JPH0413035B2 - - Google Patents

Info

Publication number
JPH0413035B2
JPH0413035B2 JP58057532A JP5753283A JPH0413035B2 JP H0413035 B2 JPH0413035 B2 JP H0413035B2 JP 58057532 A JP58057532 A JP 58057532A JP 5753283 A JP5753283 A JP 5753283A JP H0413035 B2 JPH0413035 B2 JP H0413035B2
Authority
JP
Japan
Prior art keywords
fluorine
treatment agent
wastewater
group
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58057532A
Other languages
Japanese (ja)
Other versions
JPS59183886A (en
Inventor
Taneaki Okuda
Noriko Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58057532A priority Critical patent/JPS59183886A/en
Publication of JPS59183886A publication Critical patent/JPS59183886A/en
Publication of JPH0413035B2 publication Critical patent/JPH0413035B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、廃水中のフツ素を除去するためのフ
ツ素処理剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluorine treatment agent for removing fluorine from wastewater.

一般に、フツ素処理を行う場合、廃水が濃厚液
のときは、カルシウム塩を添加して不溶性沈殿と
して除去し、また稀薄液のときは活性アルミナや
フツ素吸着樹脂、陰イオン交換樹脂などの樹脂を
用いて除去する。
Generally, when performing fluorine treatment, if the wastewater is a concentrated liquid, calcium salts are added to remove it as an insoluble precipitate, and if the wastewater is a dilute liquid, activated alumina, fluorine adsorption resin, anion exchange resin, etc. Remove using.

これらの方法で除去できるフツ素は、廃水中で
主にフツ素イオンの形として存在しており、フツ
素が他の金属と錯体を作つた状態でイオン化して
いる場合、上記の方法では、フツ素は完全には除
去されないで残存する。
Fluorine that can be removed by these methods mainly exists in the form of fluorine ions in wastewater, and if fluorine is ionized in a complex with other metals, the above methods will Fluorine remains without being completely removed.

実際、フツ化水素酸、ホウフツ化水素酸、フツ
化アンモニウムなどを使つている金属工業、化学
工業、電子工業などの工場から排出される廃水に
は、フツ素と錯体を形成しやすいケイ素、鉄、ア
ルミニウム、ホウ素などのイオンが多く共存し、
錯体を作つている。廃水中でイオンになつている
フツ素錯体を処理するには、イオン交換樹脂でイ
オン交換を行つたり、錯体を分解や沈殿物にした
り、活性アルミナやフツ素吸着樹脂に吸着させた
りしている。これらのうちでは、処理能力の面で
特にフツ素吸着樹脂が注目されているが、フツ素
イオン専用の樹脂はBF- 4、AlF- 6などの錯体には
使用できず、逆に錯体イオン専用のものは、フツ
素イオンには使用できなかつたり、樹脂再生時に
フツ素と選択的に反応するイオンを樹脂に吸着し
なおさなければならないので処理や再生に手間や
時間がかかつたり、また再生条件が悪いと良い結
果も得られなかつたりする。
In fact, wastewater discharged from factories such as the metal industry, chemical industry, and electronics industry that use hydrofluoric acid, hydroborofluoric acid, and ammonium fluoride contains silicon and iron, which easily form complexes with fluorine. Many ions such as , aluminum, and boron coexist,
making a complex. To treat fluorine complexes that have become ions in wastewater, you can perform ion exchange with an ion exchange resin, decompose the complexes into precipitates, or adsorb them on activated alumina or fluorine adsorption resins. There is. Among these, fluorine adsorption resins are attracting particular attention in terms of processing ability, but resins specifically designed for fluorine ions cannot be used for complexes such as BF - 4 and AlF - 6 ; on the contrary, resins exclusively designed for complex ions cannot be used. fluorine ions cannot be used, or ions that selectively react with fluorine must be adsorbed back into the resin during resin regeneration, which takes time and effort to process and regenerate. If the conditions are bad, you may not get good results.

一方、半導体などの電子工業では、ICやLSIチ
ツプなど今後ますます生産が増大されるに伴つて
フツ化物の使用量は増し、フツ素錯体処理量が増
大する反面、フツ素は人体に有害であるため、フ
ツ素の現在の全国一律排水基準よりもさらに厳し
い8ppm以下の処理が強く望まれる場合も多くあ
る。
On the other hand, in the electronics industry such as semiconductors, as the production of IC and LSI chips increases, the amount of fluoride used will increase, and the amount of fluorine complexes processed will increase, but on the other hand, fluorine is harmful to the human body. Therefore, in many cases, treatment to reduce fluorine to 8ppm or less, which is even stricter than the current nationwide uniform wastewater standards, is strongly desired.

