JPH04126991A - Method and apparatus for manufacturing high purity nitrogen - Google Patents

Method and apparatus for manufacturing high purity nitrogen

Info

Publication number
JPH04126991A
JPH04126991A JP24759490A JP24759490A JPH04126991A JP H04126991 A JPH04126991 A JP H04126991A JP 24759490 A JP24759490 A JP 24759490A JP 24759490 A JP24759490 A JP 24759490A JP H04126991 A JPH04126991 A JP H04126991A
Authority
JP
Japan
Prior art keywords
nitrogen gas
impurities
temperature
adsorption tower
purity nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24759490A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Yoshimatsu
吉松 幸祥
Osamu Kita
喜多 修
Hiroshi Tsushima
津嶋 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP24759490A priority Critical patent/JPH04126991A/en
Publication of JPH04126991A publication Critical patent/JPH04126991A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities

Abstract

PURPOSE:To economically manufacture nitrogen of high purity by cooling nitrogen gas to a low temperature, introducing it to an absorption tower filled with absorbent, and absorbing to remove impurities in the gas. CONSTITUTION:Nitrogen gas of ambient temperature containing relatively much containing impurity amount is introduced to a catalyst unit 1, a heat exchanger 2a, cooled, for example, to -100 to -200 deg.C, cold from a helium refrigerator 6a is supplied by a heat exchanger 3a, and introduced to an absorption tower 4a. Absorbent is filled in the tower. The absorbent is previously cooled by a helium refrigerator 6a and a heat exchanger 3a. Low temperature nitrogen gas is brought into contact with the absorbent, microscopic amounts of impurities contained in the nitrogen gas are absorbed to the absorbent to be removed to become high purity nitrogen gas, and discharged from the tower 4a through a tube 04. The nitrogen gas of high purity is heat exchanged with nitrogen gas of ambient temperature by a heat exchanger 2a to become the ambient temperature, microscopic amounts of particles are removed by a filter 9, and then discharged as product through a tube 07.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒素の製造に係り、特に高純度の窒素製造にお
いて、少なくとも一酸化炭素等の含有不純物を吸着法に
より除去し、含有不純物の少ない高純度の窒素ガスを製
造するのに好適な方法及び装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of nitrogen, and in particular, in the production of high-purity nitrogen, at least impurities such as carbon monoxide are removed by an adsorption method to reduce the amount of impurities contained. The present invention relates to a method and apparatus suitable for producing high-purity nitrogen gas.

[従来の技術1 近年、半導体の高密度化に伴い、含有不純物の少ない高
純度窒素ガスの需要が増大している。例えば、ザブミク
ロンLSI製造用に供給される窒素ガス中の含有不純物
はppbオーダーからpptオーダーの極めて微量なも
のになっている。従来の窒素製造装置は、特開昭51−
84888号公報又は特開昭61−225568号公報
に記載されているように原料空気を低温に冷却した後精
留分離し、精留塔上部より窒素ガスを抜き出し、熱交換
器で常温まで温度回復させて製品として採取している。
[Prior Art 1] In recent years, with the increasing density of semiconductors, the demand for high-purity nitrogen gas containing fewer impurities has increased. For example, the amount of impurities contained in nitrogen gas supplied for the production of Zabumicron LSIs is extremely small, on the order of ppb to ppt. The conventional nitrogen production equipment is
As described in Japanese Patent No. 84888 or Japanese Patent Application Laid-Open No. 61-225568, raw air is cooled to a low temperature and then subjected to rectification separation, nitrogen gas is extracted from the upper part of the rectification column, and the temperature is recovered to room temperature using a heat exchanger. It is then harvested as a product.

又、−酸化炭素については触媒燃焼により除去し、パー
ティクルは液体窒素ラインにフィルターを設置して除去
していた。
Furthermore, -carbon oxides were removed by catalytic combustion, and particles were removed by installing a filter in the liquid nitrogen line.

