JPH03129298A - Condensation heat transfer pipe - Google Patents

Condensation heat transfer pipe

Info

Publication number
JPH03129298A
JPH03129298A JP26652289A JP26652289A JPH03129298A JP H03129298 A JPH03129298 A JP H03129298A JP 26652289 A JP26652289 A JP 26652289A JP 26652289 A JP26652289 A JP 26652289A JP H03129298 A JPH03129298 A JP H03129298A
Authority
JP
Japan
Prior art keywords
heat transfer
protrusion
pipe
groove
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26652289A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26652289A priority Critical patent/JPH03129298A/en
Publication of JPH03129298A publication Critical patent/JPH03129298A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

PURPOSE:To improve the heat transfer efficiency of the inner side of a pipe not only in a refrigerant high dryness area but also in a range of from a low dryness area to a middle dryness area by a method wherein a number of fine protrusions continued in the direction of the axis of the pipe or in a helical direction based on the pipe axis are formed on an inner surface, and the shape thereof is formed approximately in the shape of a circle a part of which makes contact with the inner peripheral surface of the pipe. CONSTITUTION:When protrusions 8 are formed on an inner peripheral surface 6' of a condensation heat transfer pipe 6, condensate is collected in a groove 9 between the adjoining protrusions 8 through the action of a surface tension. Since, even in a region where an amount of a liquid refrigerant in a range of from a low dryness area to a middle dryness area is high, a protrusionsform surface is formed approximately in the shape of a circle, the influence of a surface tension is sharply exercised on the liquid refrigerant, which is difficult to be held on an upper surface 8a of the protrusion, and is easily discharged to a bottom part 8b of the protrusion and the groove 9 between the adjoining protrusions 8. Since the liquid refrigerant flowing in the groove 9 is also held at the bottom part 8b of the protrusion, it is difficult to flow out to the upper surface 8a of the protrusion, and can smoothly flow the groove 9. This constitution enables a fluid state to maintain an annular flow and improves heat transfer efficiency on the inner side of the pipe throughout the whole of a dryness area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気・調和機や冷凍機器、自動車機器等の、冷
媒と空気等の流体間で熱の授受を行う熱交換器に用いら
れる凝縮伝熱管に間するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to condensing heat exchanger tubes used in heat exchangers that transfer heat between fluids such as refrigerant and air, such as air conditioners, refrigeration equipment, and automobile equipment. It is something that takes place in between.

従来の技術 近年、熱交換器は機器設計の面からコンパクト化が要求
されており、熱交換器の冷媒側流路を形成する伝熱管に
ついても実公昭55−14956号公報や実公昭55−
26706号公報のように管内周面に螺旋状の溝を設け
る等の工夫により高効率化が図られている。
2. Description of the Related Art In recent years, heat exchangers have been required to be made more compact in terms of equipment design, and heat exchanger tubes that form the refrigerant side flow path of heat exchangers have also been disclosed in Japanese Utility Model Publication No. 14956/1983 and Utility Model Publication No. 55-1982.
As disclosed in Japanese Patent No. 26706, high efficiency has been achieved by providing a spiral groove on the inner circumferential surface of the pipe.

以下、図面を参照しながら上述した従来の凝縮伝熱管に
ついて説明を行う。
Hereinafter, the above-mentioned conventional condensing heat exchanger tube will be explained with reference to the drawings.

第3図と第4図は従来の凝縮伝熱管の形状を示し、第5
図は前記凝縮伝熱管を用いた熱交換器の一例を示す。第
3図と第4図において、1は断面がほぼ円筒状の凝縮伝
熱管で、内側に流路2を形成している。3は前記凝縮伝
熱管1の内周面1′に設けられた7字型の溝で、凝縮伝
熱管1の軸方向に対して螺旋状に連続して多数設けられ
ている。
Figures 3 and 4 show the shapes of conventional condensing heat exchanger tubes, and
The figure shows an example of a heat exchanger using the condensing heat transfer tube. In FIGS. 3 and 4, reference numeral 1 denotes a condensing heat transfer tube having a substantially cylindrical cross section, with a flow path 2 formed inside. Reference numeral 3 denotes a seven-shaped groove provided on the inner circumferential surface 1' of the condensing heat exchanger tube 1, and a large number of grooves are provided continuously in a spiral shape in the axial direction of the condensing heat exchanger tube 1.

