KR100268031B1 - Fabrication method for photosensitive alignment layer of lcd - Google Patents

Fabrication method for photosensitive alignment layer of lcd Download PDF

Info

Publication number
KR100268031B1
KR100268031B1 KR1019970030766A KR19970030766A KR100268031B1 KR 100268031 B1 KR100268031 B1 KR 100268031B1 KR 1019970030766 A KR1019970030766 A KR 1019970030766A KR 19970030766 A KR19970030766 A KR 19970030766A KR 100268031 B1 KR100268031 B1 KR 100268031B1
Authority
KR
South Korea
Prior art keywords
photo
alignment
liquid crystal
photoalignment
thin film
Prior art date
Application number
KR1019970030766A
Other languages
Korean (ko)
Other versions
KR19990008689A (en
Inventor
박병주
정영이
최현희
배주연
황하근
장세흠
Original Assignee
김덕중
사단법인고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김덕중, 사단법인고등기술연구원연구조합 filed Critical 김덕중
Priority to KR1019970030766A priority Critical patent/KR100268031B1/en
Publication of KR19990008689A publication Critical patent/KR19990008689A/en
Application granted granted Critical
Publication of KR100268031B1 publication Critical patent/KR100268031B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: A method for manufacturing a photo-alignment film is provided to be capable of forming a thermally stable film so that an initial alignment is maintained during an annealing process. CONSTITUTION: A thin film is formed by coating a photo-alignment material on a glass substrate, on which a transparent electrode is formed, and annealing a solvent used at the coating process at a predetermined temperature. An ultraviolet ray or a laser is irradiated on the thin film. The photo-aligned thin film is annealed at a predetermined temperature so that a polyamic acid is transformed into a polyimide. The solvent is annealed in a temperature range of 70 to 90. The step of annealing the photo-aligned film is carried out in a temperature range of 200 to 300.

Description

액정표시소자의 광배향막 형성방법Method of forming an optical alignment film of a liquid crystal display device

본 발명은 액정표시소자에 관한 것으로서, 더욱 상세하게는 열적으로 안정된 광배향막 형성방법에 관한 것이다.The present invention relates to a liquid crystal display device, and more particularly, to a method of forming a thermally stable optical alignment film.

전자광학적(electro-optical) 소자를 이용하여 전기적인 신호를 시각 영상으로 변환시켜 인간이 직접 정보를 해독할 수 있도록 하는데 사용되는 정보 표시장치(information display device)는 가정용 TV, 과학기기용 오실로스코프, 레이터 표시기, 숫자·문자·그래프 표시 터미널 및 CAD터미널, 산업 설비 표시기, 교통 운송 우주 군사 항공분야의 표시기에 광범위하게 응용되고 있다.Information display devices, which are used to convert electrical signals into visual images using electro-optical devices and can be directly decoded by humans, are used in home TVs, scientific instruments, oscilloscopes, and radars. It is widely applied to indicators, numbers, letters, and graph display terminals, CAD terminals, industrial equipment indicators, and indicators for transportation, transportation, aerospace, military and aerospace.

특히, 평판(flat)이면서도 경량이며 전력소모가 적은 평판 표시장치는 크게 전기적인 에너지를 영상신호(image signal)의 함수로서 빛으로 변환시키는 방사형(emissive type) 표시장치와 확산, 흡수, 복굴절, 반사, 굴절 등과 같이 전기적으로 변화를 일으킬 수 있는 광학적 효과를 이용하여 주변광, 후면광 또는 측면광 등을 제어함으로써 원하는 칼라와 휘도를 얻는 무방사형(non-emissive type) 표시장치로 구분된다.In particular, flat, lightweight, and low power consumption flat panel displays have large radial display devices that convert electrical energy into light as a function of image signals, and diffuse, absorb, birefringence, and reflection. It is classified into a non-emissive type display device that obtains a desired color and luminance by controlling ambient light, back light or side light by using an optical effect that can cause an electrical change such as refraction.

무방사형 표시장치에서는 액정을 이용한 액정표시소자(liquid crystal display; LCD)가 가장 많이 응용되고 있다.In the non-emissive display device, a liquid crystal display (LCD) using liquid crystal is most commonly applied.

LCD는 집적회로를 사용하는 전자기기에 적합하고 저전압, 저소비 전력으로 동작하기 위해 휴대용 초소형 전자기기의 표시에 가장 적합한 특성을 갖추고 있다.LCDs are suitable for electronic devices using integrated circuits and have the most suitable characteristics for the display of portable miniature electronic devices to operate at low voltage and low power consumption.

LCD는 액정표시패널, 구동회로 및 필요에 의한 조명장치로 구성된다.The LCD is composed of a liquid crystal display panel, a driving circuit and a lighting device as required.

도 1 에는 일반적인 액정표시패널이 도시되어 있다.1 illustrates a general liquid crystal display panel.

액정(5) 재료는 네마틱(nematic) 액정, 콜레스테릭(cholesteric) 액정, 스멕틱(smectic) 액정 및 그들의 혼합 액정이 사용된다.As the liquid crystal 5 material, nematic liquid crystals, cholesteric liquid crystals, smectic liquid crystals and mixed liquid crystals thereof are used.

투명전극(3)은 산화주석, 산화인듐 또는 그들의 혼합물을 유리기판(2)에 스프레이, 증착 또는 스퍼터 방법으로 형성한다.The transparent electrode 3 forms tin oxide, indium oxide or a mixture thereof on the glass substrate 2 by spraying, vapor deposition or sputtering.

스페이서(6)는 액정층(5)의 두께를 일정하게 유지하기 위한 것으로 마일러 필름이나 테플론 필름을 사용한다.The spacer 6 is for keeping the thickness of the liquid crystal layer 5 constant and uses a mylar film or a Teflon film.

