JPH04127126A - Ferroelectric liquid crystal device - Google Patents

Ferroelectric liquid crystal device

Info

Publication number
JPH04127126A
JPH04127126A JP24731690A JP24731690A JPH04127126A JP H04127126 A JPH04127126 A JP H04127126A JP 24731690 A JP24731690 A JP 24731690A JP 24731690 A JP24731690 A JP 24731690A JP H04127126 A JPH04127126 A JP H04127126A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
layer
ferroelectric
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24731690A
Other languages
Japanese (ja)
Inventor
Yushi Arai
雄史 新井
Tadashi Shimizu
正 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24731690A priority Critical patent/JPH04127126A/en
Publication of JPH04127126A publication Critical patent/JPH04127126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make a display with a sufficiently high contrast or perform optical switching by providing projecting surfaces on a surface contacting liquid crystal at equal intervals in the layer direction and layer normal direction of ferroelectric liquid crystal. CONSTITUTION:This device has substrates 1, electrodes 2, orienting layers 3, a sealing material 4 for holding the liquid crystal in a device, a gap holding material 5 for holding the transparent substrates at a constant interval, the projection parts 6, and the ferroelectric liquid crystal 7. On the surface contacting the liquid crystal,the projection parts 6 are provided at the equal intervals in the layer direction and layer normal direction of the ferroelectric liquid crystal 7. The ferroelectric liquid crystal 7 is a liquid crystal compound or liquid crystal composition which polarizes itself and can be inverted in polarizing direction with an external electric field and the projection parts are single- body projections or sets of close projections. Consequently, the ferroelectric liquid crystal 7 is oriented uniformly and stably in a specific orienting direction to make the high-contrast display or perform the optical switching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電性液晶を用いた液晶装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a liquid crystal device using ferroelectric liquid crystal.

〔従来の技術〕[Conventional technology]

液晶表示装置の分野では、高速応答性を有する強誘電性
液晶を用いることが提案されている。この強誘電性液晶
としては、カイラルスメクチックC相などを示すものを
用いることが検討されている。
In the field of liquid crystal display devices, it has been proposed to use ferroelectric liquid crystals that have high-speed response. As this ferroelectric liquid crystal, it is being considered to use one exhibiting a chiral smectic C phase or the like.

しかしながら、強誘電性液晶はその特性上液晶分子を所
定の配向方向に均一に揃えて配列させにくく、このため
従来の配向手段を強誘電性液晶の配向に適用した場合に
、均一な配向を行うことが困難であるという問題が生じ
ている。従来の配向手段としては、配向処理を施した配
向膜を液晶装置の基板内面に形成する方法、磁場配向方
法(液晶を加熱して外部から磁界を加える方法、)、電
場配向方法(液晶を加熱して外部から電界を加える方法
。)、および剪断力配向方法(液晶装置に用いる一対の
基板をそれぞれ逆向きにずらして液晶に剪断力を加える
方法。)などがある。
However, due to the characteristics of ferroelectric liquid crystals, it is difficult to align liquid crystal molecules uniformly in a predetermined alignment direction. Therefore, when conventional alignment means are applied to align ferroelectric liquid crystals, uniform alignment cannot be achieved. The problem is that it is difficult to do so. Conventional alignment methods include forming an alignment film on the inner surface of the substrate of a liquid crystal device, magnetic field alignment method (heating the liquid crystal and applying a magnetic field from the outside), and electric field alignment method (heating the liquid crystal and applying a magnetic field from the outside). and a shear force orientation method (a method in which a pair of substrates used in a liquid crystal device are shifted in opposite directions to apply shear force to the liquid crystal).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のいずれの配向手段を適用しても、強誘電性液晶の
液晶分子を所定の配向方向に均一に安定して揃えて配列
させることが困難である。特に強誘電性液晶層にジグザ
グ欠陥が発生することが防げなかった。従って、従来の
強誘電性液晶を用いた液晶装置では、十分高いコントラ
ストで表示あるいは光スイッチングが行えないという問
題があった。
No matter which of the above alignment means is applied, it is difficult to uniformly and stably align the liquid crystal molecules of the ferroelectric liquid crystal in a predetermined alignment direction. In particular, the occurrence of zigzag defects in the ferroelectric liquid crystal layer could not be prevented. Therefore, conventional liquid crystal devices using ferroelectric liquid crystals have a problem in that display or optical switching cannot be performed with sufficiently high contrast.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記事情に基づいてなされたもので、十分高
いコントラストで表示あるいは光スイッチングを行うこ
とができる強誘電性液晶を用いた液晶装置を提供するこ
とを目的に、鋭意研究の結果、本発明の強誘電性液晶装
置の完成に到った。
The present invention was made based on the above circumstances, and was developed as a result of intensive research with the aim of providing a liquid crystal device using ferroelectric liquid crystal that can perform display or optical switching with sufficiently high contrast. The ferroelectric liquid crystal device of the invention has been completed.

