JPH04126998A - Boiling heat transfer tube - Google Patents
Boiling heat transfer tubeInfo
- Publication number
- JPH04126998A JPH04126998A JP24773790A JP24773790A JPH04126998A JP H04126998 A JPH04126998 A JP H04126998A JP 24773790 A JP24773790 A JP 24773790A JP 24773790 A JP24773790 A JP 24773790A JP H04126998 A JPH04126998 A JP H04126998A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat transfer
- grooves
- liquid refrigerant
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009835 boiling Methods 0.000 title claims abstract description 40
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000003507 refrigerant Substances 0.000 abstract description 72
- 239000007788 liquid Substances 0.000 abstract description 42
- 230000000694 effects Effects 0.000 abstract description 6
- 230000001133 acceleration Effects 0.000 abstract 1
- 238000009751 slip forming Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は空気調和機や冷凍機器、自動車機器等の、冷媒
と空気等の流体間で熱の授受を行う熱交換器に用いられ
る沸騰伝熱管に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to boiling heat transfer tubes used in heat exchangers for transferring heat between fluids such as refrigerant and air, such as air conditioners, refrigeration equipment, and automobile equipment. It is something.
従来の技術
近年、熱交換器は機器設計の面からコンパクト化が要求
されており、熱交換器の冷媒側流路を形成する伝熱管に
ついても実公昭55−14956号公報や実公昭55−
26706号公報のように管内周面に螺旋状の溝を設け
る等の工夫により高効率化が図られている。2. Description of the Related Art In recent years, heat exchangers have been required to be made more compact in terms of equipment design, and heat exchanger tubes that form the refrigerant side flow path of heat exchangers have also been disclosed in Japanese Utility Model Publication No. 14956/1983 and Utility Model Publication No. 55-1982.
As disclosed in Japanese Patent No. 26706, high efficiency has been achieved by providing a spiral groove on the inner circumferential surface of the pipe.
以下、図面を参照しながら上述した従来の沸騰伝熱管に
ついて説明を行う。Hereinafter, the above-mentioned conventional boiling heat exchanger tube will be explained with reference to the drawings.
第5図は従来の沸騰伝熱管の断面形状を示し、第6図と
第7図は前記沸騰伝熱管の造管加工前の伝熱面形状を示
し、第8図は前記沸騰伝熱管を用いた熱交換器の一例を
示す外観図である。第5図から第7図において、1は断
面がほぼ円筒状の沸騰伝熱管で、内側に流路2を形成し
ている。8は前記沸騰伝熱管1の管内周面1aに設けら
れた7字型の溝で、沸騰伝熱管1の軸m方向に対して螺
旋状に連続して多数設けられている。またこの沸騰伝熱
管1は、造管及び溶接加工を経て成形され、造管加工前
の平板状の伝熱面4の段階で前記溝3を加工した後、平
板状から管状に造管され、更に伝熱面4両端の端面5a
と5bを溶接して形成される。Figure 5 shows the cross-sectional shape of a conventional boiling heat exchanger tube, Figures 6 and 7 show the shape of the heat transfer surface of the boiling heat exchanger tube before tube manufacturing, and Figure 8 shows the shape of the heat transfer surface of the boiling heat exchanger tube before tube manufacturing. FIG. 2 is an external view showing an example of a heat exchanger. In FIGS. 5 to 7, reference numeral 1 denotes a boiling heat transfer tube having a substantially cylindrical cross section, with a flow path 2 formed inside. Reference numeral 8 denotes a 7-shaped groove provided on the tube inner circumferential surface 1a of the boiling heat exchanger tube 1, and a large number of grooves are provided continuously in a spiral shape with respect to the axis m direction of the boiling heat exchanger tube 1. In addition, this boiling heat transfer tube 1 is formed through pipe making and welding processing, and after processing the groove 3 at the stage of forming the flat heat transfer surface 4 before the pipe forming process, the pipe is made from a flat plate shape to a tubular shape, Furthermore, the end surfaces 5a at both ends of the heat transfer surface 4
and 5b are welded together.