봉착제(sealer ; 7)로는 무기 접착제와 유기 접착제가 사용되며, 수분 침입에 의한 액정(5)의 열화를 방지하기 위해 기밀성이 유지되어야 한다.An inorganic adhesive and an organic adhesive are used as the sealant (sealer) 7, and airtightness must be maintained to prevent deterioration of the liquid crystal 5 due to moisture intrusion.

배향막(4)은 액정 분자 배열을 균일하게 하기 위한 것으로, 표시방식에 따라 평행 배향 처리, 수직 배향 처리 또는 그것들을 조합한 처리를 한다.The alignment film 4 is for uniformizing the liquid crystal molecules, and performs a parallel alignment treatment, a vertical alignment treatment, or a combination thereof in accordance with the display method.

편광판(1)은 액정층을 통과한 빛의 선광(選光)을 위해 유리기판의 상하부에 편광방향이 서로 직교하도록 부착된다.The polarizing plate 1 is attached to the upper and lower portions of the glass substrate so that the polarization directions are orthogonal to each other for linear light of the light passing through the liquid crystal layer.

이와같이 이루어진 LCD는 액정에 전압을 인가하면 빛이 통과하는 방향이 바뀐다. 즉, 액정분자의 배열이 90° 비틀린 네마틱(Twisted Nematic ; TN)형 LCD인 경우 전압을 인가하지 않은 상태에서는 액정(5)에 광을 투사하면 액정분자가 배열된 홈을 따라 광이 비틀려서 통과하게 되고, 전압을 인가하면 광의 비틀림이 없이 직진하게 되어 광이 통과하지 않게 되어 화면상에 검게 표시된다.In the LCD formed as described above, when a voltage is applied to the liquid crystal, the direction of light passing is changed. That is, when the array of liquid crystal molecules is a twisted nematic (TN) type LCD, when light is projected onto the liquid crystal 5 without a voltage applied, the light is twisted along the groove in which the liquid crystal molecules are arranged. When passing through and applying a voltage, the light goes straight without twisting the light so that the light does not pass and is displayed black on the screen.

한편, LCD의 액정표시패널의 제조공정을 설명하면 다음과 같다.Meanwhile, a manufacturing process of the liquid crystal display panel of the LCD will be described below.

유리기판(2)에 ITO박막을 형성하고 이를 선택적으로 에칭하여 투명전극군(3)을 형성한다. 투명전극군(3)이 형성되면 그 위에 스핀코팅 방법을 이용하여 배향막(4) 재료가 용해된 용액을 도포한 후 건조시키고 용매를 휘발시켜 배향막(4)을 형성한다. 이와같이 형성된 한쌍의 유리기판(2)을 배향막(4)이 서로 대면하도록 한 채 이후 공정을 통해 액정(5)이 주입될 수 있는 셀 갭(cell gap)이 형성될 수 있도록 그 가장자리에 스페이서(6)를 형성함과 아울러 셀 내부의 기밀성을 유지할 수 있도록 봉착제(7)를 유리기판(2)의 가장자리에 도포한 후 가압경화하여 액정셀을 형성한다. 이때 유리기판(2)에는 다수의 액정셀이 형성되므로 각각의 액정셀로 나누기 위해 탄화규소나 다이아몬드 절단기를 이용하여 절단한다. 이어서 단위 액정셀과 액정을 진공챔버에 넣고 진공상태에서 액정셀에 액정(5)을 주입한 후 주입구(미도시됨)를 봉입하여 액정표시패널의 제조공정을 완료한다.An ITO thin film is formed on the glass substrate 2 and selectively etched to form the transparent electrode group 3. When the transparent electrode group 3 is formed, a solution in which the alignment layer 4 material is dissolved is applied thereon by using a spin coating method, then dried, and the solvent is volatilized to form the alignment layer 4. With the pair of glass substrates 2 formed in this manner, the alignment layers 4 face each other, a spacer gap 6 is formed at the edge thereof so that a cell gap through which the liquid crystal 5 can be injected is formed through a subsequent process. ) And the sealing agent 7 is applied to the edge of the glass substrate 2 so as to maintain the airtightness inside the cell and then pressurized to form a liquid crystal cell. In this case, since a plurality of liquid crystal cells are formed on the glass substrate 2, the glass substrate 2 is cut using silicon carbide or a diamond cutter to divide each liquid crystal cell. Subsequently, the unit liquid crystal cell and the liquid crystal are placed in a vacuum chamber, the liquid crystal 5 is injected into the liquid crystal cell in a vacuum state, and then an injection hole (not shown) is sealed to complete the manufacturing process of the liquid crystal display panel.

특히, 본 발명과 관련된 액정배향공정을 상세히 설명한다.In particular, the liquid crystal alignment process related to this invention is demonstrated in detail.

주지된 바와 같이, 셀 내부에 주입된 액정분자는 길고 가느다란 막대모양(nematic)으로된 유기화합물이며, 자연상태에서는 액정분자가 완만하고 규칙적으로 배열되어 일정방향의 홈을 새긴 배향막에 접촉시키면 홈을 따라 배열상태가 변하게 된다.As is well known, the liquid crystal molecules injected into the cell are organic compounds having a long, narrow nematic shape, and in the natural state, the liquid crystal molecules are gently and regularly arranged so that the grooves are brought into contact with an alignment film having a groove in a predetermined direction. The arrangement will change accordingly.

종래에는 면 또는 나일론계의 섬유를 식모한 포를 표면에 금속의 원통형 롤(roll)을 회전시키면서 배향막이 도포된 기판의 표면을 마찰시켜 특정방향에 배향력을 형성시켜 시야각을 형성시키는 러빙(rubbing)방법이 이용되고 있으나, 마찰로인한 전기적, 기계적인 본질적인 결함으로 인해 위상왜곡(random phase distortion)과 광산란(light scattering) 등의 문제가 있다.Conventionally, rubbing to form a viewing angle by forming an orientation force in a specific direction by rubbing a surface of a substrate coated with an alignment film while rotating a cylindrical roll of metal on a surface of a fabric in which cotton or nylon fibers are implanted. The method is used, but there are problems such as random phase distortion and light scattering due to the inherent electrical and mechanical defects caused by friction.

