JPH0313796A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPH0313796A
JPH0313796A JP15094589A JP15094589A JPH0313796A JP H0313796 A JPH0313796 A JP H0313796A JP 15094589 A JP15094589 A JP 15094589A JP 15094589 A JP15094589 A JP 15094589A JP H0313796 A JPH0313796 A JP H0313796A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
performance
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15094589A
Other languages
Japanese (ja)
Inventor
Makoto Hori
誠 堀
Aritaka Tatsumi
辰己 有孝
Kiyoshi Oizumi
大泉 清
Yoshihiro Shinohara
篠原 義広
Tadao Otani
忠男 大谷
Kenichi Inui
謙一 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15094589A priority Critical patent/JPH0313796A/en
Publication of JPH0313796A publication Critical patent/JPH0313796A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To improve heat transfer performance in the operation of an air conditioner by forming spiral grooves having mutually opposite angles to a tube axis to an internal surface in a shape that the circumference of a tube is divided by an even number of 4 or more. CONSTITUTION:Spiral grooves having mutually opposite angles to a tube axis are formed to the internal surface of a heat transfer tube 3 in a shape that a circumference is divided into four. Consequently, a reversal in the direction of inclination of the grooves generated by hairpin machining is not conducted, performance is not changed by the direction of flow of refrigerant before and behind a hairpin section 11, and the performance of the whole evaporator is made better than the time of the usage of a heat transfer tube 2. Accordingly, heat transfer performance in an actual air conditioner can be enhanced without altering the direction of flow of the refrigerant or the constitution of the evaporator. When the base body refrigerant 4 condenses in the tube, a condensate 17 is collected to groove crossing sections 8, thus largely improving condensation performance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は伝熱管に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to heat exchanger tubes.

[従来の技術] 従来、空、凋機の蒸発器及び凝縮器に使用される伝熱管
は、傾斜溝あるいはリブ状突起が管の内面あるいは外面
に設けることにより、伝熱面積の増大、管内外流の乱流
促進などにより伝熱性能を高めてきた。
[Prior Art] Conventionally, heat transfer tubes used in evaporators and condensers of empty and dry machines have been provided with inclined grooves or rib-like protrusions on the inner or outer surface of the tubes to increase the heat transfer area and improve the flow inside and outside the tube. Heat transfer performance has been improved by promoting turbulence.

ところで従来の伝熱管の内面は、第8図に示すように、
傾斜状11η14a、14bあるいはりブ状突起を設け
ているため、液体冷媒5と気体冷媒4は第7図に示すよ
うな状態にあり、第6図に示す平滑管1と比較して液体
冷媒5が傾斜溝14a114bに沿って上昇するため、
蒸発性能は向上する。
By the way, the inner surface of a conventional heat exchanger tube is as shown in Fig. 8.
Since the slopes 11η14a, 14b or rib-like protrusions are provided, the liquid refrigerant 5 and the gas refrigerant 4 are in a state as shown in FIG. 7, and the liquid refrigerant 5 is in a state as shown in FIG. rises along the inclined groove 14a114b,
Evaporation performance is improved.

[発明が解決しようとする課題] しかし、第9図に示すように、実際の空調機用熱交換器
は中央部がヘアピン加工された伝熱管2″と管継手12
を交互に組み合わせてUベント状に構成されている。そ
の結果、管内の傾斜溝14a、14bの傾斜方向はヘア
ピン部11の前後で冷媒の流れ方向に対して逆転し、直
管部10では蒸発性能は高いが、反転された直管部10
′においては液体冷媒5が逆に管内下m 10 aに押
し下げられ、蒸発性能は著しく低下する。このため、片
面に溝加工され溶接されてなる2箇所の溝交差部8をを
する従来の伝熱管(軸対称溝付き管)2゛の蒸発性能は
著しく制限される。
[Problems to be Solved by the Invention] However, as shown in FIG. 9, an actual heat exchanger for an air conditioner consists of a heat exchanger tube 2'' with a hairpin in the center and a pipe joint 12.
It is configured in a U-bent shape by alternately combining them. As a result, the direction of inclination of the inclined grooves 14a and 14b in the pipe is reversed with respect to the flow direction of the refrigerant before and after the hairpin part 11, and although the evaporation performance is high in the straight pipe part 10, the inverted straight pipe part 10
At ', the liquid refrigerant 5 is conversely pushed down to the lower part of the pipe m 10 a, and the evaporation performance is significantly reduced. For this reason, the evaporation performance of a conventional heat transfer tube (axisymmetric grooved tube) 2', which has two groove intersections 8 formed by grooved and welded on one side, is significantly limited.