以上のように構成された沸騰伝熱管1は一般的に熱交換
器の一部として用いられる。第8図において、6は前記
沸騰伝熱管1を用いた熱交換器の一例で、一定間隔で平
行に並べられたフィン7とフィン7に直角に挿入された
前記沸騰伝熱管1とから構成されており、フィン7間を
流れる気流と沸騰伝熱管1内の流路2を渣れる沸騰過程
の冷媒との間で熱交換が行なわれる。その際、沸騰伝熱
管1の管内周面1aに7字型の溝3を螺旋状に設けるこ
とにより、水平な沸騰伝熱管1の流路2の管底部を流れ
ている液冷媒が毛細管現象によって溝3内を引き」二げ
られて管内周面1a全体が冷媒液膜で濡れることとなり
、有効伝熱面積が増大するたのに伝熱性能が向上してい
た。The boiling heat exchanger tube 1 configured as described above is generally used as a part of a heat exchanger. In FIG. 8, 6 is an example of a heat exchanger using the boiling heat exchanger tube 1, which is composed of fins 7 arranged in parallel at regular intervals and the boiling heat exchanger tube 1 inserted at right angles to the fins 7. Heat exchange is performed between the airflow flowing between the fins 7 and the refrigerant in the boiling process flowing through the flow path 2 in the boiling heat transfer tube 1. At this time, by providing the 7-shaped groove 3 in a spiral shape on the inner circumferential surface 1a of the boiling heat transfer tube 1, the liquid refrigerant flowing in the bottom of the flow path 2 of the horizontal boiling heat transfer tube 1 is caused by capillary action. As the inside of the groove 3 was pulled down, the entire inner circumferential surface 1a of the tube was wetted with a refrigerant liquid film, and although the effective heat transfer area was increased, the heat transfer performance was improved.
発明が解決しようとする課題
しかしながら上記のような構成では、沸騰伝熱管]の管
内周面1aの全てに薄い厚さの冷媒液膜が形成され伝熱
促進効果が得られるのは冷媒流速が小さくかつ冷媒の乾
き度が大きい領域、すなわち沸騰過程の後期だけである
。一方、沸騰過程の初期においては冷媒の乾き度は小さ
く管内の液冷媒が多いために液冷媒によって7字型の溝
3はすぐに埋もれ液冷媒はv字型の溝3の上を横切って
通過してしまい、上述したような有効伝熱面積の増大に
よる伝熱促進効果は望めない。更に、冷媒乾き度が大き
い領域においても、冷媒流速が大きいときには液冷媒は
流速が大きいために溝3を乗り越えてしまい溝3に沿っ
た液冷媒の流れを得ることはできず、逆に液冷媒の管内
周面1aがらの剥離や流動抵抗の大幅増大を招いて伝熱
性能が低下するという課題も有していた。Problems to be Solved by the Invention However, in the above configuration, a thin refrigerant liquid film is formed on the entire inner circumferential surface 1a of the boiling heat transfer tube, and the heat transfer promotion effect can only be obtained at a low refrigerant flow rate. And only in the region where the dryness of the refrigerant is large, that is, in the latter half of the boiling process. On the other hand, at the beginning of the boiling process, the dryness of the refrigerant is small and there is a large amount of liquid refrigerant in the tube, so the liquid refrigerant quickly fills the 7-shaped groove 3 and the liquid refrigerant passes across the V-shaped groove 3. Therefore, the effect of promoting heat transfer due to the increase in the effective heat transfer area as described above cannot be expected. Furthermore, even in areas where the dryness of the refrigerant is high, when the refrigerant flow rate is high, the liquid refrigerant will overcome the grooves 3 due to the high flow rate, making it impossible to obtain a flow of liquid refrigerant along the grooves 3. Another problem was that the heat transfer performance deteriorated due to peeling of the inner circumferential surface 1a of the tube and a significant increase in flow resistance.
本発明は」二記課題に鑑み、沸騰伝熱管の管内周面形状
を工夫することによって、冷媒の流速や乾き度に関わら
ずいずれのに冷媒条件においても伝熱性能を大幅に向上
させ、沸騰伝熱管を用いた熱交換器の性能向上を図ろう
とするものである。In view of the above two problems, the present invention significantly improves heat transfer performance under any refrigerant condition, regardless of the flow rate or degree of dryness of the refrigerant, by devising the shape of the inner circumferential surface of the boiling heat transfer tube. The aim is to improve the performance of heat exchangers using heat transfer tubes.