即ち、本発明は、強誘電性液晶層と、該液晶層を狭持し
液晶層と接触する側に電圧印加が可能となるよう設けら
れた電極および、電極面に配向層を設けた基板からなる
液晶装置において、液晶に接する表面に強誘電性液晶の
層方向及び層法線方向に等間隔に突起部を設けたことを
特徴とする強誘電性液晶装置である。
That is, the present invention comprises a ferroelectric liquid crystal layer, an electrode provided to sandwich the liquid crystal layer and enable voltage application to the side in contact with the liquid crystal layer, and a substrate provided with an alignment layer on the electrode surface. This is a ferroelectric liquid crystal device characterized in that protrusions are provided on the surface in contact with the liquid crystal at equal intervals in the layer direction and layer normal direction of the ferroelectric liquid crystal.

本発明の液晶装置の一実施態様を第1図に示す。One embodiment of the liquid crystal device of the present invention is shown in FIG.

第1図において、lは基板、2は電極、3は配向層、4
は液晶を装置中に保持するための封止材、5は透明基板
同士を一定の間隔に保つためのギャップ保持材、6は段
差部、7は強誘電性液晶である。以後、第1図に沿って
説明する。
In FIG. 1, l is a substrate, 2 is an electrode, 3 is an alignment layer, and 4
5 is a sealing material for holding the liquid crystal in the device, 5 is a gap holding material for maintaining a constant distance between the transparent substrates, 6 is a stepped portion, and 7 is a ferroelectric liquid crystal. Hereinafter, the explanation will be given along with FIG.

透明基板lとしては、ガラス、プラスチックなどが挙げ
られるが、特にこれに規定されるものではない。
Examples of the transparent substrate l include glass and plastic, but are not particularly limited thereto.

電極2は、透明基板上にITOなどの透明な導電体の膜
を形成したものなどを用い得るが、特にこれに限定され
るものではない。
The electrode 2 may be formed by forming a film of a transparent conductor such as ITO on a transparent substrate, but is not particularly limited thereto.

強誘電性液晶7とは、自発分極を持ちその向きが外部電
界によって反転可能な液晶化合物または液晶組成物であ
り、液晶化合物としては4−デシロキシベンジリデン−
4−アミノ−2−メチルブチルシンナメート(DOBA
MBC)、4−へキシルオキシベンジリデン−4−アミ
ノ−2−クロロプロピルシンナメート(HOBACPC
)等が挙げられる。液晶化合物を単独で用いた場合、強
誘電性を示す温度範囲が狭い、粘度が高い、ピッチ長が
短いなどの問題点がある。そのため、強誘電性液晶を2
種以上混合したり、スメクチック液晶やカイラルネマチ
ック液晶を混合した液晶組成物を用いることが好ましい
The ferroelectric liquid crystal 7 is a liquid crystal compound or liquid crystal composition that has spontaneous polarization and whose direction can be reversed by an external electric field, and the liquid crystal compound is 4-decyloxybenzylidene-
4-Amino-2-methylbutylcinnamate (DOBA
MBC), 4-hexyloxybenzylidene-4-amino-2-chloropropylcinnamate (HOBACPC)
) etc. When a liquid crystal compound is used alone, there are problems such as a narrow temperature range in which it exhibits ferroelectricity, high viscosity, and short pitch length. Therefore, the ferroelectric liquid crystal is
It is preferable to use a liquid crystal composition in which two or more species are mixed or a smectic liquid crystal or a chiral nematic liquid crystal is mixed.

