and as the polishing cloth, polyester nonwoven fabric or the like is used. and,
The object to be polished is polished with a polishing liquid, and polishing debris is removed with a polishing cloth. By the way, for items that require ultra-precision polishing such as silicon wafers, mechanochemical polishing is performed using SiO 2 powder as abrasive grains and involving a chemical reaction between the silicon wafer and a polishing liquid. When polishing silicon wafers using such mechanochemical polishing, the optimum temperature range (35
~45℃), and strict temperature control is required in the polishing section. As a means of temperature control, it is known that the polishing surface plate has a liquid cooling structure. That is, a polishing surface plate is constituted by a disk for mounting an object to be polished, and a liquid cooling jacket rotatably attached to the back surface of the disk. Further, the liquid cooling suppresses an excessive temperature rise due to polishing heat (mainly frictional heat). In order to enhance the effect of this liquid cooling, conventionally the disk was made of brass etc. with good thermal conductivity.
The jacket is made of gray cast iron, which has relatively low thermal expansion. (Problem to be Solved by the Invention) However, in the conventional polishing surface plate made by joining a brass disk and a gray cast iron jacket, the disk expands greatly due to the difference in thermal expansion during polishing. However, there was a problem in that the disk surface was deformed into a convex shape, and as a result, the flatness of the object to be polished, such as a silicon wafer, could not be increased beyond a certain level. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polishing surface plate that can suppress convex deformation of a disk and improve the flatness of a workpiece. [Structure of the Invention] (Means and Effects for Solving Problems) The inventor has studied the flatness (height of convex deformation of the upper surface) of the disk and the object to be polished from the viewpoint of the constituent materials of the disk and jacket. I went. As a result, the coefficient of thermal expansion of brass, which is commonly used for discs, is approximately 20×10 -6 /℃, and the coefficient of thermal expansion of gray cast iron, which is often used for jackets, is approximately 11.5×10 -6 /℃, which is 20 When polishing is performed at a temperature range of ~200℃, the flatness is approximately several hundred μm with a polishing surface plate with an outer diameter of 900 mm, and the flatness is approximately several hundred μm with an outer diameter of 100 mm.
The inventors have found that the flatness of several micrometers is the limit for each object to be polished. In line with the recent trend toward miniaturization of electronic components, silicon wafers and the like are required to have a high flatness of 1 μm or less, and the conventional structure described above cannot meet this requirement. However, in the past, heat dissipation was emphasized as a disk material, and there was a tendency for materials to be used only if their thermal conductivity was comparable to that of brass. The reality is that measures are being taken to improve flatness within this range. For example, countermeasures include making the disk concave at room temperature so that the disk has a high degree of flatness when the temperature rises during polishing. However, such means have problems such as large variations in flatness and lack of reliability. Therefore, the inventor considered constructing the disk with a low thermal expansion material as a direct measure to prevent thermal deformation. However, in a polishing surface plate, the entire back surface of the disk is bonded to the jacket, and the inventors have discovered that the flatness cannot necessarily be improved due to the relationship between the coefficients of thermal expansion of the two. Ivy. In other words, it has been found that simply constructing a disk from a low thermal expansion material does not improve the flatness of the disk. After further investigation, we found that the temperature rise during polishing of the