課題を解決するための手段
」二記課題を解決するために本発明の沸騰伝熱管は、管
軸方向に対して一定の傾斜を持った方向に連続した複数
の傾斜溝と管軸方向に対して平行な方向に連続した複数
の平行溝とを交差状に連続して管内周面に設けるもので
ある。Means for Solving the Problems In order to solve the second problem, the boiling heat exchanger tube of the present invention has a plurality of inclined grooves continuous in a direction having a constant inclination with respect to the tube axis direction and A plurality of parallel grooves that are continuous in parallel directions are provided in the inner circumferential surface of the pipe in an intersecting manner.
作用
本発明は上記した構成によって、まず比較的冷媒流速が
小さい領域では従来と同様に毛細管現象により管底部を
流れる液冷媒を傾斜溝に沿って弓き上げて有効伝熱面積
を増大し伝熱促進が図られるが、傾斜溝だけでなく平行
溝も設けであるために溝部での液冷媒保持量が従来より
大きく、冷媒が高乾き度域だけでなく比較的低乾き度域
で液冷媒が多い領域でも傾斜溝や平行溝に沿った液冷媒
の流れを得て前期伝熱促進効果を十分に得ることができ
る。また冷媒流速が大きい領域では、冷媒流速が大きい
ために傾斜溝に沿う液冷媒流れよりも平行溝に沿う液冷
媒流れが多くなり、従来例のように液冷媒が傾斜溝を乗
り越えて管内周面から剥離したり流動抵抗を大幅に増大
させることはなく、平行溝を主と1ノだ毛細管現象によ
り液冷媒厚さを均一に薄< 1./て伝熱促進を図るこ
とができる。Effect of the present invention With the above-described configuration, first, in a region where the refrigerant flow velocity is relatively low, the liquid refrigerant flowing at the bottom of the tube is lifted up along the inclined groove by capillary action, as in the past, to increase the effective heat transfer area and heat transfer. However, since not only slanted grooves but also parallel grooves are provided, the amount of liquid refrigerant held in the groove is larger than before, and the liquid refrigerant is absorbed not only in high dryness areas but also in relatively low dryness areas. Even in a large area, the flow of liquid refrigerant along the inclined grooves or parallel grooves can be obtained, and the effect of promoting heat transfer in the first stage can be sufficiently obtained. In addition, in areas where the refrigerant flow velocity is high, the liquid refrigerant flows more along the parallel grooves than along the inclined grooves due to the high refrigerant flow velocity. The thickness of the liquid refrigerant is uniformly thinned by the capillary phenomenon mainly in the parallel grooves, without peeling off from the surface or significantly increasing the flow resistance. / can promote heat transfer.
実施例
以下本発明の実施例の沸騰伝熱管について図面を参照し
ながら説明する。EXAMPLES Hereinafter, boiling heat exchanger tubes according to examples of the present invention will be described with reference to the drawings.
第1図及び第3図、第4図は本発明の実施例における沸
騰伝熱管の造管加工前の伝熱面形状を示し、第2図は第
1図の沸騰伝熱管の造管加工後の円周方向断面形状を示
す。第1図から第4図において、8は断面がほぼ円筒状
の沸騰伝熱管で、内側に流vr9を形成している。10
及び11はそれぞれ前記沸騰伝熱管8の管内周面8aに
形成された傾斜溝と平行溝で、傾斜溝10は管軸n方向
と一定の傾斜をもった方向に、平行溝11は管軸n方向
と平行な方向にそれぞれ連続して設けられ、かつ管内周
面8a全体にわたって前記傾斜溝10と平行溝11は交
差状に構成されている。またこの沸騰伝熱管8は、造管
及び溶接加工を経て成形され、造管加工前の平板状の伝
熱面12の段階で前記傾斜溝10及び平行溝11が成形
された後、平板状から管状に造管され、更に伝熱面12
両端の端面1.3 aと13bを溶接して形成される。Figures 1, 3, and 4 show the shape of the heat transfer surface of the boiling heat exchanger tube in the embodiment of the present invention before the tube manufacturing process, and Figure 2 shows the shape of the boiling heat exchanger tube in the embodiment of the present invention after the tube manufacturing process. The circumferential cross-sectional shape of is shown. In FIGS. 1 to 4, 8 is a boiling heat transfer tube having a substantially cylindrical cross section, forming a flow vr9 inside. 10
and 11 are an inclined groove and a parallel groove formed on the tube inner circumferential surface 8a of the boiling heat exchanger tube 8, respectively.The inclined groove 10 is oriented in a direction with a constant inclination to the tube axis n direction, and the parallel groove 11 is oriented in a direction with a constant inclination to the tube axis n direction. The inclined grooves 10 and the parallel grooves 11 are provided continuously in a direction parallel to the direction, and are arranged in an intersecting manner over the entire inner circumferential surface 8a of the tube. The boiling heat transfer tube 8 is formed through pipe making and welding, and after the inclined grooves 10 and the parallel grooves 11 are formed at the stage of forming the flat heat transfer surface 12 before the tube forming process, the boiling heat transfer tube 8 is formed from a flat plate shape. It is made into a tubular shape and further has a heat transfer surface 12.