[発明が解決しようとする課題1 に記従米技術は、空気中に含まれる純物質の沸点温度の
差を利用した精留操作により行われるため、例えば、窒
素と沸点の差が大きい酸素(窒素196°C1酸素: 
−1,83°C)等は不純物としてppbオーグーまで
分離が可能である。しかし、そのためには、精留操作を
行う精留器の段数を増大する必要があり、それに伴う装
置の大形化、コスト高、運転費の増大により得策ではな
い。又、段数を増大しても含有不純物の分離には限界が
あり、含有不純物をppb〜J) p tオーダーにま
で除去するには困難である。一方、窒素と沸点温度の近
い一酸化炭素(窒素二ー196°Cニー酸化炭素二ー1
92°C)等は、精留操作による窒素との分離が難しく
、精留後も、製品窒素中にppmオーダーの不純物とし
て存在し、精留操作による高純度窒素の製造には、限界
がある。−酸化炭素の除去については触媒を利用し、温
度をあげて燃焼させ、二酸化炭素等に変換して除去する
方法もあるが、ppb−pptオーグーに除去するには
困難である。
[Problem to be Solved by the Invention 1] The conventional technology is carried out by a rectification operation that takes advantage of the difference in boiling point temperature of pure substances contained in the air. 196°C1 oxygen:
-1.83°C) etc. can be separated as impurities down to ppb 0. However, in order to do so, it is necessary to increase the number of stages of the rectifier that performs the rectification operation, which is not a good idea because it increases the size of the device, increases cost, and increases operating costs. Further, even if the number of stages is increased, there is a limit to the separation of contained impurities, and it is difficult to remove contained impurities to the order of ppb to J) pt. On the other hand, carbon monoxide, which has a boiling point temperature similar to that of nitrogen (nitrogen 2 - 196°C, carbon monoxide 2 - 1
92°C) is difficult to separate from nitrogen by rectification, and even after rectification, it remains in the product nitrogen as ppm-order impurities, and there is a limit to the production of high-purity nitrogen by rectification. . -There is a method for removing carbon oxide by using a catalyst and burning it at a raised temperature to convert it into carbon dioxide, etc., but it is difficult to remove it to ppb-ppt scale.

本発明の目的は、含有不純物の極めて少ない高純度の窒
素を経済的に製造する高純度窒素の製造方法及び装置を
提供することにある。
An object of the present invention is to provide a method and apparatus for producing high-purity nitrogen that economically produces high-purity nitrogen containing extremely few impurities.

[課題を解決するだめの手段] 上記目的を達成するためには、空気分離装置から生産さ
れた窒素ガス、あるいは、液体窒素貯蔵装置からの窒素
ガスを低温に冷却して吸着剤が充填された吸着等に導き
窒素ガス中の不純物を吸着除去することにより達成され
る。
[Means to solve the problem] In order to achieve the above objective, nitrogen gas produced from an air separation device or nitrogen gas from a liquid nitrogen storage device is cooled to a low temperature and filled with an adsorbent. This is achieved by adsorbing and removing impurities in nitrogen gas.

本発明では、空気分離装置等の窒素発生装置から得られ
た常温の窒素ガスを触媒が充填された触媒装置に導き、
更に、熱交換器を介してヘリウム冷凍機で冷却して、吸
着等へ導き再び熱交換器を介し、フィルターを通って高
純度窒素ガスを製造するものである。吸着等は少なくと
も2系列設置され一方が吸着操作時は他方が再生操作と
なり連続運転が可能となる。吸着塔あるいは、配管途中
にはヒータが設置され吸着剤の温度を」二げることによ
り、再生操作を行う。
In the present invention, nitrogen gas at room temperature obtained from a nitrogen generator such as an air separation device is introduced into a catalyst device filled with a catalyst,
Furthermore, the nitrogen gas is cooled with a helium refrigerator via a heat exchanger, guided to adsorption, etc., and passed through a filter again via a heat exchanger to produce high-purity nitrogen gas. At least two lines are installed for adsorption, and when one is in adsorption operation, the other is in regeneration operation, making continuous operation possible. A heater is installed in the adsorption tower or in the middle of the piping to lower the temperature of the adsorbent, thereby performing the regeneration operation.