本発明の目的は、前、記した従来技術の欠点を解消し、
管内の蒸発性能あるいは凝縮性能を高めることができる
伝熱管を提供しようとするものである。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above,
The present invention aims to provide a heat exchanger tube that can improve the evaporation performance or condensation performance within the tube.

[課題を貯決するための手段及び作用]上記目的を達成
するために、本発明においては、管内に4以上の偶数箇
所の逆向きのらせん状溝が形成され、それによって実際
の空調機の運転における伝熱性能を向上させたものであ
る。
[Means and effects for solving the problems] In order to achieve the above object, in the present invention, spiral grooves in opposite directions are formed in an even number of 4 or more places in the pipe, thereby making it difficult to actually operate the air conditioner. It has improved heat transfer performance.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の伝熱管内面の構造を示した説明図であ
り、この実施例では、伝熱管3の内面に円周を4分割す
る形で、管軸に対し互いに逆向きの角度を有するらせん
状溝が形成されている。なお図中、8は溝交差部、9は
シーム溶接部、13は溝軸ピッチ、15aと15bは傾
斜溝ピッチである。
FIG. 1 is an explanatory diagram showing the structure of the inner surface of the heat exchanger tube of the present invention. In this embodiment, the inner surface of the heat exchanger tube 3 has a circumference divided into four, and angles facing opposite to each other with respect to the tube axis are formed. A spiral groove is formed. In the figure, 8 is a groove intersection, 9 is a seam weld, 13 is a groove axis pitch, and 15a and 15b are inclined groove pitches.

上記実施例によれば、ヘアピン加工により生じる溝の傾
斜方向の逆点が見られず、ヘアピン部11の前後におい
て、冷媒の流れ方向による性能変化は生ぜず、第5図に
示すように、蒸発器全体の性能は、伝熱管2を用いた場
合よりも優れている。また、第2図に示すように、管内
で気体冷媒4が凝縮する際、溝交差部8に凝縮液17が
集液されるため、管内における液膜厚の平準化が達成さ
れ、液膜による熱抵抗がより小さくなり、かつ、溝交差
部8から凝縮液17が容易に離脱することにより、凝縮
性能は大幅に向上する。
According to the above embodiment, there is no reversal in the direction of inclination of the grooves caused by hairpin processing, and there is no change in performance depending on the flow direction of the refrigerant before and after the hairpin portion 11, and as shown in FIG. The performance of the entire vessel is better than when heat exchanger tubes 2 are used. In addition, as shown in FIG. 2, when the gas refrigerant 4 condenses in the pipe, the condensed liquid 17 is collected at the groove intersection 8, so that the liquid film thickness in the pipe is leveled, and the liquid film is Since the thermal resistance becomes smaller and the condensate 17 easily leaves the groove intersection 8, the condensing performance is greatly improved.

また、第3図に示すように、溝ピッチ13の2倍以上の
幅18を有する平坦部18を任意の位置に、かつ一定の
間隔で設けることにより、伝熱管3をヘアピン加工する
ときのヘアピン部11の曲げ特性は大幅に改善される。
In addition, as shown in FIG. 3, by providing flat portions 18 having a width 18 that is twice or more the groove pitch 13 at arbitrary positions and at regular intervals, hairpin processing is possible when processing the heat exchanger tube 3 into a hairpin. The bending properties of section 11 are significantly improved.

さらに、管成形前の溝加工において、第4図に示すよう
に溝交差部8をより多く (図では6箇所)設定するこ
とにより、加工時の圧延作業の安定化が図られ、加工速
度の向上あるいは加工形状の均一化が達成され、伝熱管
製造におけるコスト低減及び品質向上の達成が可能とな
る。
Furthermore, by setting more groove intersections 8 (six locations in the figure) in groove machining before tube forming, as shown in Figure 4, the rolling operation during machining can be stabilized and the machining speed can be reduced. The improvement or uniformity of the processed shape is achieved, and it becomes possible to achieve cost reduction and quality improvement in heat exchanger tube manufacturing.