It is formed by welding the end faces 1.3a and 13b at both ends.
以上のように構成された沸騰伝熱管8は従来例と同様に
熱交換器の一部として用いられ、管内に沸騰過程の冷媒
を流して使用される。この使用状態において、管内の流
路9を流れる冷媒は、まず比較的冷媒流速が小さい領域
では従来と同様に毛細管現象により管底部を流れる液冷
媒を引き上げて有効伝熱面積を増大し伝熱促進が図られ
るが、傾斜溝10だけでなく平行溝11も設けであるた
めに溝部での液冷媒保持量が従来より大きく、冷媒が高
乾き度域だけでなく比較的低乾き度域で液冷媒が多い領
域でも傾斜溝10や平行溝11に沿った液冷媒の流れを
得て前期伝熱促進効果を十分に得ることができる。また
冷媒流速が大きい領域では、冷媒流速が大きいために傾
斜溝に沿う液冷媒流れよりも平行溝11に沿う液冷媒流
れが多くなり、従来例のように液冷媒が傾斜溝10を乗
り越えて管内周面8aから剥離したり流動抵抗を大幅に
増大させることはなく、平行溝11を主とした毛細管現
象により液冷媒厚さを均一に薄くして伝熱促進を図るこ
とができる。The boiling heat transfer tube 8 configured as described above is used as a part of a heat exchanger as in the conventional example, and is used by flowing a refrigerant in the boiling process through the tube. In this usage state, the refrigerant flowing through the flow path 9 in the tube first pulls up the liquid refrigerant flowing at the bottom of the tube by capillary action in the region where the refrigerant flow rate is relatively low, increasing the effective heat transfer area and promoting heat transfer. However, since not only the inclined grooves 10 but also the parallel grooves 11 are provided, the amount of liquid refrigerant held in the grooves is larger than before, and the refrigerant is not only in high dryness areas but also in relatively low dryness areas. Even in a region where there is a large amount of heat transfer, the liquid refrigerant can flow along the inclined grooves 10 and the parallel grooves 11, and the first heat transfer promoting effect can be sufficiently obtained. In addition, in a region where the refrigerant flow velocity is high, the liquid refrigerant flows more along the parallel grooves 11 than the liquid refrigerant flows along the inclined grooves, and unlike the conventional example, the liquid refrigerant overcomes the inclined grooves 10 and enters the pipe. The thickness of the liquid refrigerant can be uniformly reduced by the capillary phenomenon mainly caused by the parallel grooves 11 to promote heat transfer without peeling off from the peripheral surface 8a or significantly increasing flow resistance.