配向層3の材料としては、従来強誘電性液晶の配向に用
いられているものを使用できる。例えば、SiO等の無
機物質や、ポリイミド、ポリアミド、ポリビニルアルコ
ール、有機シラン化合物等の有機物質が挙げられるが、
これに限定されるものではない。
As the material for the alignment layer 3, materials conventionally used for alignment of ferroelectric liquid crystals can be used. Examples include inorganic substances such as SiO, and organic substances such as polyimide, polyamide, polyvinyl alcohol, and organic silane compounds.
It is not limited to this.

本発明の突起部6を透明基板に対して垂直な方向から見
た形状の例を第2〜5図に示す。本発明の突起部とは、
単一の突起もしくは複数の突起の近接した場合をさす。
Examples of the shape of the protrusion 6 of the present invention viewed from a direction perpendicular to the transparent substrate are shown in FIGS. 2 to 5. The protrusion of the present invention is
Refers to a single protrusion or multiple protrusions in close proximity.

第2〜4図は、単一の突起からなる突起部を示し、第5
図は、4個の突起の集合からなる突起部を示している。
Figures 2 to 4 show a protrusion consisting of a single protrusion;
The figure shows a protrusion consisting of a set of four protrusions.

突起部の配置の例を第6〜8図に示す。第6〜8図の中
の正方形は一つの突起部を示す。第8図において、例え
ばaとbを結ぶ直線が強誘電性液晶の層方向で、bとC
を結ぶ直線が層法線方向であるとすると、この場合には
層方向の突起部の間隔とはaとbとの距離を意味し、層
法線方向の間隔とはbとCとの距離を意味する。
Examples of the arrangement of the protrusions are shown in FIGS. 6-8. A square in FIGS. 6 to 8 indicates one protrusion. In Figure 8, for example, the straight line connecting a and b is the layer direction of the ferroelectric liquid crystal, and b and C
Assuming that the straight line connecting them is in the layer normal direction, in this case, the distance between the protrusions in the layer direction means the distance between a and b, and the distance in the layer normal direction means the distance between b and C. means.

突起部の大きさ、形状は特に限定されないが、0.01
〜400平方μ鞘、かつその突起部を透明基板に対し垂
直な方向からみたとき強誘電性液晶の層方向と層法線方
向との長さの比が1:10〜10:1であることが効果
の点から好ましい。この場合、突起部の大きさ、形状と
は、突起の全てを内側に含むような最小の凸な閉曲線の
大きさ、形状を意味するものとする。
The size and shape of the protrusion are not particularly limited, but 0.01
~400 square μ sheath, and the length ratio between the layer direction of the ferroelectric liquid crystal and the layer normal direction is 1:10 to 10:1 when the protrusion is viewed from a direction perpendicular to the transparent substrate. is preferable from the viewpoint of effectiveness. In this case, the size and shape of the protrusion mean the size and shape of the smallest convex closed curve that includes all of the protrusion inside.

本発明の液晶装置が表示に応用されるときには、突起部
と突起部でない部分との液晶層の厚みの違いにより表示
濃度及び表示の色調に差を生じるので、突起部を覆うよ
うな光学的マスク手段によって突起部を通過する光が外
部で観察されないようにすることが好ましい。そのため
、本発明の液晶装置が特に表示に応用されるときには、
液晶装置を十分に光が通過できるように突起部の全面積
と表示に関わる液晶装置の面積との関係を適切に設計す
ることが好ましい。本発明の効果において突起部が装置
の全面積に対して占める割合は本質的に影響を及ぼさな
いが、上記観点から本発明の液晶装置を特に表示に応用
する場合には突起部の面積は装置の全面積に対し、50
%以下であることが好ましく、より好ましくは20%以
下、最も好ましくは10%以下である。
When the liquid crystal device of the present invention is applied to display, the difference in the thickness of the liquid crystal layer between the protrusions and the non-protrusions causes a difference in display density and display color tone, so an optical mask is used to cover the protrusions. Preferably, the means prevents the light passing through the protrusion from being observed externally. Therefore, when the liquid crystal device of the present invention is particularly applied to display,
It is preferable to appropriately design the relationship between the total area of the protrusion and the area of the liquid crystal device involved in display so that sufficient light can pass through the liquid crystal device. Although the ratio of the protrusions to the total area of the device does not essentially affect the effect of the present invention, from the above point of view, when the liquid crystal device of the present invention is applied to displays in particular, the area of the protrusions is 50 for the total area of
% or less, more preferably 20% or less, most preferably 10% or less.