このように厳しい状況にあるにもかかわらず、
充分満足のいくフツ素の除去方法や処理剤は未だ
見出されておらず、廃水中のフツ素を8ppm以下
にすることはまだ実現できていないという欠点が
あつた。
Despite being in such a difficult situation,
The drawback is that no fully satisfactory fluorine removal method or treatment agent has yet been found, and it has not yet been possible to reduce the fluorine content in wastewater to 8 ppm or less.

本発明は上記欠点を除去し、廃水中でイオンに
なつているフツ素錯体を捕捉しフツ素濃度を
8ppm以下にすることのできる新しいフツ素処理
剤を提供するものである。
The present invention eliminates the above drawbacks, captures fluorine complexes that have become ions in wastewater, and reduces the fluorine concentration.
The purpose is to provide a new fluorine treatment agent that can reduce the concentration to 8 ppm or less.

本発明によれば、化学式 (ここでR1、R2は両方ともCH3基かC2H5基で
あるかまたはR1、R2のどちらか一方がCH3基、
他方がC2H5基、XはCl、Br、OH基または加水
分解してOHとなるアルコキシ基) で表わされる単位化合物の前記ビニール基が重合
してnが2以上の重合物から成ることを特徴とす
るフツ素処理剤が得られる。
According to the invention, the chemical formula (Here, R 1 and R 2 are both CH 3 group or C 2 H 5 group, or one of R 1 and R 2 is CH 3 group,
The other is a C 2 H 5 group, and X is a Cl, Br, OH group, or an alkoxy group that becomes OH upon hydrolysis). A fluorine treatment agent is obtained.

本発明のフツ素処理剤は、ビニール基CH2
CH−が重合することによつて高分子化し、フツ
素処理に活性な基を化学結合によつて特定の形に
固定化したものであつて、次の機構でフツ素の除
去と処理剤の再生を行う。
The fluorine treatment agent of the present invention has a vinyl group CH 2 =
CH- is polymerized by polymerization, and groups active in fluorine treatment are immobilized in a specific form through chemical bonds. Perform playback.

(A) フツ素除去 (B) フツ素処理剤の再生 ここでMは一価の金属である。フツ素含有廃水
は、酸性の状態で本発明のフツ素処理剤と接触さ
せると(1)式に従つてX-とF-のイオン交換が起こ
り、当量でフツ素と反応する。このイオン交換
後、フツ素処理剤の再生には、アルカリ水溶液と
接触させることにより、(2)式に従つて容易に処理
剤に戻る。さらに塩酸溶液と接触させることによ
り、(3)式に従つてフツ素処理剤は完全に再生す
る。すなわち、このフツ素処理剤は、従来のフツ
素吸着樹脂のように、フツ素と選択的に反応する
イオンを樹脂に吸着させたものではなく、支持体
と化学結合したフツ素選択性反応基を持つている
ため、めんどうなフツ素反応性イオンの樹脂への
吸着がなく、樹脂再生を容易に行うことができ、
しかも錯体型フツ素イオン、フツ素イオンを同時
に処理することができる。つまり、フツ素濃度に
合つた適量の処理剤を酸性の状態でフツ素含有廃
水に接触させると、F-またはSiF6 2-、AlF6 3-
BF- 4などの錯体型のフツ素イオンを廃水から効率
良く除去し、さらにこのフツ素処理剤は、陰イオ
ン交換樹脂と同様にアルカリ水溶液と塩酸溶液の
通水による簡単な再生で繰返し安定に使用するこ
とができる。
(A) Fluoride removal (B) Regeneration of fluorinating agent Here M is a monovalent metal. When fluorine-containing wastewater is brought into contact with the fluorine treatment agent of the present invention in an acidic state, ion exchange between X - and F - occurs according to equation (1), and an equivalent amount reacts with fluorine. After this ion exchange, the fluorinating agent is regenerated by bringing it into contact with an alkaline aqueous solution to easily return it to a treating agent according to equation (2). Further, by contacting with a hydrochloric acid solution, the fluorinating agent is completely regenerated according to equation (3). In other words, this fluorine treatment agent is not one in which ions that selectively react with fluorine are adsorbed onto the resin like conventional fluorine adsorption resins, but instead a fluorine-selective reactive group chemically bonded to the support. Because of this, there is no troublesome adsorption of fluorine reactive ions to the resin, making it easy to regenerate the resin.
Furthermore, complex type fluorine ions and fluorine ions can be treated simultaneously. In other words, when an appropriate amount of treatment agent suitable for the fluorine concentration is brought into contact with fluorine-containing wastewater in an acidic state, F - or SiF 6 2- , AlF 6 3- ,
Complex-type fluorine ions such as BF - 4 can be efficiently removed from wastewater, and this fluoride treatment agent can be repeatedly and stably regenerated by simply passing an aqueous alkaline solution and hydrochloric acid solution in the same way as anion exchange resins. can be used.