以上のように本実施例によれば、管軸n方向に対して一
定の傾斜を持った方向に連続した複数の傾斜溝10と管
軸n方向に対して平行な方向に連続した複数の平行溝1
1とを交差状に連続して管内周面8aに設けることによ
り、冷媒流速が小さい領域では溝部での液冷媒保持量を
大きくして、冷媒高乾き度域のみでなく低乾き度域にお
ける液冷媒が多い領域でも毛細管現象により管底部を流
れる液冷媒を引き上げて内周面8aと液冷媒とが接する
有効伝熱面積の増大を図ると共に、更に冷媒流速が大き
い領域では平行溝11を主とした液冷媒の流れを得て液
冷媒の管内周面8aがらの剥離や流動抵抗の大幅増大を
抑え、毛細管現象により液冷媒厚さを均一に薄くして伝
熱促進を図ることができる。従って、冷媒の流速や乾き
度に関わらずいずれの冷媒条件においても伝熱性能を大
幅に向上させ、この沸騰伝熱管8を用いた熱交換器の性
能を大幅に向上することができる。As described above, according to this embodiment, a plurality of inclined grooves 10 are continuous in a direction having a constant inclination with respect to the tube axis n direction, and a plurality of parallel grooves 10 are continuous in a direction parallel to the tube axis n direction. Groove 1
1 in a continuous manner in a crosswise manner on the inner circumferential surface 8a of the pipe, the amount of liquid refrigerant held in the groove is increased in the region where the refrigerant flow rate is low, and the amount of liquid refrigerant held in the groove is increased not only in the high refrigerant dryness region but also in the low dryness region. Even in areas where there is a large amount of refrigerant, the liquid refrigerant flowing at the bottom of the tube is pulled up by capillary action to increase the effective heat transfer area where the inner circumferential surface 8a and the liquid refrigerant are in contact. By obtaining such a flow of liquid refrigerant, separation of the liquid refrigerant from the tube inner peripheral surface 8a and a significant increase in flow resistance can be suppressed, and the thickness of the liquid refrigerant can be uniformly thinned by capillary action to promote heat transfer. Therefore, the heat transfer performance can be significantly improved under any refrigerant conditions regardless of the flow rate or dryness of the refrigerant, and the performance of the heat exchanger using the boiling heat exchanger tube 8 can be significantly improved.
発明の効果
以上のように本発明は、管軸方向に対して一定の傾斜を
持った方向に連続した複数の傾斜溝と管軸方向に対して
平行な方向に連続した複数の平行溝とを交差状に連続し
て管内周面に設けることにより、冷媒流速が小さい領域
では溝部での液冷媒保持量を大きくして、冷媒高乾き度
域のみでなく低乾き度域における液冷媒が多い領域でも
毛細管現象により管底部を流れる液冷媒を引き上げて管
内周面と液冷媒とが接する有効伝熱面積の増大を図ると
共に、更に冷媒流速が大きい領域では平行溝を主とした
液冷媒の流れを得て液冷媒の管内周面からの剥離や流動
抵抗の大幅増大を抑え、毛細管現象により液冷媒厚さを
均一に薄くして伝熱促進を図ることができる。従って、
冷媒の流速や乾き度に関わらずいずれのに冷媒条件にお
いても伝熱性能を大幅に向上させ、この沸騰伝熱管を用
いた熱交換器の性能を大幅に向上することができる。Effects of the Invention As described above, the present invention has a plurality of inclined grooves continuous in a direction having a constant inclination with respect to the tube axis direction and a plurality of parallel grooves continuous in a direction parallel to the tube axis direction. By providing a continuous intersecting pattern on the inner circumferential surface of the pipe, the amount of liquid refrigerant held in the groove section is increased in areas where the refrigerant flow rate is low, and it is possible to increase the amount of liquid refrigerant held in the grooves not only in areas with high refrigerant dryness but also in areas with a large amount of liquid refrigerant in low dryness areas. However, the capillary phenomenon pulls up the liquid refrigerant flowing at the bottom of the tube to increase the effective heat transfer area where the inner peripheral surface of the tube and the liquid refrigerant are in contact, and in addition, in areas where the refrigerant flow velocity is high, the flow of the liquid refrigerant mainly through parallel grooves is improved. As a result, separation of the liquid refrigerant from the inner circumferential surface of the pipe and a significant increase in flow resistance can be suppressed, and the thickness of the liquid refrigerant can be uniformly reduced by capillary action to promote heat transfer. Therefore,
Heat transfer performance can be significantly improved under any refrigerant conditions, regardless of the flow rate or dryness of the refrigerant, and the performance of a heat exchanger using this boiling heat transfer tube can be significantly improved.