〔作   用〕[For production]

吸着剤により吸着される物質が同一であれば、吸着剤は
吸着工程の温度が低温になるほど、あるいは、高圧にな
るほど、その物質に対する吸着剤の吸着能力は著しく向
上する。例えば、微量の低級炭化水素等は、珪藻土類の
吸着剤を液体酸素等で冷却することにより、極めて微量
の低級炭化水素等の吸着除去が可能である。また、合成
ゼオライ1〜等の吸着剤においては、その温度の変化に
より、窒素、酸素の吸着能力は数倍から数十倍向トする
ことが知られている。
If the substance to be adsorbed by the adsorbent is the same, the lower the temperature or the higher the pressure during the adsorption step, the more the adsorption ability of the adsorbent for that substance increases significantly. For example, extremely small amounts of lower hydrocarbons can be adsorbed and removed by cooling a diatomaceous earth adsorbent with liquid oxygen or the like. Furthermore, it is known that in adsorbents such as synthetic zeolites 1 to 1, the adsorption capacity for nitrogen and oxygen increases several to several tens of times due to changes in temperature.

本発明では、低温での吸着能力の増大を利用することに
より不純物を含んだ常温の窒素ガスをヘノラム冷凍機、
熱交換機等で冷却し、吸着塔内に充填された吸着剤と接
触させることで窒素ガス中に微量に含有されている不純
物(例えば水分、酸化炭素、二酸化炭素、炭化水素等)
を吸着除去する。含有不純物が極めて微量となった高純
度窒素ガスは熱交換器で常温まで温度回復しフィルタを
介して製品として次工程へ供給される。
In the present invention, by utilizing the increase in adsorption capacity at low temperatures, room temperature nitrogen gas containing impurities is transferred to a henoram refrigerator.
By cooling with a heat exchanger etc. and bringing it into contact with the adsorbent packed in the adsorption tower, trace amounts of impurities (e.g. moisture, carbon oxide, carbon dioxide, hydrocarbons, etc.) contained in the nitrogen gas are removed.
is removed by adsorption. The high-purity nitrogen gas containing extremely small amounts of impurities is returned to room temperature in a heat exchanger, and then supplied to the next process as a product via a filter.

このため、高純度の窒素ガスを経済的に、かつ、効率良
く製造できる。
Therefore, high purity nitrogen gas can be produced economically and efficiently.

また、触媒層に充填された触媒はある程度窒素ガス中の
含有不純物を吸着されやすい他の物質に変換することで
吸着塔の負荷の低減に寄与し吸着塔の切り替え周期を最
小限にできる。
In addition, the catalyst packed in the catalyst bed converts impurities contained in the nitrogen gas to other substances that are easily adsorbed to some extent, thereby contributing to reducing the load on the adsorption tower and minimizing the switching cycle of the adsorption tower.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図において破線で囲った部分が外部と断熱された低温の
領域である。本実施例では2系列の吸着塔を設置してい
る。また、第1図のフローにおいて、太線、細線の違い
は吸着操作時と再生操作時の窒素ガスの流れを示すもの
である。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, the area surrounded by broken lines is a low-temperature area that is insulated from the outside. In this embodiment, two series of adsorption towers are installed. In addition, in the flowchart of FIG. 1, the difference between thick lines and thin lines indicates the flow of nitrogen gas during adsorption operation and regeneration operation.

本発明において、■は触媒装置、2a、2bは熱交換器
、4a、4bは吸着塔、6a、6bはヘノラム冷凍機、
7はヘリウム圧縮機、5a、5bは保冷槽を示し、配管
等で接続され構成される。
In the present invention, ■ is a catalyst device, 2a and 2b are heat exchangers, 4a and 4b are adsorption towers, 6a and 6b are henoram refrigerators,
Reference numeral 7 indicates a helium compressor, and 5a and 5b indicate cold storage tanks, which are connected by piping and the like.