突起部は、強誘電性液晶の層法線方向には5乃至500
 p tn間隔に、層方向には5乃至1000μ朔間隔
に設ければ本発明の効果を有する。この間隔は層法線方
向及び層方向ともに10乃至200 p mが本発明の
効果の点からより好ましい。さらに、本発明の液晶装置
が特に表示に応用されるときには上述のような配慮が必
要となり、突起部の全面積と表示に関わる液晶装置の面
積との関係が適切になるように突起部の間隔を設計する
ことが好ましい。
The number of protrusions is 5 to 500 in the normal direction of the ferroelectric liquid crystal layer.
The effects of the present invention can be obtained if the layers are provided at ptn intervals of 5 to 1000 μm in the layer direction. This interval is more preferably 10 to 200 pm in both the layer normal direction and the layer direction from the viewpoint of the effects of the present invention. Furthermore, when the liquid crystal device of the present invention is particularly applied to display, the above-mentioned consideration is required, and the spacing between the protrusions is adjusted so that the relationship between the total area of the protrusions and the area of the liquid crystal device involved in display is appropriate. It is preferable to design

突起部の配向層表面からの高さは、セルギャップの0.
5〜100%の範囲にあれば本発明の著しい効果を有す
る。ただし、セルギャップとは液晶装置中の液晶層の厚
みである。突起部の高さがセルギャップと等しいときは
突起部はセルギャップを液晶装置全体にわたって一定に
保つためのギャップ保持材を兼ねさせてもよい。
The height of the protruding portion from the surface of the alignment layer is 0.00 mm of the cell gap.
If the content is in the range of 5 to 100%, the present invention will have significant effects. However, the cell gap is the thickness of the liquid crystal layer in the liquid crystal device. When the height of the protrusion is equal to the cell gap, the protrusion may also serve as a gap retainer for keeping the cell gap constant over the entire liquid crystal device.

液晶に接する表面に突起部を形成するには、基板、電極
、または配向層を突起状に成形する方法や、電極または
配向層上に他の材料で形成する方法が挙げられる。
To form a protrusion on the surface in contact with the liquid crystal, there are a method of forming the substrate, an electrode, or an alignment layer into a protrusion shape, and a method of forming the protrusion on the electrode or the alignment layer using another material.

電極または配向層に本発明の突起部を設ける手段として
は、紫外線、電子線、χ線等のエネルギー線により化学
反応を生じる物質を用いたりソグラフィ手段や、金属ス
タンパを用いる機械的圧迫手段等が挙げられる。形成の
筒便さと加工精度の点からフォトリソグラフィ手段が好
ましい。
As means for providing the protrusions of the present invention on the electrode or alignment layer, there may be used a substance that causes a chemical reaction with energy rays such as ultraviolet rays, electron beams, or chi-rays, lithography means, or mechanical compression means using a metal stamper. Can be mentioned. Photolithography is preferred from the viewpoint of ease of formation and processing accuracy.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明するが、本発明
は以下の実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples.

実施例1 酸化インジウム錫を0.07μm蒸着した40mmx3
7.5mm、厚さIMのガラス板■に感光性ポリイミド
前駆体(旭化成工業■製、商品名: PIMELTMG
−503C)を回転塗布した後、70°Cで30分間乾
燥した。これに第9図に示すマスクを介して超高圧水銀
灯で10秒間露光し、現像し、180°Cにて2時間空
気中で加熱を行ない、高さ2.0μ蒙、面方向の寸法が
10μm×10DI11の突起を作成した。
Example 1 40mm x 3 with 0.07μm of indium tin oxide deposited
Photosensitive polyimide precursor (manufactured by Asahi Kasei Corporation, product name: PIMELTMG) on a glass plate of 7.5 mm and thickness IM
-503C) was spin-coated and then dried at 70°C for 30 minutes. This was exposed to light for 10 seconds using an ultra-high-pressure mercury lamp through the mask shown in Figure 9, developed, and heated in air at 180°C for 2 hours. A protrusion of ×10DI11 was created.