以上のように構成された凝縮伝熱管1は一般的に熱交換
器の一部として用いられる。第5図において、4は前記
凝縮伝熱管1を用いた熱交換器の一例で、一定間隔で平
行に並べられたフィン5どフィン5に直角に挿入された
前記凝縮伝熱管1とから構成されており、フィン5間を
流れる気流と凝縮伝熱管1内のfM路2を流れる凝縮過
程の冷媒との間で熱交換が行なわれる。その際、凝縮伝
熱管1の内周面1′に7字型の溝3を螺旋状に設けるこ
とにより、凝縮液が表面張力の作用で溝3の低部に集ま
り伝熱を阻害する凝縮液膜の平均厚さが薄くなるために
管内側熱伝達率が向上していた。
The condensing heat exchanger tube 1 configured as described above is generally used as a part of a heat exchanger. In FIG. 5, 4 is an example of a heat exchanger using the condensing heat exchanger tube 1, which is composed of fins 5 arranged in parallel at regular intervals and the condensing heat exchanger tube 1 inserted at right angles to the fins 5. Heat exchange is performed between the airflow flowing between the fins 5 and the refrigerant in the condensing process flowing through the fM path 2 in the condensing heat transfer tube 1. At that time, by providing a 7-shaped groove 3 in a spiral shape on the inner circumferential surface 1' of the condensing heat transfer tube 1, the condensate liquid collects at the lower part of the groove 3 due to surface tension and inhibits heat transfer. The heat transfer coefficient inside the tube was improved due to the thinner average thickness of the membrane.

発明が解決しようとする課題 しかしながら上記のような構成では、凝縮伝熱管1の内
周面1′の全てに薄い厚さの凝縮液膜が形成され著しい
伝熱促進効果が得られるのは冷媒の乾き度が大きい領域
、すなわち凝縮過程の初期だけである。一方、凝縮過程
の後期においては冷媒の乾き度は小さく管内の液冷媒が
多いために液冷媒によって7字型の溝3はすぐに埋もれ
液冷媒は7字型の溝3の上を横切って通過してしまい、
上述したような凝縮メカニズムによる著しい伝熱促進効
果は望めない。従って、管内冷媒が低乾き度域の場合に
管内側熱伝達率が低く、この凝縮伝熱管1を用いた熱交
換器4の性能が低いという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, a thin condensate film is formed on the entire inner circumferential surface 1' of the condensing heat transfer tube 1, and a remarkable heat transfer promotion effect is obtained only because of the refrigerant. Only in areas of high dryness, i.e. at the beginning of the condensation process. On the other hand, in the latter stage of the condensation process, the dryness of the refrigerant is small and there is a large amount of liquid refrigerant in the pipe, so the liquid refrigerant quickly fills the figure 7-shaped groove 3 and the liquid refrigerant passes across the top of the figure 7 groove 3. I did it,
A significant heat transfer promoting effect due to the above-mentioned condensation mechanism cannot be expected. Therefore, when the refrigerant in the tubes is in a low dryness range, the heat transfer coefficient inside the tubes is low, resulting in a problem that the performance of the heat exchanger 4 using this condensing heat transfer tube 1 is low.

本発明は上記課題に鑑み、凝縮伝熱管の内周面の形状を
工夫することによって、冷媒の高乾き度域だけでなく低
乾き度域から中乾き度域においても管内側熱伝達率を向
上させ、凝縮伝熱管を用いた熱交換器の性能向上を図ろ
うとするものである。
In view of the above problems, the present invention improves the heat transfer coefficient inside the tube not only in the high dryness region of the refrigerant but also in the low to medium dryness region by devising the shape of the inner peripheral surface of the condensing heat transfer tube. The aim is to improve the performance of heat exchangers using condensing heat transfer tubes.