空気分離装置、又は他の方法で製造された含有不純物量
の比較的多い常温の窒素ガスは、配管00より触媒装置
1に導入され、更に、配管O1により熱交換器2aに導
入される。ここで常温の窒素ガスは任意の温度、例えば
−100〜−200℃に冷却される。低温に冷却された
窒素ガスは配管02を通りヘリウム冷凍機6aの熱交換
器3aで、ヘリウム冷凍機6aからの寒冷を供給され、
配管03を通って吸着塔4aに導かれる。配管001.
002はヘリウムガスの配管である。ヘリウムガスは、
ヘリウム圧縮機7により圧縮される。吸着塔内には例え
ば、合成ゼオライト等の吸着剤が充填されている。吸着
剤は予めヘリウム冷凍Q16a、及び熱交換器3aによ
り冷却されている。熱交換器2a及び3aにより冷却さ
れた低温の窒素ガスは吸着塔4a内に充填された吸着剤
と接触することによって、窒素ガス中に含有されている
微量の不純物(例えば、水分、−酸化炭素、二酸化炭素
等)が吸着剤に吸着除去され、含有不純物が極めて少な
い高純度の窒素ガスとなり配管04を通って吸着塔4a
から導出される。導出された高純度の窒素ガスは、熱交
換器2aで常温の窒素ガスと熱交換され、常温となり配
管05.06を通ってフィルター09により、微量のパ
ーティクルが除去された後、配管07を通って製品とし
て導出される。
Nitrogen gas at room temperature and containing a relatively large amount of impurities produced by an air separation device or other method is introduced into the catalyst device 1 through the pipe 00, and further into the heat exchanger 2a through the pipe O1. Here, the nitrogen gas at room temperature is cooled to an arbitrary temperature, for example, -100 to -200°C. The nitrogen gas cooled to a low temperature passes through the pipe 02 and is supplied with cold air from the helium refrigerator 6a at the heat exchanger 3a of the helium refrigerator 6a.
It passes through the pipe 03 and is led to the adsorption tower 4a. Piping 001.
002 is a helium gas pipe. Helium gas is
It is compressed by a helium compressor 7. The adsorption tower is filled with an adsorbent such as synthetic zeolite. The adsorbent is cooled in advance by a helium refrigerator Q16a and a heat exchanger 3a. The low-temperature nitrogen gas cooled by the heat exchangers 2a and 3a comes into contact with the adsorbent packed in the adsorption tower 4a, thereby eliminating trace impurities contained in the nitrogen gas (e.g., moisture, -carbon oxides). , carbon dioxide, etc.) are adsorbed and removed by the adsorbent, and the resulting high-purity nitrogen gas containing extremely few impurities is passed through the pipe 04 to the adsorption tower 4a.
It is derived from The derived high-purity nitrogen gas undergoes heat exchange with nitrogen gas at room temperature in the heat exchanger 2a, reaches room temperature, passes through piping 05.06, removes minute amounts of particles by filter 09, and then passes through piping 07. It is derived as a product.

一方、吸着塔4bの再生工程が開始されると、吸着塔4
aから導出された高純度の窒素ガスの一部を配管10.
11.12から吸着塔4bに導き、配管途中あるいは吸
着塔に設置されたヒータ8b等で吸着剤の温度を上昇さ
せ、吸着剤に吸着されていた不純物を脱着除去する。不
純物を含んだ窒素ガスは、配管13.14.15.16
を通って系外に放出される。以上の吸着・再生工程のサ
イクルを繰り返すことにより、連続して含有不純物の極
めて少ない高純度の窒素ガスを連続して製造できる。窒
素ガス中の不純物は多種あり、当然吸着剤に吸着される
割合も一様ではない。本実施例では、吸着塔の上方に触
媒装置を設置した。
On the other hand, when the regeneration process of the adsorption tower 4b is started, the adsorption tower 4b
A part of the high-purity nitrogen gas derived from a is transferred to the pipe 10.
11.12, the adsorbent is led to the adsorption tower 4b, and the temperature of the adsorbent is increased by a heater 8b installed in the pipe or in the adsorption tower, and impurities adsorbed on the adsorbent are desorbed and removed. Nitrogen gas containing impurities is transferred to piping 13.14.15.16
is released outside the system through By repeating the above cycle of adsorption and regeneration steps, it is possible to continuously produce highly pure nitrogen gas containing extremely few impurities. There are many types of impurities in nitrogen gas, and naturally the proportion of impurities adsorbed by the adsorbent is not uniform. In this example, a catalyst device was installed above the adsorption tower.