[発明の効果] 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

(1)実際の空調機における伝熱性能を、冷媒の流れ方
向あるいは蒸発器の構成を変えることなく、向上させる
ことができる。
(1) Heat transfer performance in an actual air conditioner can be improved without changing the flow direction of the refrigerant or the configuration of the evaporator.

(2)凝縮時の凝縮液の集液作用により、管内の液膜厚
の平準化が促進され、液膜厚の熱抵抗が減少し、かつ、
溝交差部からの凝縮液の離脱が促進されることにより、
凝縮性能の大幅な向上が達成できる。
(2) The liquid collecting action of the condensed liquid during condensation promotes leveling of the liquid film thickness in the pipe, reducing the thermal resistance of the liquid film thickness, and
By promoting the separation of condensate from groove intersections,
Significant improvements in condensing performance can be achieved.

(3)伝熱管内面における4箇所以上の溝交差部と未加
工の平坦部を任意に組み合わせることより、ヘアピン部
の曲げ特性の改善が達成できる。
(3) By arbitrarily combining four or more groove intersections and an unprocessed flat part on the inner surface of the heat exchanger tube, the bending characteristics of the hairpin part can be improved.

(4)伝熱管に溝を加工する際、溝交差部が2箇所の場
合に比べ、正確かつ安定した加工が可能となり、伝熱管
の加工速度が増大するので、製造コストの低減及び品質
向上が達成できる。
(4) When machining grooves on heat exchanger tubes, more accurate and stable machining is possible than when the grooves intersect at two locations, and the machining speed of heat exchanger tubes increases, reducing manufacturing costs and improving quality. It can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る伝熱管の内面の構造を
示す説明図、第2図は本発明の伝熱管を蒸発(a)及び
凝縮(b)に使用したときの状態を示す説明図、第3図
及び第4図は本発明の他の実施例を示す説明図、第5図
は伝熱管の蒸発特性における本発明と従来例との比較を
示すグラフ、第6図及び第7図は従来の凝縮器用伝熱管
を示し、それぞれ(a)は縦断面図、(b)は横断面図
、第8図は第7図に示す伝熱管の内面の構造を示す説明
図、第9図は従来の伝熱管を空調機で使用する場合の一
例を示す説明図である。 1:平滑管、 2.2−:軸対称溝付き管、 3:伝熱管、 4:気体冷媒、 5:液体冷媒、 6:フィン、 7:溝底面、 8:溝交差部、 9、シーム溶接部、 10゜ 14 a 。 15 a。 10′:直管部、 10a:管内下面、 11:ヘアピン部、 12:管継手、 13:溝軸ピッチ、 14b=傾斜溝、 15b:傾斜溝ピッチ、 16:フイン高さ、 17:凝縮液、 18:平坦部、 18′二平坦部幅。
Fig. 1 is an explanatory diagram showing the inner surface structure of a heat exchanger tube according to an embodiment of the present invention, and Fig. 2 shows the state when the heat exchanger tube of the present invention is used for evaporation (a) and condensation (b). Explanatory drawings, FIGS. 3 and 4 are explanatory drawings showing other embodiments of the present invention, FIG. 5 is a graph showing a comparison between the present invention and a conventional example in the evaporation characteristics of heat exchanger tubes, and FIGS. Figure 7 shows a conventional heat exchanger tube for a condenser, where (a) is a longitudinal cross-sectional view, (b) is a cross-sectional view, and Figure 8 is an explanatory diagram showing the inner surface structure of the heat exchanger tube shown in Figure 7. FIG. 9 is an explanatory diagram showing an example of a case where a conventional heat transfer tube is used in an air conditioner. 1: Smooth tube, 2.2-: Axisymmetric grooved tube, 3: Heat transfer tube, 4: Gas refrigerant, 5: Liquid refrigerant, 6: Fin, 7: Groove bottom, 8: Groove intersection, 9, Seam welding Part, 10°14 a. 15 a. 10': straight pipe section, 10a: lower surface inside the pipe, 11: hairpin section, 12: pipe joint, 13: groove axis pitch, 14b = inclined groove, 15b: inclined groove pitch, 16: fin height, 17: condensate, 18: flat part, 18' double flat part width.