このガラス板■と、同じ寸法のガラス板■の両方に、酸
化インジウム錫の蒸着されている側にシランカップリン
グ材を回転塗布した後、150°Cで空気中5分間焼付
けを行なった。ガラス板■と■をポリエステル布で擦り
(ラビング処理と称する)、強誘電性液晶の配向処理と
した。このとき、ガラス板■のラビング方向と突起パタ
ンの配置の関係を第1O図に示した。ガラス板のとガラ
ス板■を、互いにラビングの向きが反対になるように向
かい合わせて重ね、一部を液晶注入用に残して周囲をエ
ポキシ系接着剤で封止した。注入口から100’Cの温
度において強誘電性液晶混合物〔チッソ■製、商品名:
 C5−1024:lを注入し、毎分1“Cで室温まで
冷却して強誘電性液晶セルを作成した。このセルを偏光
顕微鏡で観察したところ、ジグザグ欠陥のない−様な液
晶配向が得られていることがわかった。このセルを直行
ニコルに配置された2個の偏光子の間に配置し、第11
図に示す波形のパルス電圧を印加してヘリウム−ネオン
レーザ−光(632,8nm)の透過光強度を観測した
ところ、第12図のようになった。この結果、このセル
の光透過状態と遮断状態の光強度比(コントラスト)は
80であった。
A silane coupling material was spin-coated on both this glass plate (1) and a glass plate (2) of the same size on the side on which indium tin oxide was vapor-deposited, and then baked in air at 150°C for 5 minutes. The glass plates (1) and (2) were rubbed with a polyester cloth (referred to as rubbing treatment) to align the ferroelectric liquid crystal. At this time, the relationship between the rubbing direction of the glass plate (2) and the arrangement of the protrusion patterns is shown in FIG. 1O. The glass plates 1 and 2 were stacked facing each other so that the rubbing directions were opposite to each other, and the periphery was sealed with epoxy adhesive, leaving a portion for liquid crystal injection. Ferroelectric liquid crystal mixture [manufactured by Chisso ■, product name:
A ferroelectric liquid crystal cell was created by injecting C5-1024:l and cooling it to room temperature at a rate of 1"C per minute. When this cell was observed with a polarizing microscope, a -like liquid crystal alignment with no zigzag defects was obtained. This cell was placed between two polarizers arranged in orthogonal Nicols, and the 11th
When a pulse voltage having the waveform shown in the figure was applied and the transmitted light intensity of helium-neon laser light (632.8 nm) was observed, the result was as shown in FIG. 12. As a result, the light intensity ratio (contrast) between the light transmitting state and the light blocking state of this cell was 80.

実施例2 実施例1と同様に強誘電性液晶セルを作成したが、配向
膜の材料にはシランカップリング材のかわりにポリビニ
ルアルコールを用いた。突起を設けたガラス板■と突起
を設けないガラス板■は両方ともポリエステル布でラビ
ングし、強誘電性液晶の配向処理とした。ガラス板■は
第10図のようにラビングした。ガラス板■とガラス板
■を、互いにラビングの向きが同じになるように向かい
合わせて重ね、一部を液晶注入用に残して周囲をエポキ
シ系接着剤で封止した。注入口から100°Cの温度に
おいて強誘電性液晶混合物〔チッソ■製、商品名: c
s−10243を注入し、毎分1°Cで室温まで冷却し
て強誘電性液晶セルを作成した。このセルを偏光顕微鏡
で観察したところ、ジグザグ欠陥のない−様な液晶配向
が得られていることがわかった。このセルを直行ニコル
に配置された2個の偏光子の間に配置し、第11図に示
す波形のパルス電圧を印加してヘリウム−ネオンレーザ
−光(632,8nm)の透過光強度を観測したところ
、このセルのコントラストは70であった。
Example 2 A ferroelectric liquid crystal cell was produced in the same manner as in Example 1, but polyvinyl alcohol was used instead of the silane coupling material as the material for the alignment film. Both the glass plate (2) with projections and the glass plate (2) without projections were rubbed with polyester cloth to align the ferroelectric liquid crystal. The glass plate ■ was rubbed as shown in Figure 10. The glass plates (■) and (2) were stacked facing each other so that the rubbing directions were the same, and the periphery was sealed with an epoxy adhesive, leaving a portion for liquid crystal injection. Ferroelectric liquid crystal mixture [manufactured by Chisso ■, product name: c] at a temperature of 100°C from the injection port
s-10243 was injected and cooled to room temperature at 1°C per minute to create a ferroelectric liquid crystal cell. When this cell was observed with a polarizing microscope, it was found that a -like liquid crystal alignment with no zigzag defects was obtained. This cell was placed between two polarizers arranged in orthogonal Nicols, and a pulse voltage of the waveform shown in Fig. 11 was applied to observe the transmitted light intensity of helium-neon laser light (632,8 nm). As a result, the contrast of this cell was 70.

実施例3 ポリビニルアルコール5重量部と、下記構造式(1)で
表わされる構造のアクリレート7.5重量部と、ベンジ
ルジメチルケタール0.15重量部とを100重量部の
N、N−ジメチルホルムアミドと100重量部の水との
混合溶媒に溶解した。
Example 3 5 parts by weight of polyvinyl alcohol, 7.5 parts by weight of acrylate having a structure represented by the following structural formula (1), and 0.15 parts by weight of benzyl dimethyl ketal were mixed with 100 parts by weight of N,N-dimethylformamide. It was dissolved in a mixed solvent with 100 parts by weight of water.

この溶液を酸化インジウム錫を蒸着したガラス板■に回
転塗布した後70°Cのオーブン中に30分間静置して
乾燥し、厚み2.2μmの塗膜を得た。
This solution was spin-coated onto a glass plate (2) on which indium tin oxide had been vapor-deposited, and then allowed to stand in an oven at 70°C for 30 minutes to dry, yielding a coating film with a thickness of 2.2 μm.

第9図に示すマスクを介して超高圧水銀灯で60秒間露
光した。ついでこの試料を180°Cのオーブン中に1
時間静置したところ、未露光部の膜厚は1.48μmに
なった。試料の表面形状を触針式表面荒さ測定機で測定
したところ露光部は未露光表面から盛り上がっており、
露光部の未露光表面からの高さは1.00μ−であった
。このガラス板■を第10図のようにラビングし、ポリ
ビニルアルコールを回転塗布した酸化インジウム錫膜付
きガラス板■を同一方向にラビングして重ね合わせ、液
晶注入口を残して周囲をエポキシ系接着剤で封止した。
It was exposed for 60 seconds to an ultra-high pressure mercury lamp through the mask shown in FIG. This sample was then placed in an oven at 180°C for 1 hour.
When the film was allowed to stand for a while, the film thickness in the unexposed area became 1.48 μm. When the surface shape of the sample was measured using a stylus type surface roughness measuring device, the exposed area was raised from the unexposed surface.
The height of the exposed area from the unexposed surface was 1.00 μ-. This glass plate ■ is rubbed as shown in Figure 10, and a glass plate with an indium tin oxide film ■ coated with polyvinyl alcohol by rotation is rubbed in the same direction and overlapped, leaving the liquid crystal injection port and surrounding it with epoxy adhesive. It was sealed with.

入口から90℃の温度において強誘電性液晶混合物〔チ
ッソ■製、商品名:cs−1018)を注入し、毎分1
℃で室温まで冷却して強誘電性液晶セルを作成した。こ
のセルを偏光顕微鏡で観察したところ、ジグザグ欠陥の
ない−様な液晶配向が得られていることがわかった。こ
のセルを直行ニコルに配置された2個の偏光子の間に配
置し、第11図に示す波形のパルス電圧を印加してヘリ
ウム−ネオンレーザ−光(632,8nm)の透過光強
度を観測したところ、このセルのコントラストは40で
あることがわかった。
A ferroelectric liquid crystal mixture (manufactured by Chisso ■, trade name: CS-1018) was injected at a temperature of 90°C from the inlet, and the flow rate was 1 min.
A ferroelectric liquid crystal cell was prepared by cooling the cell at ℃ to room temperature. When this cell was observed with a polarizing microscope, it was found that a -like liquid crystal alignment with no zigzag defects was obtained. This cell was placed between two polarizers arranged in orthogonal Nicols, and a pulse voltage of the waveform shown in Fig. 11 was applied to observe the transmitted light intensity of helium-neon laser light (632,8 nm). As a result, it was found that the contrast of this cell was 40.

比較例1 酸化インジウム錫を0.07 μm蒸着した40mm 
X37.5mm、厚さ1mのガラス板■および■にポリ
ビニルアルコールを回転塗布した後、70°Cで30分
間乾燥した。ガラス板■と■をポリエステル布でラビン
グし、強誘電性液晶の配向処理とした。
Comparative Example 1 40 mm with 0.07 μm of indium tin oxide deposited
Polyvinyl alcohol was spin-coated on glass plates (1) and (2), each measuring 37.5 mm x 37.5 mm and 1 m thick, and then dried at 70°C for 30 minutes. The glass plates (■) and (■) were rubbed with a polyester cloth to align the ferroelectric liquid crystal.

ガラス板■の上に直径2.0μ−のガラスピーズを噴霧
した後、ガラス板■とガラス板■を、互いにラビングの
向きが同じになるように向かい合わせて重ね、一部を液
晶注入用に残して周囲をエポキシ系接着剤で封止した。
After spraying glass beads with a diameter of 2.0μ on the glass plate ■, stack the glass plates ■ and glass plates ■ facing each other so that the rubbing direction is the same, and use a part for liquid crystal injection. The surrounding area was sealed with epoxy adhesive.

注入口から90℃の温度において強誘電性液晶混合物〔
チッソ■製、商品名:cs−10181を注入し、毎分
1°Cで室温まで冷却して強誘電性液晶セルを作成した
。このセルを偏光顕微鏡で観察したところ、ジグザグ欠
陥が多数見られた。このセルを直行ニコルに配置された
2個の偏光子の間に配置し、第11図に示す波形のパル
ス電圧を印加してヘリウム−ネオンレーザ−光(632
,8n+11)の透過光強度を観測したところ、このセ
ルのコントラストは10であることがわかった。
Ferroelectric liquid crystal mixture [
A ferroelectric liquid crystal cell was prepared by injecting CS-10181 manufactured by Chisso ■ and cooling it to room temperature at 1°C per minute. When this cell was observed using a polarizing microscope, many zigzag defects were observed. This cell was placed between two polarizers arranged in orthogonal Nicols, and a pulse voltage having the waveform shown in FIG. 11 was applied to helium-neon laser light (632
, 8n+11), it was found that the contrast of this cell was 10.

〔発明の効果〕〔Effect of the invention〕

本発明の液晶装置は、強誘電性液晶を所定の配向方向に
均一かつ安定して配向させ、高いコントラストを持った
表示あるいは光スイ・ンチングを行える。
The liquid crystal device of the present invention uniformly and stably aligns ferroelectric liquid crystal in a predetermined orientation direction, and can perform display or optical switching with high contrast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液晶装置の一実施態様の断面図であ
る。1は透明基板、2は透明導電膜、3は配向層、4は
封止材、5はセルギャップ保持材、6は突起部、7は液
晶層を示す。 第2.3.4及び5図は、突起部の形状の例を示す平面
図であり、第5図は、突起部が突起の集合で形成されて
いる例の平面図である。 第6.7及び8図は、突起部の配置の例を示す平面図で
ある。図中の四角形は突起部を示し、そこに第2.3.
4及び5図のような突起部が形成されていることを示す
。 第9図は、フォトマスクであり、8は光が透過する部分
を示す。 第10図は、突起部を設けた配向膜のラビング方向を示
す。 第11図は、強誘電性液晶セルに印加する電圧の波形を
示す。 第12図は、強誘電性液晶セルに印加される電圧の波形
とその電圧によるセルの光学応答を示す。
FIG. 1 is a sectional view of one embodiment of the liquid crystal device of the present invention. 1 is a transparent substrate, 2 is a transparent conductive film, 3 is an alignment layer, 4 is a sealing material, 5 is a cell gap maintaining material, 6 is a projection, and 7 is a liquid crystal layer. 2.3.4 and 5 are plan views showing examples of the shape of the protrusion, and FIG. 5 is a plan view of an example in which the protrusion is formed by a set of protrusions. 6.7 and 8 are plan views showing examples of the arrangement of protrusions. The rectangle in the figure indicates the protrusion, and the 2.3.
This shows that protrusions as shown in Figures 4 and 5 are formed. FIG. 9 shows a photomask, and numeral 8 indicates a portion through which light passes. FIG. 10 shows the rubbing direction of the alignment film provided with protrusions. FIG. 11 shows the waveform of the voltage applied to the ferroelectric liquid crystal cell. FIG. 12 shows the waveform of the voltage applied to the ferroelectric liquid crystal cell and the optical response of the cell due to the voltage.