Dix and the jacket is different, and the coefficients of thermal expansion of their constituent materials are also different. It turned out to be extremely difficult to improve. Furthermore, it has been found that since the coefficient of thermal expansion of the material changes depending on the temperature, the state of thermal deformation between the disk and the jacket becomes even more complicated. However, the temperature during polishing, lapping, etc. is in the range of 20 to 200°C, and within this temperature range, the degree of change in the thermal expansion coefficient of the metal with respect to temperature rise is relatively small. Therefore, within this temperature range, even if the disk and jacket made of different materials experience different temperature increases, it is possible to relatively accurately determine their thermal deformation. Therefore, the inventor came up with the idea that by setting a temperature range and a reference thermal expansion coefficient, it is possible to improve the flatness of a polishing surface plate made of a disk and a jacket combined. The present invention was made based on such an idea, and includes a rotating disk carrying an object to be polished;
In this polishing surface plate having a liquid cooling jacket rotatably attached to the back surface of the disk, the disk is made of a low thermal expansion material with an average coefficient of thermal expansion of 5×10 -6 /℃ or less between 20 and 200℃. If the average coefficient of thermal expansion of the disk is α 1 , the temperature rise during polishing is T 1 °C, and the temperature rise of the jacket is T 2 °C, then the coefficient of thermal expansion of the jacket constituent material α 2 is According to the present invention, the polishing surface plate is characterized in that α 2 ≒T 1 /T 2 α 1 is set.
By constructing the disk, which particularly causes convex deformation, from a low thermal expansion material with an average coefficient of thermal expansion of 5×10 -6 /°C or less within the above temperature range, deformation of the same portion can be significantly suppressed. The flatness of the disk can be maintained at a high level. Moreover, the amount of thermal expansion during polishing is approximately the same between the disk and the jacket, as shown in the above equation, using the coefficients of thermal expansion α 1 , α 2 and temperature increases T 1 , T 2 between the disk and the jacket as elements. The flatness of the disk and, by extension, the flatness of the workpiece can be improved. In addition, low thermal expansion materials used as disk materials include:
For example, Si-Ni-Co cast iron (SiO.5~1.0%, Ni35
%, Co2%) etc. can be applied. In addition, FC20 and other jacket materials are also available.
General cast iron such as FCD40 or cast steel such as SC46 can be used. (Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4. Figure 1 shows the vertical cross-sectional shape of the polishing surface plate in this embodiment.
FIG. 2 shows the planar shapes. As shown in FIGS. 1 and 2, the polishing surface plate of this embodiment has a water cooling jacket 2 of approximately the same diameter connected to the back surface of a disk 1 for mounting an object to be polished by a plurality of connecting bolts 3. It is structured as follows. Water cooling holes 4 are formed inside the jacket 2. A rotating shaft 5 is connected to the center of the jacket 2 by a bolt 6. The wall thickness of the disk 1 is constant, and water cooling holes 4 face over a wide range on the back surface thereof. In this one, the constituent material of disk 1 is
It is made of 0.6Si−36Ni−2Co cast iron. This cast iron
The average coefficient of thermal expansion α 1 from 20 to 200℃ is 2.5×10 -6 /℃,
Young's modulus is 12×10 3 Kgf/mm 2 . The material of the jacket 2 is FCD45. The thermal expansion coefficient α 2 of this FCD45 is 12.0×
10 -6 /°C, Young's modulus is 18.5×10 3 Kgf/mm 2 .
FIG. 3 is a side sectional view showing the polishing action using the above polishing surface plate, and FIG. 4 is a plan view thereof. During polishing, as shown in FIGS. 3 and 4, the polishing surface plate is rotated at high speed on a horizontal plane via the rotating shaft 5. As shown in FIGS. A polishing cloth 7 made of, for example, polyester non-woven fabric is applied to the surface of the disk 1 of this polishing surface plate.