第1図は本発明の一実施例における沸騰伝熱管の造管加
工前の伝熱面形状を示す平面図、第2図は第1図の沸騰
伝熱管の造管加工後の形状を示す円周方向断面図、第3
図は第1図のA−A断面図、第4図は第1図のB−B断
面図、第5図は従来の沸騰伝熱管の形状を示す円周方向
断面図、第6図は第5図の沸騰伝熱管の造管加工前の伝
熱面形状を示す平面図、第7図は第6図のC−C断面図
、第8図は沸騰伝熱管を用いた熱交換器を示す斜視図で
ある。
8・・・沸騰伝熱管、8a・・・管内周面、10・・・
傾斜溝、11・・・平行溝。
代理人の氏名 弁理士 小鍜冶明 ほか2名1何
城
城FIG. 1 is a plan view showing the shape of the heat transfer surface of the boiling heat transfer tube before tube forming in an embodiment of the present invention, and FIG. 2 is a circle showing the shape of the boiling heat transfer tube of FIG. 1 after the tube forming process. Circumferential sectional view, 3rd
The figure is a sectional view taken along the line A-A in FIG. 1, FIG. 4 is a sectional view taken along the line BB in FIG. Figure 5 is a plan view showing the shape of the heat transfer surface of the boiling heat exchanger tube before tube manufacturing, Figure 7 is a cross-sectional view taken along line C-C in Figure 6, and Figure 8 is a heat exchanger using the boiling heat exchanger tube. FIG. 8... Boiling heat exchanger tube, 8a... Tube inner peripheral surface, 10...
Inclined groove, 11...Parallel groove. Name of agent: Patent attorney Yoshiaki Ogawa and 2 other people 1 Hejojo
Claims (1)
数の傾斜溝と管軸方向に対して平行な方向に連続した複
数の平行溝とを交差状に連続して管内周面に設けたこと
を特徴とする沸騰伝熱管。A plurality of inclined grooves continuous in a direction having a certain inclination with respect to the pipe axis direction and a plurality of parallel grooves continuous in a direction parallel to the pipe axis direction are provided in a continuous cross-like manner on the inner peripheral surface of the pipe. A boiling heat transfer tube characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24773790A JPH04126998A (en) | 1990-09-17 | 1990-09-17 | Boiling heat transfer tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24773790A JPH04126998A (en) | 1990-09-17 | 1990-09-17 | Boiling heat transfer tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04126998A true JPH04126998A (en) | 1992-04-27 |
Family
ID=17167922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24773790A Pending JPH04126998A (en) | 1990-09-17 | 1990-09-17 | Boiling heat transfer tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04126998A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996006707A1 (en) * | 1994-09-01 | 1996-03-07 | Olin Corporation | Manufacture of internally enhanced welded tubing |
US6000466A (en) * | 1995-05-17 | 1999-12-14 | Matsushita Electric Industrial Co., Ltd. | Heat exchanger tube for an air-conditioning apparatus |
-
1990
- 1990-09-17 JP JP24773790A patent/JPH04126998A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5730189A (en) * | 1992-12-28 | 1998-03-24 | Olin Corporation | Internally and externally enhanced wielded tube |
WO1996006707A1 (en) * | 1994-09-01 | 1996-03-07 | Olin Corporation | Manufacture of internally enhanced welded tubing |
US6000466A (en) * | 1995-05-17 | 1999-12-14 | Matsushita Electric Industrial Co., Ltd. | Heat exchanger tube for an air-conditioning apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0603108A1 (en) | Heat exchanger tube | |
US20050056407A1 (en) | Heat exchanger | |
JPH04126998A (en) | Boiling heat transfer tube | |
JP2842810B2 (en) | Heat transfer tube with internal groove | |
US4440216A (en) | Finned heat exchanger tube | |
JP2004085142A (en) | Tube for heat exchanger, and heat exchanger | |
JPH06147784A (en) | Heat exchanger tube | |
JPH05322477A (en) | Boiling heat transfer surface | |
JPH04126999A (en) | Boiling heat transfer tube | |
JP4632487B2 (en) | Internal grooved heat transfer tube and manufacturing method thereof | |
JP2802184B2 (en) | Heat transfer tube for condenser | |
KR940010977B1 (en) | Heat pipe using heat exchanger | |
JP3130063B2 (en) | Boiling heat transfer tube | |
JPH0490500A (en) | Evaporative heat transfer pipe | |
JP2004003733A (en) | Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe | |
JPH03122499A (en) | Boiling type heat transfer tube | |
JPH0313796A (en) | heat exchanger tube | |
JPH0498097A (en) | Boiling heat transfer tube | |
JPH04283398A (en) | Heat transfer conduit with boiling | |
JP3297457B2 (en) | Refrigerant pipe | |
KR960010641B1 (en) | Fin tube type heat-exchanger | |
JPH03267694A (en) | Manufacture of boiling heat transistor pipe | |
JPS6361895A (en) | Heat transfer pipe | |
JP3130078B2 (en) | Boiling heat transfer tube | |
JPH03129298A (en) | Condensation heat transfer pipe |