최근들어 액정분자 배향을 위한 새로운 방법들이 제안되고 있다. 즉, 액정의 프리틸트각(pretilt angle)은 LCD의 스위칭 시간 뿐만아니라 콘트라스트 비를 증가시키기 위해서 매우 중요하며, 비러빙(non-rubbing) 기술을 이용하여 프리틸트각을 달성하기 위한 기술이 제기되고 있다.Recently, new methods for liquid crystal molecular alignment have been proposed. That is, the pretilt angle of the liquid crystal is very important for increasing the contrast ratio as well as the switching time of the LCD, and a technique for achieving the pretilt angle by using a non-rubbing technique is proposed. have.

특히, 종래기술의 일예로서 폴리비닐알콜(polvinyl alcohol)과 4-메톡시 시남산(4-methoxy cinnamic acid)의 반응에서 생성되는 PVCN(polyvinyl-4-me-thoxy cinnamic acid) 유도체를 유리기판에 도포하여 선편광된 자외선을 조사하면 광반응에 의해 크로스 링킹(cross-linking)된 광배향막(optic alignment layer; 4)이 형성되며, 이와같은 광배향막(4)은 액정분자들을 원하는 방향의 평면구조로 배향시킬 수 있다.In particular, as an example of the prior art, a polyvinyl-4-me-thoxy cinnamic acid (PVCN) derivative produced by the reaction of polyvinyl alcohol and 4-methoxy cinnamic acid on a glass substrate. When applied and irradiated with linearly polarized ultraviolet rays, an optical alignment layer (4) cross-linked by an optical reaction is formed, and the optical alignment layer (4) has liquid crystal molecules in a planar structure in a desired direction. Can be oriented.

상기 PVCN을 대신하여 아조(azo) 단분자를 이용하여 광배향 후 배향막으로 사용하는 방법, 아조 부사슬 폴리아민산(azo side-chain polyamic acid) 또는 폴리이미드(polyimide)를 유리기판에 코팅하여 광배향하는 방법, 아조 주사슬 폴리아민산(azo main-chain polyamic acid)을 열처리과정 없이 유리기판에 코팅하여 광배향 하는 방법 등이 사용되거나 시도되고 있다.Method to use as an alignment layer after photoalignment using azo (azo) single molecule in place of the PVCN, azo side-chain polyamic acid (azo side-chain polyamic acid) or polyimide (polyimide) coated on a glass substrate to photoalignment A method of coating a glass substrate by coating azo main-chain polyamic acid on a glass substrate without heat treatment has been used or attempted.

그런데 이와같은 종래의 광배향 방법들은 우수한 액정 배향성을 나타내지만 LCD 제조과정에서 필수적인 액정셀의 봉착공정시 약 200℃∼300℃의 온도에서 열처리되는데 기판의 열화 과정 중 그 배향능력을 상실하거나 배향능력이 저하되어 LCD를 제작하기 어려운 단점이 있었다.However, the conventional optical alignment methods exhibit excellent liquid crystal alignment, but are heat treated at a temperature of about 200 ° C. to 300 ° C. during the sealing process of the liquid crystal cell, which is essential for LCD manufacturing. This deterioration has made it difficult to manufacture LCD.

따라서, 본 발명은 이와같은 종래의 문제점을 해결하기 위한 것으로, 액정표시소자의 제조과정에서 필수적인 열처리 공정중에도 처음의 배향성이 유지되는 열적으로 안정한 액정표시소자의 광배향막 형성방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a photo-alignment layer of a thermally stable liquid crystal display device in which the initial alignment is maintained even during the heat treatment process, which is essential in the manufacturing process of the liquid crystal display device. have.

이와같은 목적을 실현하기 위한 본 발명은 LCD의 광배향막 형성방법에 있어서, 투명전극이 형성된 유리기판에 폴리아민산의 주사슬구조에 아조 분자가 결합되어 있는 고분자물질을 도포하고 도포에 사용된 용제를 소정온도에서 열처리하여 박막을 형성하는 단계와; 상기 박막에 UV 또는 레이저를 조사하여 광배향하는 단계와; 상기 광배향된 박막을 소정온도에서 열처리하여 상기 폴리아민산을 폴리이미드로 전환하는 단계;를 구비하여 이루어진다.In order to achieve the above object, the present invention provides a method for forming an optical alignment film of an LCD, by applying a polymer material having azo molecules bonded to a main chain structure of a polyamic acid to a glass substrate on which a transparent electrode is formed, and applying a solvent used in the application. Heat treating at a predetermined temperature to form a thin film; Photo-alignment by irradiating the thin film with UV or laser; And converting the polyamine acid into polyimide by heat-treating the photo-oriented thin film at a predetermined temperature.

이와같은 방법으로 형성된 액정표시소자의 광배향 상태는 폴리아민산에서 전환된 아조 폴리이미드의 유연성이 낮아 LCD의 액정셀 봉착공정시 약 200℃∼300℃의 온도에서 열처리되더라도 광배향 상태가 파괴되지 않아 열적으로 안정된 상태를 유지할 수가 있어 대면적의 액정표시소자를 제조할 수 있으며, 고품위의 액정표시소자를 제조할 수 있는 효과를 얻을 수 있다.The optical orientation of the liquid crystal display device formed in this way has low flexibility of the azo polyimide converted from polyamine acid, so that the optical orientation does not break down even when heat-treated at a temperature of about 200 ° C. to 300 ° C. during the liquid crystal cell sealing process of the LCD. Since the thermally stable state can be maintained, a large area liquid crystal display device can be manufactured, and an effect of manufacturing a high quality liquid crystal display device can be obtained.