Attach. Then, on the top surface of disk 1, there are several
Workpieces, such as silicon wafers 8, are each held by adhesive on top plates 9 arranged in parallel. The top plate 9 is rotationally driven via a rotating shaft 10, and thereby the silicon wafer 8
slides and rotates on the polishing cloth 7. And polishing cloth 7
The polishing liquid 1 is supplied to the top surface of the polishing liquid through the polishing liquid supply pipe 11.
Supply 2. The polishing liquid 12 is, for example, a mixture of water and SiO 2 powder, and the silicon wafer 8 is thereby polished by a mechanochemical polishing action. Incidentally, the disk 1 of the polishing surface plate is constantly cooled by cooling water supplied to the water cooling hole 4 of the jacket 2. When we investigated the temperature rise during polishing, we found that the polishing surface plate, which was at 15℃ before polishing, rose in temperature during polishing due to polishing heat, and the temperature of disk 1 was 45℃ and jacket 2 was 21℃. Summer. That is, the temperature of disk 1 increased by 30°C, and the temperature of jacket 2 increased by 6°C. When the flatness (height of convex deformation on the upper surface) of the disk 1 with an outer diameter of 900 mm was examined under this temperature condition, it was found to be 20 μm, which is the same as before polishing. The reason why the flatness of disk 1 can be maintained at such a high level is due to the degree of thermal expansion of disk 1 (30×2.5×10 -6 ) due to a temperature rise of 30°C and the degree of thermal expansion of jacket 2 due to a temperature rise of 6°C. This is because (6×12.0×10 −6 ) is approximately the same value. Further, when the flatness of a φ100 mm wafer polished on the disk 1 was examined, extremely high values of 1 to 0.5 μm were obtained. In order to compare the effects of the above embodiments, we investigated the flatness, etc. of a conventional polishing surface plate, and the following results were obtained. That is, the constituent material of the disk 1 was brass. The average coefficient of thermal expansion of brass at 20 to 200℃ is 2×
10 −6 /°C, Young's modulus is 9.8×10 3 Kgf/mm 2 .
Furthermore, the constituent material of the jacket 2 was FC30.
The thermal expansion coefficient of FC30 is 11.5×10 -6 /℃, Young's modulus is
It is 13×10 3 Kgf/mm 2 . When we investigated the temperature rise during polishing on such a polishing surface plate, it was 15℃ before use, but it was 45℃ for disk 1 and 21℃ for jacket 2, which is the same as in the above example. be. However, in the case of this conventional example, the flatness of the disk 1, which was 20 .mu.m before use, became 550 .mu.m after use, resulting in a significant decrease in flatness. Furthermore, the flatness of the φ100mm wafer was as low as 7μm. As is clear from the above comparison, according to the polishing surface plate of the above embodiment, the flatness of the disk is several ten times higher than that of the conventional polishing plate, and it is possible to obtain extremely high flatness of the wafer. Summer. In addition, in the above embodiment, the constituent material of the disk 1 is
Although the 0.6Si-36Ni-2Co cast iron is used, the present invention is not limited to this.
ASTM
Various materials can be used, such as austenitic spheroidal graphite cast iron known as A571-57 Type D-5 and Niresist D5. These components and thermal expansion coefficients are shown in Tables 1 to 4 in Table 1 below. In addition, although FCD45 was used for jacket 2, it is not limited to this.
It is possible to use a material whose thermal expansion based on the temperature difference between the disc 1 and the disc 1 can be the same as that of the disc 1, such as general cast iron such as JIS FC20 or FCD40 material, or cast steel such as SC46. These components and thermal expansion coefficients are shown in Tables 5 to 12 in Table 1 below. Furthermore, Table 2 below shows the flatness of the disk and jacket made of various materials.