触媒としては、例えばバラジュウム等が挙げられる。こ
の触媒に比較的不純物の多い窒素ガスを導入することに
より、比較的吸着割合の少ない不純物、例えば−酸化炭
素等を他の物質に変換することができる。しかし、触媒
により物質の性質を他の物質の性質に完全に変換を行う
ことは難しいが、吸着塔の負荷を低減でき、吸着塔の吸
着・再生の切り替え時間を長(することができる。
Examples of the catalyst include baladium and the like. By introducing nitrogen gas containing relatively many impurities into this catalyst, impurities with a relatively low adsorption rate, such as carbon oxide, can be converted into other substances. However, although it is difficult to completely convert the properties of a substance into the properties of another substance using a catalyst, it is possible to reduce the load on the adsorption tower and lengthen the switching time between adsorption and regeneration in the adsorption tower.

また、本実施例での吸着塔への入り口窒素の状態はガス
状としているが、ヘリウム冷凍機で窒素ガスを液化し、
液体の状態で窒素中の不純物を吸着除去することも可能
である。この場合、体積がガスに比較して極端に小さく
なるので、コンパクトな装置として提供することができ
る。
In addition, although the nitrogen at the entrance to the adsorption tower in this example is in a gaseous state, the nitrogen gas is liquefied using a helium refrigerator.
It is also possible to adsorb and remove impurities in nitrogen in a liquid state. In this case, the volume is extremely small compared to gas, so it can be provided as a compact device.

第2図は1本発明の第2の実施例を示すものである。図
中で第1図と同一なものは同一符号で示し説明は省略す
る。第2図は、吸着塔入り口より上方で、吸着塔出口よ
り■方を、弁を設けた配管で接続したものである。第2
図において吸着工程は、第1の実施例と同しである。再
生工程が開始されると、配管01からの窒素ガスの一部
を配管100、弁200、配管101を介して配管lO
から配管11.12を介して吸着塔4bに導き、吸着剤
の温度を上昇させ、吸着剤に吸着されていた不純物を脱
着除去する。不純物が脱着除去された後の吸着塔の冷却
時において弁200を閉じ、吸着塔4aから導出された
高純度の窒素ガスの一部を配管10.11.12から吸
着塔4bに導き、再生を行う。この方法は不純物の吸着
能力が高温では低温に比べ極端に少ないことから成され
たもので、本実施例によると高純度の窒素ガスを効率良
く製造できる。
FIG. 2 shows a second embodiment of the present invention. Components in the figure that are the same as those in FIG. 1 are denoted by the same reference numerals and explanations will be omitted. In FIG. 2, the upper part of the adsorption tower inlet and the side (2) of the adsorption tower outlet are connected by a pipe provided with a valve. Second
In the figure, the adsorption step is the same as in the first embodiment. When the regeneration process is started, part of the nitrogen gas from pipe 01 is transferred to pipe 100 through pipe 100, valve 200, and pipe 101.
The adsorbent is led to the adsorption tower 4b via pipes 11 and 12, the temperature of the adsorbent is increased, and impurities adsorbed on the adsorbent are desorbed and removed. When the adsorption tower is cooled after impurities have been desorbed and removed, the valve 200 is closed, and a part of the high-purity nitrogen gas led out from the adsorption tower 4a is guided to the adsorption tower 4b through piping 10.11.12 for regeneration. conduct. This method was developed because the ability to adsorb impurities is extremely low at high temperatures compared to low temperatures, and according to this example, highly pure nitrogen gas can be efficiently produced.

第3図は、本発明の第3の実施例を示す。本実施例では
吸着塔の再生工程時において再生用の窒素ガスを吸着塔
へのみ流すようにしたものである3、第3図において、
吸石塔の再生二[稈が開始されると再生用の窒素ガスは
配管21.22を通り吸着塔4bに導入され吸着剤の温
度を上昇させて、吸着剤に吸着されていた不純物を脱着
除去する。脱着除去された不純物を含む再生用の窒素ガ
スは配管13.23.24及び配管15.16を通り系
外に放出される。本実施例によれば保冷槽内にある構成
器機の吸着塔のみに常温あるいは、高温の窒素ガスを流
すことが出来るため機器の製作あるいは、吸着工程、脱
着工程時の機器の温度上肩、温度低下の負荷の低減が出
来るため、よりコンパクトな高純度の窒素ガス製造装置
を提供できる。
FIG. 3 shows a third embodiment of the invention. In this example, during the regeneration process of the adsorption tower, the nitrogen gas for regeneration is made to flow only to the adsorption tower.3 In Fig. 3,
Regeneration of the stone absorption tower 2 [When the culm is started, the nitrogen gas for regeneration is introduced into the adsorption tower 4b through the pipes 21 and 22, and the temperature of the adsorbent is increased to desorb and remove impurities that have been adsorbed on the adsorbent. do. The regenerating nitrogen gas containing the desorbed and removed impurities is discharged to the outside of the system through pipes 13, 23, 24 and 15, 16. According to this embodiment, nitrogen gas at room temperature or high temperature can be flowed only to the adsorption tower of the component equipment in the cold storage tank, so it is possible to flow nitrogen gas at room temperature or high temperature only to the adsorption tower of the component equipment in the cold storage tank. Since the load on deterioration can be reduced, a more compact high-purity nitrogen gas production device can be provided.