도 1은 일반적인 액정표시소자의 단면구조를 도시한 단면도,1 is a cross-sectional view showing a cross-sectional structure of a general liquid crystal display device;

도 2는 본 발명에 따른 액정표시소자의 광배향막 제조공정도,2 is a manufacturing process diagram of an optical alignment film of a liquid crystal display device according to the present invention;

도 3은 실시예 1)의 공정으로 처리한 P1 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,3 is a polarization micrograph of a nematic liquid crystal cell to which a P1 photoalignment material treated in the process of Example 1) is applied;

도 4는 실시예 2)의 공정으로 처리한 P1 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,4 is a polarization micrograph of a nematic liquid crystal cell to which a P1 photoalignment material treated by the process of Example 2) is applied;

도 5는 실시예 3)의 공정으로 처리한 P1 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,5 is a polarization micrograph of a nematic liquid crystal cell to which a P1 photoalignment material treated by the process of Example 3) is applied;

도 6은 실시예 1)의 공정으로 처리한 P2 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,6 is a polarization micrograph of a nematic liquid crystal cell to which a P2 photoalignment material treated in the process of Example 1) is applied;

도 7은 실시예 2)의 공정으로 처리한 P2 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,7 is a polarization micrograph of a nematic liquid crystal cell to which a P2 photoalignment material treated in the process of Example 2) is applied;

도 8은 실시예 3)의 공정으로 처리한 P2 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,8 is a polarization micrograph of a nematic liquid crystal cell to which a P2 photoalignment material treated by the process of Example 3) is applied;

도 9는 실시예 1)의 공정으로 처리한 P3 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,9 is a polarization micrograph of the nematic liquid crystal cell to which the P3 photoalignment material treated in the process of Example 1) is applied;

도 10은 실시예 2)의 공정으로 처리한 P3 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,10 is a polarization micrograph of a nematic liquid crystal cell to which a P3 photoalignment material treated by the process of Example 2) is applied;

도 11은 실시예 3)의 공정으로 처리한 P3 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진,FIG. 11 is a polarization micrograph of a nematic liquid crystal cell to which a P3 photoalignment material treated by the process of Example 3) is applied;

도 12는 실시예 4)의 공정으로 처리한 P3 광배향 물질이 적용된 네마틱 액정셀의 편광현미경 사진.12 is a polarization micrograph of a nematic liquid crystal cell to which a P3 photoalignment material treated in the process of Example 4) is applied.

〈 도면의 주요부분에 대한 부호 설명 〉〈Explanation of the Signs of Major Parts of Drawings〉

1 ; 편광판 2 ; 유리기판One ; Polarizing plate 2; Glass substrate

3 ; 투명전극 4 ; (광)배향막3; Transparent electrode 4; (Optical) alignment film

5 ; 액정 6 ; 스페이서5; Liquid crystal 6; Spacer

7 ; 봉착제(sealer)7; Sealer

이하 본 발명에 따른 LCD의 광배향막 형성방법의 바람직한 실시예를 첨부된 도면을 참조로 하여 상세히 설명한다.Hereinafter, a preferred embodiment of a method of forming an optical alignment film of an LCD according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 LCD의 광배향막 형성공정을 순차적으로 나타낸 공정블럭도이다.2 is a process block diagram sequentially showing a process of forming an optical alignment film of an LCD according to the present invention.

도시된 바와 같이, 본 발명은 아조-주사슬 폴리아민산(azo-main chain polyamic acid) 박막형성 단계와, 광배향(photo-alignment) 단계와, 이미드화(imidization) 단계로 이루어진다.As shown, the present invention consists of azo-main chain polyamic acid thin film formation step, photo-alignment step, and imidization step.

먼저 박막형성 단계에서는 투명전극이 형성된 유리기판에 폴리아민산의 주사슬구조에 아조 분자가 결합되어 있는 광고분자 물질을 도포하고 도포에 사용된 용제를 약 70 ∼ 90℃의 온도범위에서 열처리하여 아조-주사슬 폴리아민산 박막을 형성한다.First, in the thin film formation step, an ad molecular material in which azo molecules are bonded to the main chain structure of polyamic acid is applied to a glass substrate on which a transparent electrode is formed, and the solvent used for application is heat-treated at a temperature range of about 70 to 90 ° C. A main chain polyamine acid thin film is formed.

광배향 단계에서는 상기 아조-주사슬 폴리아민산 박막에 UV 또는 레이저 빛을 조사하면 광반응에 의해 광배향막이 배향된다. 이때 아조-주사슬 폴리아민산은 유연성이 높다.In the photoalignment step, when the UV light or laser light is irradiated to the azo-chain polyamine acid thin film, the photoalignment layer is oriented by a photoreaction. At this time, the azo-chain polyamine acid has high flexibility.

이미드화 단계에서는 상기 광배향된 광배향막(4)을 200∼300℃의 온도범위에서 열처리하여 아조-주사슬 폴리아민산에서 아조-주사슬 폴리이미드로 전환시킨다. 이때 전환된 아조-주사슬 폴리이미드는 유연성이 낮으며, 광배향된 상태에서 폴리이미드로 전환되었으므로 비슷한 온도로 가열되더라도 광배열 상태가 파괴되지 않는 특성을 갖게 된다. 즉, LCD제조공정중 봉착공정시 약 200℃∼300℃의 온도에서 열처리되더라도 광배향 상태가 파괴되지 않아 열적으로 안정된 상태를 유지할 수 있다.In the imidization step, the photo-aligned photoalignment film 4 is heat-treated at a temperature in the range of 200 to 300 ° C. to convert azo-chain polyamine acid to azo-chain polyimide. In this case, the converted azo-chain polyimide has low flexibility, and since it is converted to polyimide in the photo-oriented state, the photo-aligned state is not destroyed even when heated to a similar temperature. That is, even when heat-treated at a temperature of about 200 ℃ to 300 ℃ during the sealing process during the LCD manufacturing process, the photo-alignment state is not destroyed, thereby maintaining a thermally stable state.