課題を解決するための手段 上記課題を解決するために本発明の凝縮伝熱管は、管軸
方向又は管軸に対して螺旋方向に連続する微細な突起を
内周面に多数備え、前記突起の形状を管の内周面と一部
を接した略円形状にするものである。
Means for Solving the Problems In order to solve the above problems, the condensing heat exchanger tube of the present invention is provided with a large number of minute protrusions on the inner circumferential surface that are continuous in the tube axis direction or in a spiral direction with respect to the tube axis. The shape is approximately circular with a portion touching the inner circumferential surface of the tube.

作用 本発明は上記した構成によって、低乾き度域から中乾き
度域、すなわち液冷媒が多い領域においても、突起形状
の表面が略円形状であるために液冷媒は表面張力の影響
を大きく受けて突起上面に保持され難く、突起底部及び
突起相互間の溝へ排除し易くなり、かつ−置溝に流入し
た液冷媒も突起底部に保持されるために突起上面へ流出
し難く、液冷媒の溝に沿ったスムーズな流れを得ること
ができる。そのため高乾き度域のみでなく低乾き度域か
ら中乾き度域においても流動状態は環状流を維持するこ
とができ、伝熱を阻害する凝縮液膜の平均厚さが薄くな
るために管内側熱伝達率を全乾き度域に渡って向上する
ことができる。
Effect The present invention has the above-described configuration, so that even in a low to medium dryness region, that is, a region where there is a large amount of liquid refrigerant, the surface of the protrusion is approximately circular, so that the liquid refrigerant is greatly affected by surface tension. The liquid refrigerant is difficult to be held on the top surface of the protrusion, and is easily removed to the bottom of the protrusion and the groove between the protrusions, and the liquid refrigerant that has flowed into the groove is also held at the bottom of the protrusion, so it is difficult to flow out to the top surface of the protrusion, and the liquid refrigerant is A smooth flow can be obtained along the groove. Therefore, the fluid state can maintain an annular flow not only in the high dryness region but also in the low to medium dryness region, and the average thickness of the condensate film that inhibits heat transfer becomes thinner, so the inside of the tube Heat transfer coefficient can be improved over the entire dryness range.

実施例 以下本発明の実施例の凝縮伝熱管について図面を参照し
ながら説明する。
EXAMPLES Hereinafter, condensing heat exchanger tubes according to examples of the present invention will be described with reference to the drawings.

第1図と第2図は本発明の実施例における凝縮伝熱管の
形状を示す。第1図と第2図において、6は断面がほぼ
円筒状の凝縮伝熱管で、内側に流路7を形成している。
1 and 2 show the shape of a condensing heat exchanger tube in an embodiment of the present invention. In FIGS. 1 and 2, reference numeral 6 denotes a condensing heat transfer tube having a substantially cylindrical cross section, with a flow path 7 formed inside.

8は前記凝縮伝熱管6の内周面6′に設けられ一部を内
周面6′と接した略円形状の突起で、管軸方向に対して
螺旋状に連続して多数設けられている。また前記突起8
相互間には突起8により溝9が形成されている。
Reference numeral 8 denotes a substantially circular projection provided on the inner circumferential surface 6' of the condensing heat exchanger tube 6, a portion of which is in contact with the inner circumferential surface 6'. There is. In addition, the protrusion 8
A groove 9 is formed between the protrusions 8.