ヘリウム冷凍機には、大別して蓄冷器方式とクビン方式
の2種類があるが本発明では、窒素ガスを冷却する手段
としての冷凍機でありその区別は特にないものである。
There are two types of helium refrigerators, a regenerator type and a Kubin type, but in the present invention, there is no particular distinction between the two types since the refrigerator is used as a means for cooling nitrogen gas.

[発明の効果] 本発明によれば、ヘリウム冷凍機により常温の窒素ガス
を冷却し、吸着塔内に充填された吸盾剤による低温吸着
により、常温の窒素ガス中に含有されている不純物(例
えば水分、−酸化炭素、二酸化炭素、炭化水素等)を吸
着除去できるため、コンパクトな装置で必要に応した必
要な量の高純度の窒素ガスを経済的に、かつ、効率良く
製造できる効果が得られる。
[Effects of the Invention] According to the present invention, nitrogen gas at room temperature is cooled by a helium refrigerator, and impurities contained in the nitrogen gas at room temperature ( For example, moisture, carbon oxides, carbon dioxide, hydrocarbons, etc.) can be adsorbed and removed, making it possible to economically and efficiently produce the required amount of high-purity nitrogen gas using a compact device. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の高純度の窒素ガスを製造
する装置のフロー図、第2図は本発明の第2の実施例を
示ずフロー図、第3図は本発明の第3の実施例を示すフ
ロー図である。 3a、3b 6a、6b 触媒装置、2a、 2b 熱交換器、4a、 4b ヘリウム冷凍機、 熱交換器、 吸着塔、 −ヘリウ
FIG. 1 is a flow diagram of an apparatus for producing high-purity nitrogen gas according to an embodiment of the present invention, FIG. 2 is a flow diagram not showing the second embodiment of the present invention, and FIG. It is a flow diagram which shows a 3rd example. 3a, 3b 6a, 6b Catalyst device, 2a, 2b Heat exchanger, 4a, 4b Helium refrigerator, heat exchanger, adsorption tower, -Helium

Claims (1)