이하, 실시예를 통해 본 발명의 작용효과를 설명한다.Hereinafter, the working effect of the present invention through the examples.

실시예에서는 광배향 물질을 아조 단분자(P1) 또는 폴리이미드를 기판에 도포하여 광배향한 경우와, 아조-부사슬 폴리아믹 산(P2)을 기판에 도포하여 광배향한 경우 및 아조-주사슬 폴리아믹 산(P3)을 기판에 도포하여 광배향한 경우로 구분하여 통상적인 액정표시패널을 구성하였다.In the embodiment, the photo-alignment material is photo-aligned by applying azo monomolecule (P1) or polyimide to the substrate, and the photo-alignment by applying azo-chain polyamic acid (P2) to the substrate and azo-chain polya The conventional liquid crystal display panel was constructed by dividing the mixed acid (P3) onto the substrate and photoalignment.

상기 광배향 물질의 화학구조식은 다음과 같다.Chemical structure of the photo-alignment material is as follows.

Figure kpo00000
Figure kpo00000

Figure kpo00001
Figure kpo00001

Figure kpo00002
Figure kpo00002

화학식 1은 아조 단분자의 화학구조식이고, 화학식 2는 아조-측쇄 폴리아민산의 화학구조식이며, 화학식 3은 아조-주쇄 폴리아민산의 화학구조식이다.Formula 1 is a chemical formula of azo monomolecule, Formula 2 is a chemical formula of azo-branched polyamine acid, and Formula 3 is a chemical formula of azo-chain polyamine acid.

이와같은 상기 광배향 물질을 각각 아래와 같은 단계에 의해 광배향시켰다.Such photo-alignment materials were photo-aligned by the following steps, respectively.

실시예 1) 예비건조 =〉 광배향Example 1) Predrying => Photoalignment

실시예 2) 예비건조 =〉 이미드화 =〉 광배향Example 2) Predrying => Imidization => Photoalignment

실시예 3) 예비건조 =〉 광배향 =〉 이미드화Example 3) Predrying => Photoalignment => Imidization

실시예 4) 예비건조 =〉 광배향 =〉 이미드화 =〉 열처리Example 4) Predrying => Photoalignment => Imidization => Heat Treatment

상기 예비건조(soft curing) 단계는 기판상에 도포된 각각의 광배향 물질에 포함된 용제를 증발시키기 위한 공정으로 80℃에서 30분 동안 수행되었다.The soft curing step was carried out for 30 minutes at 80 ° C. as a process for evaporating the solvent contained in each photo-alignment material applied on the substrate.

상기 광배향(photo alignment) 단계에서는 상기 각각의 광배향 물질에 350㎚의 UV를 10분 동안 조사하였다.In the photo alignment step, 350 nm UV was irradiated to each photo alignment material for 10 minutes.

상기 이미드화(imidization) 단계에서는 상기 예비건조된 광배향 물질을 폴리이미드막으로 형성시키기 위해 250℃에서 60분 동안 경화(hard curing)시켰다.In the imidization step, the pre-dried photo-alignment material was hard cured at 250 ° C. for 60 minutes to form a polyimide film.

상기 열처리(thermal aging) 단계에서는 통상적으로 LCD 제조단계에서 필수적으로 진행되는 봉착공정시 가해지는 온도(300℃에서 60분 동안)를 임의로 설정하여 가열한 것이다.In the thermal aging step, a temperature (for 300 minutes at 300 ° C.) applied during the sealing process, which is normally performed in the LCD manufacturing step, is arbitrarily set and heated.

도 3 내지 도 5는 P1 광배향 물질이 적용된 네마틱 액정셀을 직각교차된 편광판 사이에 개재한 편광현미경 사진을 첨부한 것으로, 도 3은 실시예 1)의 공정으로 광배향된 것이며, 도 4는 실시예 2)의 공정으로 광배향된 것이며, 도 5는 실시예 3)의 공정으로 광배향된 것이다.3 to 5 are attached to the polarization microscope picture of the nematic liquid crystal cell to which the P1 photo-alignment material is applied between the polarizing plates crossed at right angles, FIG. 3 is a photo-alignment by the process of Example 1, Figure 4 Is photo-aligned by the process of Example 2), Figure 5 is photo-aligned by the process of Example 3).

예시도면들에서 위왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 0°일때의 텍스처(texture)이며, 위오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 45°일때의 텍스처이며, 아래왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 90°일때의 텍스처이며, 아래오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 135°일때의 텍스처이다.In the exemplary drawings, the upper left (arm) is a texture when the optical axis of the liquid crystal 5 and the direction of the polarizer 1 are 0 °, and the upper right (name) is the optical axis and the polarizer 1 of the liquid crystal 5. ) Is the texture when the direction of 45 °, the lower left (arm) is the texture when the optical axis of the liquid crystal 5 and the direction of the polarizing plate 1 is 90 °, the lower right (light) is the optical axis of the liquid crystal 5 And the texture when the direction of the polarizing plate 1 is 135 degrees.