以上のように構成された凝縮伝熱管6は従来例と同様に
熱交換器の一部として用いられ、管内に凝縮過程の冷媒
を流して使用される。この使用収態において、凝縮伝熱
管6の内周面6′に突起8を螺旋状に設けることにより
、凝縮液が表面張力の作用で突起8相互間の溝9に集ま
るために伝熱を阻害する凝縮液膜の平均厚さが薄くなり
管内側熱伝達率の向上が図られるが、冷媒の凝縮後期す
なわち高乾き度域は液冷媒が少ないために流動状態を環
状流に維持して冷媒液膜の平均厚さを容易に薄くするこ
とができ、更に凝縮初期すなわち低乾き度域から中乾き
度域の液冷媒が多い領域においても、突起形状の表面が
略円形状であるために液冷媒は表面張力の影響を大きく
受けて突起上面8aに保持され難く、突起底部8b及び
突起8相互間の溝9へ排除し易くなり、かつ−置溝9に
流入した液冷媒も突起底部8bに保持されるために突起
上面8aへは流出し難く、液冷媒の溝9に沿ったスムー
ズな流れを得ることができる。そのため高乾き度域のみ
でなく低乾き度域から中乾き度域においても流動状態は
環状流を維持することができ、伝熱を阻害する凝縮液膜
の平均厚さが薄くなるために管内側熱伝達率を全乾き度
域に渡って向上することができ、この凝縮伝熱管6を用
いた熱交換器の性能も向上することができる。
The condensing heat transfer tube 6 configured as described above is used as a part of a heat exchanger as in the conventional example, and is used by flowing the refrigerant in the condensing process into the tube. In this usage condition, by providing the protrusions 8 in a spiral shape on the inner circumferential surface 6' of the condensing heat transfer tube 6, the condensate collects in the grooves 9 between the protrusions 8 due to surface tension, thereby inhibiting heat transfer. The average thickness of the condensed liquid film becomes thinner and the heat transfer coefficient inside the tube is improved, but in the late stage of refrigerant condensation, that is, in the high dryness region, there is little liquid refrigerant, so the fluid state is maintained in an annular flow and the refrigerant liquid is The average thickness of the film can be easily reduced, and even in the early stages of condensation, i.e., in areas where there is a lot of liquid refrigerant in the low to medium dryness range, the protrusion-shaped surfaces are approximately circular, so that the liquid refrigerant can be easily reduced. The refrigerant is difficult to be held on the protrusion top surface 8a due to the influence of surface tension, and is easily removed to the protrusion bottom 8b and the groove 9 between the protrusions 8, and the liquid refrigerant that has flowed into the placement groove 9 is also retained on the protrusion bottom 8b. Therefore, it is difficult for the liquid refrigerant to flow out to the upper surface 8a of the protrusion, and a smooth flow of the liquid refrigerant along the groove 9 can be obtained. Therefore, the fluid state can maintain an annular flow not only in the high dryness region but also in the low to medium dryness region, and the average thickness of the condensate film that inhibits heat transfer becomes thinner, so the inside of the tube The heat transfer coefficient can be improved over the entire dryness range, and the performance of the heat exchanger using this condensing heat exchanger tube 6 can also be improved.

以上のように本実施例によれば、管軸に対して螺旋方向
に連続する微細な突起8を凝縮伝熱管6の内周面6′に
多数備え、前記突起8の形状を管の内周面と一部を接し
た略円形状にすることによリ、冷媒が高乾き度域のみで
なく低乾き度域から中乾き度域においても流動状態な環
状流に維持することができ、伝熱を阻害する凝縮液膜の
平均厚さが薄くなるために管内側熱伝達率を全乾き度域
に渡って向上することができる。
As described above, according to this embodiment, the inner peripheral surface 6' of the condensing heat exchanger tube 6 is provided with a large number of minute projections 8 that continue in a spiral direction with respect to the tube axis, and the shape of the projections 8 is adjusted to the inner peripheral surface of the tube. By forming a substantially circular shape with a part touching the surface, the refrigerant can be maintained in a fluid annular flow not only in the high dryness region but also in the low to medium dryness region. Since the average thickness of the condensate film that inhibits heat becomes thinner, the heat transfer coefficient inside the tube can be improved over the entire dryness range.