次に、本発明のフツ素処理剤を用いて廃水中の
フツ素を除去した例について説明する。
Next, an example of removing fluorine from wastewater using the fluorine treatment agent of the present invention will be described.

〔使用例1〕 本発明のフツ素処理剤の出発物質である化学式 に架橋剤ジビニルベンゼンを加え、重合開始剤、
過酸化ベンゾイルでビニール基を重合させて生成
した粒状樹脂をカラムに充填し、Na2SiF635mg、
NaAlF623.5mg、NaBF420.5mgを溶解させて作つ
たフツ素濃度50mg/の試験用フツ素含有廃水を
PH約0に塩酸で調整し、流速SV=10m/hrで通
水した。このカラムにより処理された処理水中の
フツ素濃度をJIS−K0102−34の方法で調べたと
ころ第1図に示す結果が得られた。
[Usage Example 1] Chemical formula of the starting material of the fluorinating agent of the present invention Add the crosslinking agent divinylbenzene to the polymerization initiator,
A column was filled with granular resin produced by polymerizing vinyl groups with benzoyl peroxide, and 35 mg of Na 2 SiF 6 ,
Test fluorine-containing wastewater with a fluorine concentration of 50 mg/ml was prepared by dissolving 23.5 mg of NaAlF 6 and 20.5 mg of NaBF 4 .
The pH was adjusted to approximately 0 with hydrochloric acid, and water was passed through at a flow rate of SV = 10 m/hr. When the fluorine concentration in the treated water treated with this column was investigated using the method of JIS-K0102-34, the results shown in Figure 1 were obtained.

第1図に示すように、粒状フツ素処理剤1g当
りの通水量が、100mlまでは、フツ素濃度が40
mg/以下であり、本発明の粒状フツ素処理剤1
g当りのフツ素処理量は約10mgであつた。
As shown in Figure 1, if the water flow rate per 1g of granular fluoridation treatment agent is up to 100ml, the fluorine concentration will be 40%.
mg/or less, and the granular fluorine treatment agent 1 of the present invention
The amount of fluorine treated per gram was about 10 mg.

このカラムは、1%NaOH溶液通水、水洗、
1規定HCl通水により容易に再生できた。フツ素
処理再生を繰り返した場合、10回再生後の試験結
果と再生前の結果を比較するとほとんど同じであ
つた。この結果から粒状フツ素処理剤は、ほとん
ど特性劣化が見られず、常に安定して再生使用で
きる。
This column is used for passing 1% NaOH solution, washing with water,
It was easily regenerated by passing water through 1N HCl. When the fluorine treatment regeneration was repeated, the test results after 10 regenerations and the results before regeneration were almost the same. The results show that the granular fluorinated treatment agent exhibits almost no deterioration in properties and can always be reused stably.

〔使用例 2〕 使用例1と同じ方法で重合した粒状フツ素処理
剤5gをアルミニウム2000ppm、3価の鉄
450ppm、シリカ5ppm、フツ素50ppmを含み、PH
約0に調整した試験液100mlに入れて30分攪拌し、
No.5Cの紙で過後、液のフツ素濃度を調べ
たところフツ素濃度を0.2ppm以下にすることが
できた。
[Usage example 2] 5g of granular fluorine treatment agent polymerized in the same manner as in usage example 1 was added to 2000ppm of aluminum and trivalent iron.
Contains 450ppm, silica 5ppm, fluorine 50ppm, PH
Pour into 100ml of test solution adjusted to approximately 0 and stir for 30 minutes.
After passing through No. 5C paper, we checked the fluorine concentration of the solution and found that we were able to reduce the fluorine concentration to 0.2 ppm or less.