【特許請求の範囲】 1、不純物を比較的多く含有している常温の窒素ガスか
ら含有不純物の極めて少ない常温の高純度の窒素ガスを
製造する方法において、 不純物を比較的多く含有している常温の窒素ガスを熱交
換器により冷却し、更に該冷却された低温の窒素ガスを
吸着塔へ導き不純物を吸着除去する工程と、該冷却用低
温源の発生手段にヘリウム冷凍機を用いる工程とからな
ることを特徴とする高純度窒素の製造方法。2、不純物
を比較的多く含有している常温の窒素ガスから含有不純
物の極めて少ない常温の高純度の窒素ガスを製造する装
置において、 不純物を比較的多く含有している常温の窒素ガスを熱交
換器により冷却する手段と、更に該冷却された低温の窒
素ガスをヘリウム冷凍機で液化して吸着塔へ導き不純物
を吸着除去する手段と、該冷却用低温源の発生手段をヘ
リウム冷凍機で形成する手段とから構成したことを特徴
とする高純度窒素の製造装置。 3、吸着塔入り口の上方の位置から、吸着塔下方の位置
を接続する弁を設けた配管を配置したことを特徴とする
請求項第2項記載の高純度窒素の製造装置。 4、吸着塔入り口より上方に触媒装置を設置したことを
特徴とする請求項第2項記載の高純度窒素の製造装置。 5、前記吸着塔は、複数の吸着塔を吸着塔の一方が吸着
工程を、他方が再生工程となるように用いることを特徴
とする請求項第2項記載の高純度窒素の製造装置。 6、保冷槽内の熱交換器をバイパスする弁を設けた配管
を設置したことを特徴とする請求項第2項記載の高純度
窒素の製造装置。
[Scope of Claims] 1. In a method for producing high-purity nitrogen gas at room temperature that contains very few impurities from nitrogen gas at room temperature that contains relatively many impurities, a step of cooling the nitrogen gas with a heat exchanger, further guiding the cooled low-temperature nitrogen gas to an adsorption tower to adsorb and remove impurities, and a step of using a helium refrigerator as a means for generating the low-temperature source for cooling. A method for producing high purity nitrogen, characterized by: 2. In a device that produces room-temperature, high-purity nitrogen gas with very few impurities from room-temperature nitrogen gas, which contains a relatively large amount of impurities, heat exchange is performed on the room-temperature nitrogen gas, which contains a relatively large amount of impurities. A means for cooling the nitrogen gas by a helium refrigerator, a means for liquefying the cooled low-temperature nitrogen gas with a helium refrigerator and guiding it to an adsorption tower to adsorb and remove impurities, and a means for generating the low-temperature source for cooling are formed by a helium refrigerator. 1. A high-purity nitrogen production apparatus comprising: means for producing high-purity nitrogen; 3. The high-purity nitrogen production apparatus according to claim 2, further comprising a pipe provided with a valve connecting a position above the entrance of the adsorption tower to a position below the adsorption tower. 4. The high-purity nitrogen production apparatus according to claim 2, characterized in that a catalyst device is installed above the entrance of the adsorption tower. 5. The high-purity nitrogen production apparatus according to claim 2, wherein the adsorption tower uses a plurality of adsorption towers such that one of the adsorption towers performs an adsorption process and the other performs a regeneration process. 6. The high-purity nitrogen production apparatus according to claim 2, further comprising a pipe provided with a valve that bypasses a heat exchanger in the cold storage tank.
JP24759490A 1990-09-19 1990-09-19 Method and apparatus for manufacturing high purity nitrogen Pending JPH04126991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24759490A JPH04126991A (en) 1990-09-19 1990-09-19 Method and apparatus for manufacturing high purity nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24759490A JPH04126991A (en) 1990-09-19 1990-09-19 Method and apparatus for manufacturing high purity nitrogen

Publications (1)

Publication Number Publication Date
JPH04126991A true JPH04126991A (en) 1992-04-27

Family

ID=17165832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24759490A Pending JPH04126991A (en) 1990-09-19 1990-09-19 Method and apparatus for manufacturing high purity nitrogen

Country Status (1)

Country Link
JP (1) JPH04126991A (en)

Similar Documents

Publication Publication Date Title
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
US6048509A (en) Gas purifying process and gas purifying apparatus
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US3216178A (en) Process for regenerating an adsorbent bed
JPH11316082A (en) Method and device for producing clean and dry air
CN102602899B (en) Helium purification method and device
CN115069057B (en) Method for purifying and recovering carbon dioxide by low-temperature rectification
JP5614808B2 (en) Helium gas purification method and purification apparatus
US3126266A (en) Meisler
KR100873375B1 (en) Method and apparatus for purifying Helium gas
CN104567273A (en) Expansion and liquefaction method for gas carbon dioxide
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP2014009139A (en) Helium gas purification method and purifier
JP5748272B2 (en) Helium gas purification method and purification apparatus
CN212894607U (en) Heavy hydrocarbon device is taken off to natural gas
JP2585955B2 (en) Air separation equipment
JP2003103132A (en) Gas refining by pressure swing adsorption
KR101720799B1 (en) Purifying method and purifying apparatus for argon gas
CN208471537U (en) A kind of recycling crude argon purifying plant again
RU2259522C1 (en) Method for xenon separation from gaseous mixture
JPH04126991A (en) Method and apparatus for manufacturing high purity nitrogen
NZ248804A (en) Argon purification by cryogenic adsorption
JPH0463993B2 (en)
JP2012162444A (en) Refining method and refining apparatus of helium gas