発明の効果 以上のように本発明は、管軸方向又は管軸に対して螺旋
方向に連続する微細な突起を凝縮伝熱管の内周面に多数
備え、前記突起の形状を管の内周面と一部を接した略円
形状にすることにより、冷媒が高乾き度域のみでなく低
乾き度域から中乾き度域においても流動状態を環状流に
維持することができ、伝熱を阻害する凝縮液膜の平均厚
さが薄くなるために管内側熱伝達率を全乾き度域に渡っ
て向上することができる。
Effects of the Invention As described above, the present invention provides a condensing heat exchanger tube with a large number of fine protrusions that continue in the tube axis direction or in a spiral direction with respect to the tube axis, and the shape of the protrusions is adjusted to the inner circumferential surface of the tube. By forming the refrigerant into a substantially circular shape with a part touching, the refrigerant can maintain an annular flow state not only in high dryness areas but also in low to medium dryness areas, inhibiting heat transfer. Since the average thickness of the condensate film becomes thinner, the heat transfer coefficient inside the tube can be improved over the entire dryness range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における凝縮伝熱管の形状を
示す円周方向の断面図、第2図は第1図の軸方向断面図
、第3図は従来の凝縮伝熱管の形状を示す円周方向断面
図、第4図は第3図の軸方向断面図、第5図は凝縮伝熱
管を用いた熱交換器を示す斜視図である。 6・・・凝縮伝熱管、6′・・・内周面、8・・・突起
、8a・・・突起上面、8b・・・突起底部。
Fig. 1 is a circumferential cross-sectional view showing the shape of a condensing heat exchanger tube in an embodiment of the present invention, Fig. 2 is an axial cross-sectional view of Fig. 1, and Fig. 3 shows the shape of a conventional condensing heat exchanger tube. FIG. 4 is an axial sectional view of FIG. 3, and FIG. 5 is a perspective view of a heat exchanger using condensing heat transfer tubes. 6... Condensing heat transfer tube, 6'... Inner peripheral surface, 8... Protrusion, 8a... Protrusion top surface, 8b... Protrusion bottom.

Claims (1)

【特許請求の範囲】[Claims] 管軸方向又は管軸に対して螺旋方向に連続する微細な突
起を内周面に多数備え、前記突起の形状を管の内周面と
一部を接した略円形状にしたことを特徴とした凝縮伝熱
管。
It is characterized by having a large number of fine protrusions on the inner circumferential surface that are continuous in the tube axis direction or in a spiral direction with respect to the tube axis, and the shape of the protrusions is approximately circular with a part touching the inner circumferential surface of the tube. condensing heat transfer tube.
JP26652289A 1989-10-13 1989-10-13 Condensation heat transfer pipe Pending JPH03129298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26652289A JPH03129298A (en) 1989-10-13 1989-10-13 Condensation heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26652289A JPH03129298A (en) 1989-10-13 1989-10-13 Condensation heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH03129298A true JPH03129298A (en) 1991-06-03

Family

ID=17432063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26652289A Pending JPH03129298A (en) 1989-10-13 1989-10-13 Condensation heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH03129298A (en)

Similar Documents

Publication Publication Date Title
AU653487B2 (en) Heat exchanger tube
JP2534450B2 (en) Heat exchanger tubes
US5458191A (en) Heat transfer tube
KR101892572B1 (en) Metallic Heat Transfer Tube
JPH10267460A (en) Heat transfer pipe of absorbing device
JPH04177091A (en) Heat exchanger
JP2842810B2 (en) Heat transfer tube with internal groove
JPH03129298A (en) Condensation heat transfer pipe
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JP2785851B2 (en) Heat exchanger tubes for heat exchangers
JPH06147784A (en) Heat exchanger tube
JPH0140278B2 (en)
JPH05322477A (en) Boiling heat transfer surface
JP2663776B2 (en) Condenser
JPH04126998A (en) Boiling heat transfer tube
JPS61114092A (en) Heat exchanger
JPS5938596A (en) Heat exchanger
JPS62248995A (en) Evaporator
JPS61140791A (en) Heat exchanger tube
JPH03122499A (en) Boiling type heat transfer tube
JPH03122498A (en) Boiling type heat transfer tube
JPH0498097A (en) Boiling heat transfer tube
JPH0490500A (en) Evaporative heat transfer pipe
JPS5852988A (en) Condensing heat transfer pipe
KR100517925B1 (en) Fin and tube solid type heat exchanger