Claims (1)

【特許請求の範囲】[Claims] 強誘電性液晶層と、該液晶層を狭持し液晶層と接触する
側に電圧印加が可能となるよう設けられた電極および、
電極面に配向層を設けた基板からなる液晶装置において
、液晶に接する表面に強誘電性液晶の層方向及び層法線
方向に等間隔に突起部を設けたことを特徴とする強誘電
性液晶装置。
a ferroelectric liquid crystal layer, an electrode provided to sandwich the liquid crystal layer and to enable voltage application to the side in contact with the liquid crystal layer;
A ferroelectric liquid crystal device comprising a substrate provided with an alignment layer on an electrode surface, characterized in that protrusions are provided on the surface in contact with the liquid crystal at equal intervals in the layer direction and layer normal direction of the ferroelectric liquid crystal. Device.
JP24731690A 1990-09-19 1990-09-19 Ferroelectric liquid crystal device Pending JPH04127126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24731690A JPH04127126A (en) 1990-09-19 1990-09-19 Ferroelectric liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24731690A JPH04127126A (en) 1990-09-19 1990-09-19 Ferroelectric liquid crystal device

Publications (1)

Publication Number Publication Date
JPH04127126A true JPH04127126A (en) 1992-04-28

Family

ID=17161586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24731690A Pending JPH04127126A (en) 1990-09-19 1990-09-19 Ferroelectric liquid crystal device

Country Status (1)

Country Link
JP (1) JPH04127126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795774A2 (en) * 1996-03-11 1997-09-17 Canon Kabushiki Kaisha Liquid crystal device and process for production thereof
US5751388A (en) * 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751388A (en) * 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
EP0795774A2 (en) * 1996-03-11 1997-09-17 Canon Kabushiki Kaisha Liquid crystal device and process for production thereof
EP0795774A3 (en) * 1996-03-11 1998-03-25 Canon Kabushiki Kaisha Liquid crystal device and process for production thereof
US6320639B1 (en) 1996-03-11 2001-11-20 Canon Kabushiki Kaisha Liquid crystal device and process for production thereof
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element
JP4699100B2 (en) * 2004-06-21 2011-06-08 大日本印刷株式会社 Liquid crystal display element

Similar Documents

Publication Publication Date Title
KR19990036927A (en) Liquid Crystal Display and Manufacturing Method Thereof
US5946064A (en) Alignment layer, method for forming alignment layer and LCD having the same
JPS6298326A (en) Liquid crystal cell
JPS6292918A (en) Liquid crystal element
JPH0650368B2 (en) Liquid crystal element
JPH04127126A (en) Ferroelectric liquid crystal device
KR100268031B1 (en) Fabrication method for photosensitive alignment layer of lcd
US8994911B2 (en) Optical memory device based on DHFLC material and method of preparing the same
JPH06347807A (en) Production of liquid crystal device
JPH06337405A (en) Liquid crystal electro-optical device and manufacture thereof
JP3040499B2 (en) Manufacturing method of liquid crystal display element
JPS6263918A (en) Liquid crystal element
JP3302645B2 (en) Liquid crystal alignment film and liquid crystal display device using the same
JP3537713B2 (en) Liquid crystal alignment film and liquid crystal display device using the same
JPS63124030A (en) Ferroelectric liquid crystal element
JP3241502B2 (en) Method for manufacturing liquid crystal electro-optical device
JP3074805B2 (en) Display element
JPH11125821A (en) Liquid crystal alignment layer, its production, liquid crystal display device using the same and its production
JPH0612385B2 (en) Liquid crystal element
JPH0372323A (en) Manufacture of liquid crystal display element
JP2545976B2 (en) Liquid crystal alignment method
JP2001356348A (en) Method for manufacturing liquid crystal alignment film, liquid crystal display device and method for manufacturing the same
JP3497119B2 (en) Organic thin film and manufacturing method thereof, liquid crystal alignment film and manufacturing method thereof, and liquid crystal display device and manufacturing method thereof
JPH0331821A (en) Liquid crystal electrooptical device
JPH049829A (en) Nonlinear optical element and production thereof