以上二つの使用例で示したように、本発明のフ
ツ素処理剤を用いると廃水中のフツ素を1ppm未
満に低減することができ、本発明のフツ素処理剤
が極めて有効であることが示された。
As shown in the above two usage examples, the fluorine treatment agent of the present invention can reduce fluorine in wastewater to less than 1 ppm, which proves that the fluorine treatment agent of the present invention is extremely effective. Shown.

以上詳細に説明したように、本発明によれば、
廃水中のフツ素を極めて低含有量にまで除去でき
るフツ素処理剤が得られるのでその効果は大き
い。
As explained in detail above, according to the present invention,
It is highly effective because it provides a fluorine treatment agent that can remove fluorine from wastewater to an extremely low content.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフツ素処理剤1g当りの通水
量と処理水中のフツ素濃度との関係を示す特性図
である。
FIG. 1 is a characteristic diagram showing the relationship between the amount of water passed per gram of the fluorine treatment agent of the present invention and the fluorine concentration in treated water.

Claims (1)

【特許請求の範囲】 1 化学式 (ここでR1、R2は両方ともCH3基かC2H5基で
あるかまたはR1、R2のどちらか一方がCH3基、
他方がC2H5基、XはCl、Br、OH基または加水
分解してOHとなるアルコキシ基) で表わされる単位化合物の前記ビニール基が重合
してnが2以上の重合物から成ることを特徴とす
るフツ素処理剤。
[Claims] 1. Chemical formula (Here, R 1 and R 2 are both CH 3 group or C 2 H 5 group, or one of R 1 and R 2 is CH 3 group,
The other is a C 2 H 5 group, and X is a Cl, Br, OH group, or an alkoxy group that becomes OH upon hydrolysis). A fluorine treatment agent characterized by:
JP58057532A 1983-04-01 1983-04-01 Fluorine treating agent Granted JPS59183886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057532A JPS59183886A (en) 1983-04-01 1983-04-01 Fluorine treating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057532A JPS59183886A (en) 1983-04-01 1983-04-01 Fluorine treating agent

Publications (2)

Publication Number Publication Date
JPS59183886A JPS59183886A (en) 1984-10-19
JPH0413035B2 true JPH0413035B2 (en) 1992-03-06

Family

ID=13058354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057532A Granted JPS59183886A (en) 1983-04-01 1983-04-01 Fluorine treating agent

Country Status (1)

Country Link
JP (1) JPS59183886A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230596A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Method for treating fluorine in waste water
WO1992005226A1 (en) * 1990-09-19 1992-04-02 Minnesota Mining And Manufacturing Company Moisture-curable polyolefin pressure-sensitive adhesives

Also Published As

Publication number Publication date
JPS59183886A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
US4125594A (en) Purification of hydrofluoric acid etching solutions with weak anion exchange resins
Sequi et al. Destruction of organic matter by hydrogen peroxide in the presence of pyrophosphate and its effect on soil specific surface area
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
CN1898000A (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
KR20100034011A (en) Regeneration of a hexachlorostannate-loaded anion exchanger
JPH0413035B2 (en)
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JPH0256958B2 (en)
JPH04264090A (en) Method for purification of alkylphosphate solution
JP3586165B2 (en) Treatment of wastewater containing selenium
JPS6141607B2 (en)
JPH0615266A (en) Concentration of fluorine-containing waste water
JP4294253B2 (en) Method for removing anionic metal complex
JPH0299189A (en) Process for treating waste water containing fluorine
JP3563781B2 (en) Dechlorination of organic chlorinated products
WO2023062925A1 (en) Acid solution purification method
JP4665279B2 (en) Method for treating boron-containing water
JPH0380079B2 (en)
JPS6044056A (en) Removal of sulfate ion from brine
JPS591396B2 (en) How to treat water containing boron and COD
JPH0194948A (en) Fluorine ion removal method
JPH05269460A (en) Treatment of water containing ammonia and alkaline earth metal ion
JPH03284391A (en) Treatment of waste liquid containing citric acid
JPS588582A (en) Method for cleaning fluorine-containing waste water