Claims (1)

【特許請求の範囲】 1、内面に管の円周を4以上の偶数で分割する形で、管
軸に対し互いに逆向きの角度を有するらせん状溝を形成
させてなる伝熱管。 2、らせん状溝が一定ピッチで形成されると共に、管軸
方向に沿ってところどころに平坦部を設けてなる請求項
1記載の伝熱管。
[Scope of Claims] 1. A heat exchanger tube having spiral grooves formed on the inner surface of the tube so as to divide the circumference of the tube into an even number of 4 or more and having opposite angles to the tube axis. 2. The heat exchanger tube according to claim 1, wherein the spiral grooves are formed at a constant pitch and flat portions are provided here and there along the tube axis direction.
JP15094589A 1989-06-13 1989-06-13 Heat transfer tube Pending JPH0313796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15094589A JPH0313796A (en) 1989-06-13 1989-06-13 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15094589A JPH0313796A (en) 1989-06-13 1989-06-13 Heat transfer tube

Publications (1)

Publication Number Publication Date
JPH0313796A true JPH0313796A (en) 1991-01-22

Family

ID=15507852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15094589A Pending JPH0313796A (en) 1989-06-13 1989-06-13 Heat transfer tube

Country Status (1)

Country Link
JP (1) JPH0313796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510598A (en) * 1991-06-29 1993-01-19 Hitachi Cable Ltd Heat exchanger for hot water heater
FR2733445A1 (en) * 1995-04-26 1996-10-31 Alcatel Kabel Ag PROCESS FOR THE MANUFACTURE OF TUBES WITH INTERNAL GROOVES FOR HEAT EXCHANGERS
WO2000031486A1 (en) * 1998-11-24 2000-06-02 The Furukawa Electric Co., Ltd. Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510598A (en) * 1991-06-29 1993-01-19 Hitachi Cable Ltd Heat exchanger for hot water heater
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
FR2733445A1 (en) * 1995-04-26 1996-10-31 Alcatel Kabel Ag PROCESS FOR THE MANUFACTURE OF TUBES WITH INTERNAL GROOVES FOR HEAT EXCHANGERS
WO2000031486A1 (en) * 1998-11-24 2000-06-02 The Furukawa Electric Co., Ltd. Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
US6340050B1 (en) 1998-11-24 2002-01-22 The Furakawa Electric Co., Ltd. Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes

Similar Documents

Publication Publication Date Title
JP2534450B2 (en) Heat exchanger tubes
JPH07151480A (en) Heat transfer pipe
US20110036550A1 (en) Fin and heat exchanger having the same
CA1316908C (en) High performance heat transfer tube for heat exchanger
US6298909B1 (en) Heat exchange tube having a grooved inner surface
US6722420B2 (en) Internally finned heat transfer tube with staggered fins of varying height
JPH10206060A (en) Heating tube having grooved inner surface
WO2004053415A1 (en) Method for producing cross-fin tube for heat exchanger, and cross fin-type heat exchanger
US5010643A (en) High performance heat transfer tube for heat exchanger
JPH0313796A (en) Heat transfer tube
JP2842810B2 (en) Heat transfer tube with internal groove
US20030168209A1 (en) Heat transfer tube with ribbed inner surface
JP3199636B2 (en) Heat transfer tube with internal groove
JP3286171B2 (en) Heat transfer tube with internal groove
JPH06147784A (en) Heat exchanger tube
JPH0968396A (en) Heat exchanger
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH10300379A (en) Heat exchanger tube having groove in internal surface
KR940010977B1 (en) Heat pipe using heat exchanger
JP2922824B2 (en) Heat transfer tube with internal groove
JP3145277B2 (en) Heat transfer tube with internal groove
JP3541334B2 (en) Welded pipe with internal groove for heat exchanger for air conditioning
JPH11108579A (en) Pipe with grooved inner face
JPH02161290A (en) Inner face processed heat transfer tube
JPS61114092A (en) Heat exchanger