즉, 도 3에서 도시된 바와 같이, 실시예 1)에 따라 예비건조 후 광배향시킨 경우에는 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타나는 반면에 도 4에 도시된 바와 같이, 실시예 2)에 따라 예비건조 =〉 이미드화 =〉 광배향시킨 경우에는 거의 광배향 특성을 상실하게 됨을 알 수 있다. 이는 광배향 물질의 이미드화 공정이 먼저 진행됨으로 인해 광배향 물질의 유연성이 떨어져 광배향 공정시 광배향이 원활하게 이루어지지 않음을 알 수 있다.That is, as shown in FIG. 3, in the case of photoalignment after predrying according to Example 1), alignment characteristics are excellent depending on the optical axis of the liquid crystal and the azimuth angle of the polarizing plate, as shown in FIG. 4. Preliminary drying => imidization => according to Example 2) it can be seen that the photo-alignment characteristics are almost lost. This can be seen that since the imidization process of the photo-alignment material proceeds first, the flexibility of the photo-alignment material is reduced and thus the photo-alignment is not smoothly performed during the photo-alignment process.

도 5는 실시예 3)에 따라 예비건조 =〉 광배향 =〉 이미드화시킨 경우로 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타남을 알 수 있다. 즉, 광배향 물질을 이미드화시키기 전에 UV를 조사하여 광배향시키면 광배향 물질의 유연성이 높은 상태에서 광배향되며, 후속되는 이미드화 공정에 의해 폴리이미드로 전환되어 열적으로 안정성을 갖게된다.FIG. 5 shows that the alignment characteristics are excellent according to the optical axis of the liquid crystal and the azimuth angle of the polarizing plate when pre-dried => photo alignment => imidization according to Example 3). That is, when the photoalignment is performed by irradiating UV before the photoalignment material is imidated, the photoalignment is performed in a state where the flexibility of the photoalignment material is high, and is converted to polyimide by a subsequent imidization process to have thermal stability.

도 6 내지 도 8은 P2 광배향 물질이 적용된 네마틱 액정셀을 직각교차된 편광판 사이에 개재한 편광현미경 사진을 첨부한 것으로, 도 6은 실시예 1)의 공정으로 광배향된 것이며, 도 7은 실시예 2)의 공정으로 광배향된 것이며, 도 8은 실시예 3)의 공정으로 광배향된 것이다.6 to 8 are attached to the polarization micrographs of the nematic liquid crystal cell to which the P2 photo-alignment material is applied between the polarizing plates crossed at right angles, FIG. 6 is a photo-alignment by the process of Example 1), FIG. Is photo-aligned by the process of Example 2), and FIG. 8 is photo-aligned by the process of Example 3).

예시도면들에서 위왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 0°일때의 텍스처(texture)이며, 위오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 45°일때의 텍스처이며, 아래왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 90°일때의 텍스처이며, 아래오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 135°일때의 텍스처이다.In the exemplary drawings, the upper left (arm) is a texture when the optical axis of the liquid crystal 5 and the direction of the polarizer 1 are 0 °, and the upper right (name) is the optical axis and the polarizer 1 of the liquid crystal 5. ) Is the texture when the direction of 45 °, the lower left (arm) is the texture when the optical axis of the liquid crystal 5 and the direction of the polarizing plate 1 is 90 °, the lower right (light) is the optical axis of the liquid crystal 5 And the texture when the direction of the polarizing plate 1 is 135 degrees.

즉, 도 6에서 도시된 바와 같이, 실시예 1)에 따라 예비건조 후 광배향시킨 경우에는 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타나는 반면에 도 7에 도시된 바와 같이, 실시예 2)에 따라 예비건조 =〉 이미드화 =〉 광배향시킨 경우에는 거의 광배향 특성을 상실하게 됨을 알 수 있다. 이는 광배향 물질의 이미드화 공정이 먼저 진행됨으로 인해 광배향 물질의 유연성이 떨어져 광배향 공정시 광배향이 원활하게 이루어지지 않음을 알 수 있다.That is, as shown in FIG. 6, in the case of photoalignment after pre-drying according to Example 1), alignment characteristics are excellent according to the optical axis of the liquid crystal and the azimuth angle of the polarizing plate, as shown in FIG. 7. Preliminary drying => imidization => according to Example 2) it can be seen that the photo-alignment characteristics are almost lost. This can be seen that since the imidization process of the photo-alignment material proceeds first, the flexibility of the photo-alignment material is reduced, so that the photo-alignment is not smoothly performed during the photo-alignment process.

도 8은 실시예 3)에 따라 예비건조 =〉 광배향 =〉 이미드화시킨 경우로 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타남을 알 수 있다. 즉, 광배향 물질을 이미드화시키기 전에 UV를 조사하여 광배향시키면 광배향 물질의 유연성이 높은 상태에서 광배향되며, 후속되는 이미드화 공정에 의해 폴리이미드로 전환되어 열적으로 안정성을 갖게된다.FIG. 8 shows that the alignment characteristics are excellent according to the optical axis of the liquid crystal and the azimuth angle of the polarizing plate when pre-dried => photo-alignment => imidization according to Example 3). That is, when the photoalignment is performed by irradiating UV before the photoalignment material is imidated, the photoalignment is performed in a state where the flexibility of the photoalignment material is high, and is converted to polyimide by a subsequent imidization process to have thermal stability.

도 9 내지 도 12는 P3 광배향 물질이 적용된 네마틱 액정셀을 직각교차된 편광판 사이에 개재한 편광현미경 사진을 첨부한 것으로, 도 9는 실시예 1)의 공정으로 광배향된 것이며, 도 10은 실시예 2)의 공정으로 광배향된 것이며, 도 11은 실시예 3)의 공정으로 광배향된 것이며, 도 12는 실시예 4)의 공정으로 광배향된 것이다.9 to 12 are attached to the polarized light micrograph of the nematic liquid crystal cell to which the P3 photo-alignment material is applied between the polarizing plate crossed at right angles, Figure 9 is a photo-alignment by the process of Example 1, Figure 10 Is photo-aligned by the process of Example 2), FIG. 11 is photo-aligned by the process of Example 3), and FIG. 12 is photo-aligned by the process of Example 4).