【表】【table】

【表】 次に本発明の他の実施例を第5図〜第7図によ
つて説明する。 第5図は研磨定盤の平面構成を示し、第6図お
よび第7図は要部の拡大断面形状を示す。 この実施例ではデイスク1をジヤケツト2に対
し、径方向の伸びを許容する連結機構13によつ
て接合している。連結機構13はデイスク1の接
合面に形成した蟻溝14と、ジヤケツト2の接合
面に突設した係合用の突子15とから成る。突子
15はジヤケツト2にボルト16によつて締め付
けたものである。これらの蟻溝14と突子16と
は研磨定盤の周方向に間隔的に複数配置してあ
る。また、各蟻溝14は研磨定盤の径方向に沿つ
て形成され、突子15に対してそれぞれ径方向で
間隔Cを設けてある。 その他の構成については、上記実施例とほぼ同
様であるから、その説明を省略する。 このような第5図〜第6図に示した実施例の研
磨定盤によると、デイスク1が研磨時の熱膨張に
よつて各径方向に伸びを生じたとしても、連結機
構13によつてデイスク1とジヤケツト2との径
方向の相対位置ずれが許容される。したがつて、
デイスク1の平坦度は使用時においても高度に維
持できるようになる。特にデイスク1およびジヤ
ケツト2を熱膨張係数の小さい材料によつて構成
すれば、平坦度高度維持の効果は顕著なものとな
る。 下記の第3表はデイスク1およびジヤケツト2
を低膨張鋳鉄によつて構成した外径900mmの定盤
の実施例について、その成分組成を従来例との比
較において示したものである。
[Table] Next, other embodiments of the present invention will be described with reference to FIGS. 5 to 7. FIG. 5 shows the planar configuration of the polishing surface plate, and FIGS. 6 and 7 show enlarged cross-sectional shapes of the main parts. In this embodiment, the disk 1 is joined to the jacket 2 by a connecting mechanism 13 that allows expansion in the radial direction. The coupling mechanism 13 consists of a dovetail groove 14 formed on the joint surface of the disk 1 and an engaging protrusion 15 protruding from the joint surface of the jacket 2. The protrusion 15 is fastened to the jacket 2 with a bolt 16. A plurality of these dovetail grooves 14 and protrusions 16 are arranged at intervals in the circumferential direction of the polishing surface plate. Further, each dovetail groove 14 is formed along the radial direction of the polishing surface plate, and is provided with an interval C in the radial direction with respect to the protrusion 15, respectively. The other configurations are almost the same as those of the above embodiment, so the explanation thereof will be omitted. According to the polishing surface plate of the embodiment shown in FIGS. 5 and 6, even if the disk 1 expands in each radial direction due to thermal expansion during polishing, the connection mechanism 13 Relative positional deviation in the radial direction between the disk 1 and the jacket 2 is allowed. Therefore,
The flatness of the disk 1 can be maintained at a high level even during use. In particular, if the disk 1 and the jacket 2 are made of a material with a small coefficient of thermal expansion, the effect of maintaining the flatness and altitude will be remarkable. Table 3 below shows disk 1 and jacket 2.
The composition of an example of a surface plate with an outer diameter of 900 mm made of low expansion cast iron is shown in comparison with a conventional example.