예시도면들에서 위왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 0°일때의 텍스처(texture)이며, 위오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 45°일때의 텍스처이며, 아래왼쪽(암)은 액정(5)의 광축과 편광판(1)의 방향이 90°일때의 텍스처이며, 아래오른쪽(명)은 액정(5)의 광축과 편광판(1)의 방향이 135°일때의 텍스처이다.In the exemplary drawings, the upper left (arm) is a texture when the optical axis of the liquid crystal 5 and the direction of the polarizer 1 are 0 °, and the upper right (name) is the optical axis and the polarizer 1 of the liquid crystal 5. ) Is the texture when the direction of 45 °, the lower left (arm) is the texture when the optical axis of the liquid crystal 5 and the direction of the polarizing plate 1 is 90 °, the lower right (light) is the optical axis of the liquid crystal 5 And the texture when the direction of the polarizing plate 1 is 135 degrees.

즉, 도 9에서 도시된 바와 같이, 실시예 1)에 따라 예비건조 후 광배향시킨 경우에는 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타나는 반면에 도 10에 도시된 바와 같이, 실시예 2)에 따라 예비건조 =〉 이미드화 =〉 광배향시킨 경우에는 거의 광배향 특성을 상실하게 됨을 알 수 있다. 이는 광배향 물질의 이미드화 공정이 먼저 진행됨으로 인해 광배향 물질의 유연성이 떨어져 광배향 공정시 광배향이 원활하게 이루어지지 않음을 알 수 있다.That is, as shown in FIG. 9, in the case of photoalignment after pre-drying according to Example 1), alignment characteristics are excellent depending on the optical axis of the liquid crystal and the azimuth angle of the polarizing plate, as shown in FIG. 10. Preliminary drying => imidization => according to Example 2) it can be seen that the photo-alignment characteristics are almost lost. This can be seen that since the imidization process of the photo-alignment material proceeds first, the flexibility of the photo-alignment material is reduced and thus the photo-alignment is not smoothly performed during the photo-alignment process.

도 11은 실시예 3)에 따라 예비건조 =〉 광배향 =〉 이미드화시킨 경우로 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타남을 알 수 있다. 즉, 광배향 물질을 이미드화시키기 전에 UV를 조사하여 광배향시키면 광배향 물질의 유연성이 높은 상태에서 광배향되며, 후속되는 이미드화 공정에 의해 폴리이미드로 전환되어 열적으로 안정성을 갖게된다.FIG. 11 shows that the alignment characteristics are excellent according to the optical axis of the liquid crystal and the azimuth angle of the polarizing plate when pre-dried => photo-alignment => imidization according to Example 3). That is, when the photoalignment is performed by irradiating UV before the photoalignment material is imidated, the photoalignment is performed in a state where the flexibility of the photoalignment material is high, and is converted to polyimide by a subsequent imidization process to have thermal stability.

도 12는 실시예 4)에 따라 예비건조 =〉 광배향 =〉 이미드화 =〉 열처리시킨 경우로 액정의 광축과 편광판의 방위각에 따라 배향특성이 우수하게 나타남을 알 수 있다. 즉, LCD 제조과정에서 필수적인 액정셀의 봉착공정시 약 200℃∼300℃의 온도에서 열처리되더라도 그 배향능력을 상실하거나 배향능력이 저하되지 않게됨을 알 수 있다. 이는 앞에서 언급한 바와 같이, 광배향 물질을 이미드화시키기 전에 UV를 조사하여 광배향시키면 광배향 물질의 유연성이 높은 상태에서 광배향되며, 후속되는 이미드화 공정에 의해 폴리이미드로 전환되어 열적으로 안정성을 갖게되기 때문이다.FIG. 12 shows that the alignment characteristics are excellent according to the optical axis of the liquid crystal and the azimuth angle of the polarizing plate when pre-drying => photoalignment => imidization => heat treatment according to Example 4). That is, even when heat-treated at a temperature of about 200 ℃ to 300 ℃ during the sealing process of the liquid crystal cell, which is essential in the LCD manufacturing process, it can be seen that the alignment ability is not lost or the alignment ability is not lowered. As mentioned above, photo-alignment by UV irradiation prior to imidization of the photo-alignment material results in photo-alignment in a highly flexible state of the photo-alignment material, which is converted into polyimide by a subsequent imidization process and thermally stable. Because you have.

이상, 상기 내용은 본 발명의 바람직한 실시예를 단지 예시한 것으로 본 발명이 속하는 분야의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수 있다.The foregoing is merely illustrative of the preferred embodiment of the present invention and those skilled in the art to which the present invention pertains may make modifications and changes to the present invention without changing the subject matter of the present invention.

따라서 본 발명에 따르면, 광배향 물질을 박막으로 제작한 후 광배향시키고 폴리이미드로 전환시키는 공정단계를 적용함으로써 열적 안정성이 확보된 광배향막을 얻을 수 있으며, 더 나아가 대면적의 액정표시소자의 배향막을 제작하거나 고품위의 액정표시소자의 배향막을 제작할 수 있는 효과를 가져올 수 있다.Therefore, according to the present invention, by applying a process step of fabricating a photo-alignment material into a thin film and then photo-aligning and converting to polyimide, an optical alignment film having a thermal stability can be obtained, and further, an alignment film of a large-area liquid crystal display device. It can produce the effect or to produce an alignment film of a high-quality liquid crystal display device.