【表】 また、下記の第4表は、第3表に示した組成材
料を用いたデイスク1およびジヤケツト2につい
て、第5図〜第7図に示した熱変形吸収可能な連
結機構13で接合した場合の研磨使用時における
デイスク1の平坦度の変化状況を、ボルトで連結
した構成の従来例との比較において示したもので
ある。
[Table] Table 4 below also shows the connection mechanism 13 that can absorb thermal deformation shown in FIGS. 5 to 7 for the disk 1 and jacket 2 made of the composition materials shown in Table 3. The changes in the flatness of the disk 1 during polishing in this case are shown in comparison with a conventional example in which the disks are connected by bolts.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、研磨定盤のう
ち、特に凸状変形を生じるデイスクを、上記の温
度範囲内での平均熱膨張係数が5×10-6/℃以下
の低熱膨張材で構成したことにより、同部分の変
形を大幅に抑制することができ、そのデイスクの
平坦度の高度維持が図れる。 しかも、デイスクとジヤケツトとの熱膨張係数
および温度上昇を要素として、研磨時の熱膨張量
が、デイスクとジヤケツトとで略一致する値とな
るように設定したので、デイスクの平坦度、ひい
ては被加工物の平坦度が向上できるようになり、
ポリツシング、ラツピング等における精密研磨を
行なう上で大きい効果を奏するものとなる。
As described above, according to the present invention, the disk that particularly causes convex deformation among the polishing surface plates is made of a low thermal expansion material having an average coefficient of thermal expansion of 5×10 -6 /℃ or less within the above temperature range. With this configuration, deformation of the same portion can be significantly suppressed, and the high degree of flatness of the disk can be maintained. Moreover, the amount of thermal expansion during polishing was set to be approximately the same value for the disk and jacket, taking into account the coefficient of thermal expansion and temperature rise between the disk and jacket, so the flatness of the disk and, by extension, the workpiece The flatness of objects can be improved,
This is highly effective in performing precision polishing in polishing, lapping, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第
2図は一部を省略して示す図、第3図は使用状態
を示す縦断面図、第4図は平面図、第5図は本発
明の他の実施例を示す一部省略した平面図、第6
図は要部を拡大して示す断面図、第7図は第6図
の−線断面図である。 1……デイスク、2……ジヤケツト、4……水
冷孔、5……回転軸、7……研磨布、8……被研
磨物(シリコンウエハ)、12……研磨液供給パ
イプ、12……研磨液、13……連結機構、14
……蟻溝、15……突子。
Fig. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, Fig. 2 is a partially omitted view, Fig. 3 is a longitudinal cross-sectional view showing the state of use, Fig. 4 is a plan view, and Fig. 5 is a longitudinal cross-sectional view showing an embodiment of the present invention. The figure is a partially omitted plan view showing another embodiment of the present invention.
The figure is a sectional view showing an enlarged main part, and FIG. 7 is a sectional view taken along the line -- in FIG. 6. DESCRIPTION OF SYMBOLS 1... Disk, 2... Jacket, 4... Water cooling hole, 5... Rotating shaft, 7... Polishing cloth, 8... Object to be polished (silicon wafer), 12... Polishing liquid supply pipe, 12... Polishing liquid, 13... Connection mechanism, 14
...Dovetail groove, 15...button.

Claims (1)

【特許請求の範囲】 1 被研磨物を搭載して回転するデイスクと、こ
のデイスクの裏面に一体回転可能に取付けられた
液冷却用のジヤケツトとを有する研磨定盤におい
て、前記デイスクを20〜200℃の平均熱膨張係数
が5×10-6/℃以下の低熱膨張材によつて構成
し、そのデイスクの平均熱膨張係数をα1、研磨時
における温度上昇をT1℃、ジヤケツトの同温度
上昇をT2℃としたとき、ジヤケツト構成材料の
熱膨張係数α2を α2≒T1/T2α1 に設定したことを特徴とする研磨定盤。 2 デイスクはジヤケツトに対し、径方向の伸び
を許容する連結機構で接合されている特許請求の
範囲第1項記載の研磨定盤。 3 連結機構はデイスクまたはジヤケツトの一方
の接合面に形成した蟻溝と、他方の接合面に突設
された前記蟻溝に係合する突子とからなり、これ
ら蟻溝と突子とは周方向に間隔的に複数配置さ
れ、かつ各蟻溝はそれぞれ径方向に沿つて形成さ
れている特許請求の範囲第2項記載の研磨定盤。
[Scope of Claims] 1. A polishing surface plate having a rotating disk carrying a workpiece to be polished and a liquid cooling jacket attached to the back surface of the disk so as to be integrally rotatable, with the disk being rotated between 20 and 200 times. It is made of a low thermal expansion material with an average coefficient of thermal expansion of 5×10 -6 /℃ or less, and the average coefficient of thermal expansion of the disk is α 1 , the temperature rise during polishing is T 1 ℃, and the same temperature of the jacket A polishing surface plate characterized in that the thermal expansion coefficient α 2 of the jacket constituent material is set to α 2 ≒T 1 /T 2 α 1 when the rise is T 2 °C. 2. The polishing surface plate according to claim 1, wherein the disk is joined to the jacket by a connecting mechanism that allows expansion in the radial direction. 3. The coupling mechanism consists of a dovetail groove formed on one joint surface of the disk or jacket, and a protrusion protruding from the other joint surface that engages with the dovetail groove, and these dovetail grooves and protrusion 3. The polishing surface plate according to claim 2, wherein a plurality of dovetail grooves are arranged at intervals in the direction, and each dovetail groove is formed along the radial direction.
JP62315214A 1987-12-15 1987-12-15 Polishing surface plate Granted JPH01159171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315214A JPH01159171A (en) 1987-12-15 1987-12-15 Polishing surface plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315214A JPH01159171A (en) 1987-12-15 1987-12-15 Polishing surface plate

Publications (2)

Publication Number Publication Date
JPH01159171A JPH01159171A (en) 1989-06-22
JPH0413093B2 true JPH0413093B2 (en) 1992-03-06

Family

ID=18062772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315214A Granted JPH01159171A (en) 1987-12-15 1987-12-15 Polishing surface plate

Country Status (1)

Country Link
JP (1) JPH01159171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029039A1 (en) * 1994-04-22 1995-11-02 Kabushiki Kaisha Toshiba Separation type grinding surface plate and grinding apparatus using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110305A (en) * 1992-12-15 2000-08-29 Kabushiki Kaisha Toshiba Method for production of high-strength low-expansion cast iron
JP4641781B2 (en) * 2003-11-04 2011-03-02 三星電子株式会社 Chemical mechanical polishing apparatus and method using polishing surface having non-uniform strength
WO2008114520A1 (en) * 2007-03-19 2008-09-25 Jsr Corporation Chemical mechanical polishing pad and chemical mechanical polishing method
JP6893023B2 (en) * 2017-06-08 2021-06-23 スピードファム株式会社 Polishing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720436A (en) * 1980-03-27 1982-02-02 Monsanto Co Method and device for improving flatness of polished wafer
JPS58137555A (en) * 1982-02-09 1983-08-16 Kyocera Corp Polishing board and polishing method using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151655U (en) * 1983-03-26 1984-10-11 東陶機器株式会社 Wrapping surface plate
JPS61175354U (en) * 1985-04-23 1986-10-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720436A (en) * 1980-03-27 1982-02-02 Monsanto Co Method and device for improving flatness of polished wafer
JPS58137555A (en) * 1982-02-09 1983-08-16 Kyocera Corp Polishing board and polishing method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029039A1 (en) * 1994-04-22 1995-11-02 Kabushiki Kaisha Toshiba Separation type grinding surface plate and grinding apparatus using same

Also Published As

Publication number Publication date
JPH01159171A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
CN1312740C (en) Grinding work holding disk, work grinding device and grinding method
JPH0758066A (en) Wafer abrasion
JPH0413093B2 (en)
KR100511882B1 (en) Polishing device
CN110744440A (en) Double-side grinding device and method
JP2007266068A (en) Polishing method and device
US6485359B1 (en) Platen arrangement for a chemical-mechanical planarization apparatus
JPH078135Y2 (en) Rotary grinding wheel
JP3954190B2 (en) Lapping surface plate and lapping apparatus using the same
EP0960693A2 (en) A polishing machine
JPS60259372A (en) Both face polishing
JPH09309064A (en) Grinding device and grinding method
JPH03142162A (en) Polishing device
JPS60228070A (en) Both sides polishing machine
JPH06198560A (en) Heat resisting glass level block
KR100407396B1 (en) Grinding wheel for use in a hand grind
JP2000061822A (en) Polishing surface plate
JP2001260037A (en) Disk-like grinding wheel
JPS6131810Y2 (en)
JPH0611960U (en) Lap surface plate
JPH01271169A (en) Manufacture of compound floating magnetic head
JP2000176804A (en) Mirror face polishing method and polishing tool
JP2895503B2 (en) Manufacturing method of superabrasive wheel
JPH0829492B2 (en) Wafer polishing carrier plate manufacturing method
JP2632935B2 (en) Lap surface plate

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 16

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 16