Claims (6)

LCD의 광배향막 형성방법에 있어서,In the method of forming an optical alignment film of LCD, 투명전극이 형성된 유리기판에 광배향 물질을 도포하고 도포에 사용된 용제를 소정온도에서 열처리하여 박막을 형성하는 단계와;Forming a thin film by coating a photo-alignment material on a glass substrate on which a transparent electrode is formed and heat-treating the solvent used for coating at a predetermined temperature; 상기 박막에 UV 또는 레이저를 조사하여 광배향하는 단계와;Photo-alignment by irradiating the thin film with UV or laser; 상기 광배향된 박막을 소정온도에서 열처리하여 상기 폴리아민산을 폴리이미드로 전환하는 단계;를 구비하는 액정표시소자의 광배향막 형성방법.And converting the polyamic acid into polyimide by heat-treating the photo-aligned thin film at a predetermined temperature. 제 1 항에 있어서, 상기 광배향 물질이 아조-주사슬 폴리아민산(P3) 물질인 것을 특징으로 하는 액정표시소자의 광배향막 형성방법.The method of claim 1, wherein the optical alignment material is an azo-chain polyamine acid (P3) material. 제 1 항에 있어서, 상기 광배향 물질이 아조 단분자(P1) 또는 폴리이미드 물질인 것을 특징으로 하는 액정표시소자의 광배향막 형성방법.The method of claim 1, wherein the photoalignment material is an azo single molecule (P1) or a polyimide material. 제 1 항에 있어서, 상기 광배향 물질이 아조-부사슬 폴리아믹 산(P2) 물질인 것을 특징으로 하는 액정표시소자의 광배향막 형성방법.The method of claim 1, wherein the photoalignment material is an azo-subchain polyamic acid (P2) material. 제 1 항에 있어서, 상기 광고분자물질의 박막을 도포하는 단계에서 도포에 사용된 용제를 70 ∼ 90℃의 온도범위에서 열처리하는 단계를 포함하는 것을 특징으로 하는 액정표시소자의 광배향막 형성방법.The method of claim 1, further comprising heat-treating the solvent used for coating in the step of applying the thin film of the advertising molecular material at a temperature range of 70 to 90 ° C. 7. 제 1 항에 있어서, 상기 광배향막을 열처리하는 단계는 200∼300℃의 온도범위에서 수행되는 것을 특징으로 하는 액정표시소자의 광배향막 형성방법.The method of claim 1, wherein the heat treatment of the optical alignment layer is performed at a temperature in a range of 200 to 300 ° C. 7.
KR1019970030766A 1997-07-03 1997-07-03 Fabrication method for photosensitive alignment layer of lcd KR100268031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970030766A KR100268031B1 (en) 1997-07-03 1997-07-03 Fabrication method for photosensitive alignment layer of lcd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970030766A KR100268031B1 (en) 1997-07-03 1997-07-03 Fabrication method for photosensitive alignment layer of lcd

Publications (2)

Publication Number Publication Date
KR19990008689A KR19990008689A (en) 1999-02-05
KR100268031B1 true KR100268031B1 (en) 2000-10-16

Family

ID=19513251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970030766A KR100268031B1 (en) 1997-07-03 1997-07-03 Fabrication method for photosensitive alignment layer of lcd

Country Status (1)

Country Link
KR (1) KR100268031B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615835B1 (en) * 1999-06-08 2006-08-25 삼성전자주식회사 Apparatus for forming an alignment pattern of a liquid crystal display device and method for forming the alignment pattern using the same
US6582776B2 (en) * 2000-11-24 2003-06-24 Hong Kong University Of Science And Technology Method of manufacturing photo-alignment layer
KR101331902B1 (en) * 2007-02-26 2013-11-22 엘지디스플레이 주식회사 Method of forming alignment film in liquid crystal display
KR101333592B1 (en) * 2007-04-05 2013-11-26 엘지디스플레이 주식회사 Method of forming alignment layer of liquid crystal display device
KR101450877B1 (en) 2007-11-20 2014-10-14 엘지디스플레이 주식회사 Liquid crystal display device and method of fabricating the same

Also Published As

Publication number Publication date
KR19990008689A (en) 1999-02-05

Similar Documents

Publication Publication Date Title
US5739882A (en) LCD polymerized column spacer formed on a modified substrate, from an acrylic resin, on a surface having hydrophilic and hydrophobic portions, or at regular spacings
JP3102970B2 (en) Information display device and method of manufacturing the same
JP4515984B2 (en) Optical elements
JP2005521101A (en) Liquid crystal device, method for manufacturing liquid crystal device, method for controlling liquid crystal device
JPH08328005A (en) Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
KR20210020052A (en) Liquid crystal display
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
KR20030063656A (en) Liquid crystal display and method of manufacturing thereof
KR20020041432A (en) Liquid crystal display
US5946064A (en) Alignment layer, method for forming alignment layer and LCD having the same
KR100268031B1 (en) Fabrication method for photosensitive alignment layer of lcd
KR100255072B1 (en) Method of forming an optical alignment film of a liquid crystal display device
JP3105379B2 (en) Method for manufacturing liquid crystal electro-optical device
KR100255071B1 (en) Method of forming an optical alignment film of a liquid crystal display device
KR100831067B1 (en) Liquid Crystal Orientation Layer And Fabrication Method Thereof
JPH0815707A (en) Liquid crystal display element and its production
JPH06331948A (en) Production of liquid crystal electrooptical device
JPH06332012A (en) Production of liquid crystal electrooptical device
KR20020051185A (en) Ferroelectric liquid crystal display and method of fabricating the same
JP3124425B2 (en) Liquid crystal display panel and method of manufacturing the same
KR20020036309A (en) LCD Display Method Using photo Allgnment Technology
JPH06337418A (en) Liquid crystal electro-optical device
KR19980023051A (en) Manufacturing method of ferroelectric liquid crystal display device
JP3220126B2 (en) Liquid crystal display panel manufacturing method
KR100462383B1 (en) Liquid Crystal Display Device and Liquid Crystal Alignment Method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
O035 Opposition [patent]: request for opposition
O132 Decision on opposition [patent]
O074 Maintenance of registration after opposition [patent]: final registration of opposition
FPAY Annual fee payment

Payment date: 20030708

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee