JPH04126402A - Waveform equalizing circuit - Google Patents

Waveform equalizing circuit

Info

Publication number
JPH04126402A
JPH04126402A JP24607190A JP24607190A JPH04126402A JP H04126402 A JPH04126402 A JP H04126402A JP 24607190 A JP24607190 A JP 24607190A JP 24607190 A JP24607190 A JP 24607190A JP H04126402 A JPH04126402 A JP H04126402A
Authority
JP
Japan
Prior art keywords
waveform
signal
time
delay
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24607190A
Other languages
Japanese (ja)
Inventor
Hiroshi Muto
弘 武藤
Takao Sugawara
隆夫 菅原
Kiichirou Kasai
希一郎 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24607190A priority Critical patent/JPH04126402A/en
Publication of JPH04126402A publication Critical patent/JPH04126402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Magnetic Recording (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

PURPOSE:To improve the resolution without decreasing the amplitude by forming three kinds of signals, an input signal, signals resulting from delaying the input signal by a time tau1 and a time tau2 respectively and combining these signals. CONSTITUTION:A transfer function H(omega) of the circuit is expressed as an equation of H(omega)=1-2K2(1-2K1cosomegatau1)cosomegatau2, where omega=2pif, and 0<=K1<=1 and 0<=K2<=1. An input signal of a waveform A is given to a buffer amplifier 31 and inputted to a noninverting input + of an adder/subtractor 37 through a delay element 32 whose delay time is tau1 and a delay element 33 whose delay time is tau2. Thus, a waveform B is a delayed waveform A by a delay time (tau1+tau2). A waveform C is the same as a waveform E with respect to the waveform A weighted by an attenuation constant K2, and a waveform D is a delay of the waveform C by a time 2tau2. When the waveforms C, D are subtracted from the waveform B by the adder/subtractor 37, the waveform E appearing at an output of the adder/subtractor 37 has a same peak level as that of the waveform B, a small half-power value and is less in waveform interference between adjacent bits.

Description

【発明の詳細な説明】 〔概要〕 入力信号の振幅を時間軸上で等間隔にサンプリングし、
このサンプル値を基にデータの復調を行う復調方式に用
いられる波形等化回路に関し、振幅検出を行う場合のデ
ータの“1”と“0”の判別を容易にし、隣接ヒツト間
の波形干渉を軽減する波形等化回路の提供を目的とし、 入力信号の振幅を時間軸上で等間隔にサンプリングし、
このサンプル値を基にデータの復調を行う復調方式にお
いて用いられる入力波形を整形する回路を、その伝達関
数H(ω)が、ω=2πf。
[Detailed Description of the Invention] [Summary] The amplitude of an input signal is sampled at equal intervals on the time axis,
Regarding the waveform equalization circuit used in the demodulation method that demodulates data based on this sample value, it makes it easy to distinguish between data "1" and "0" when performing amplitude detection, and prevents waveform interference between adjacent humans. In order to provide a waveform equalization circuit that reduces the
A circuit that shapes an input waveform used in a demodulation method that demodulates data based on this sample value has a transfer function H(ω) of ω=2πf.

0≦K、≦1,0≦K2≦1として、式、H((1))
=1−2KZ(1−2KICO9(IJ r 1)CO
S(JJ r zで表されるように構成する。具体的に
は、入力信号を時間(τ1+τ2)遅らせた信号を作る
第1の遅延手段と、入力信号を時間τ1遅らせた信号を
作る第2の遅延手段と、第2の遅延手段の出力信号から
時間τ2遅らせた信号を作る第3の遅延手段と、入力信
号を時間τ1遅らせた信号に、入力信号と入力信号から
時間2τ1遅れと、第3の遅延手段の出力信号にそれぞ
れに+の重みを加えて反転した2種の信号を加える第1
の加減算手段と、この第1の加減算手段(4)の出力信
号を時間2τ2遅らせた信号を作る第4の遅延手段と、
入力信号を時間(τ、+τ2)遅らせた信号に、第4の
遅延手段から出力される信号とこの信号を時間2τ2遅
らせた信号にそれぞれに2の重みを加えて反転した2種
の信号を加える第2の加減算手段とから波形等化回路を
構成する。
As 0≦K, ≦1, 0≦K2≦1, the formula, H ((1))
=1-2KZ(1-2KICO9(IJ r 1)CO
S(JJ r z).Specifically, the first delay means generates a signal that delays the input signal by time (τ1+τ2), and the second delay means generates a signal that delays the input signal by time τ1. a third delay means for producing a signal delayed by a time τ2 from the output signal of the second delay means; a third delay means for producing a signal delayed by a time τ1 from the output signal of the second delay means; 1. Adds + weight to the output signals of the delay means 3 and inverts the two types of signals.
a fourth delay means for producing a signal obtained by delaying the output signal of the first addition/subtraction means (4) by a time of 2τ2;
Two types of signals are added to the signal obtained by delaying the input signal by time (τ, +τ2), which are inverted by adding a weight of 2 to the signal output from the fourth delay means and the signal obtained by delaying this signal by time 2τ2. A waveform equalization circuit is constituted by the second addition/subtraction means.

〔産業上の利用分野〕[Industrial application field]

本発明は入力信号の波形等化回路に関し、特に、磁気デ
ィスク装置の再生信号等の入力信号の振幅を時間軸上で
等間隔にサンプリングし、このサンプル値を基にデータ
の復調を行う復調方式において用いられる波形等化回路
に関するものである。
The present invention relates to an input signal waveform equalization circuit, and in particular to a demodulation method that samples the amplitude of an input signal such as a reproduction signal of a magnetic disk drive at equal intervals on the time axis and demodulates data based on the sampled values. The present invention relates to a waveform equalization circuit used in

コンピュータシステムの高速化に伴い、外部記憶装置と
しての磁気ディスク装置に対しても高速化、大容量化が
要求されている。このため、磁気ディスク装置の復調回
路の扱う信号は周波数が高くなり、媒体上の記録密度(
BPI)が上昇し、再生信号においては隣接ビット間の
干渉が増大してしまい、振幅検出を行う場合にデータの
“l”と“O”との判別が困難になってしまう。従って
、この隣接ビット間の干渉を軽減する波形等化回路が必
要とされている。
As computer systems become faster, magnetic disk devices serving as external storage devices are also required to have faster speeds and larger capacities. For this reason, the signal handled by the demodulation circuit of a magnetic disk drive has a higher frequency, and the recording density on the medium (
BPI) increases, and interference between adjacent bits increases in the reproduced signal, making it difficult to distinguish between data "I" and "O" when performing amplitude detection. Therefore, there is a need for a waveform equalization circuit that reduces this interference between adjacent bits.

〔従来の技術〕[Conventional technology]

第7図は従来の磁気ディスク装置における復調回路の波
形等化回路70の構成を示すものである。
FIG. 7 shows the configuration of a waveform equalization circuit 70 of a demodulation circuit in a conventional magnetic disk drive.

この従来の波形等化回路70には、バッファアンプ71
、遅延時間τの2つの遅延素子72.73と、終端する
抵抗74と、減衰定数にの減衰器75.76、および加
減算器77とがある。入力信号はバッファアンプ71を
経て遅延時間τの2つの遅延素子72.73を通り、遅
延素子73の出力側を終端する抵抗74により消費され
る。一方、バッファアンプ71と遅延素子72、遅延素
子72と遅延素子73、および遅延素子73と終端抵抗
74の間の回路は分岐されており、バッファアンプ71
と遅延素子73の出力はそれぞれ減衰定数にの減衰器7
5.76を経て加減算器77の反転入力−に入力され、
遅延素子72の出力は加減算器77の非反転入力子に入
力される。
This conventional waveform equalization circuit 70 includes a buffer amplifier 71.
, two delay elements 72 and 73 with delay times τ, a terminating resistor 74, attenuators 75 and 76 for the attenuation constant, and an adder/subtractor 77. The input signal passes through a buffer amplifier 71, two delay elements 72 and 73 with a delay time τ, and is consumed by a resistor 74 terminating the output side of the delay element 73. On the other hand, the circuits between the buffer amplifier 71 and the delay element 72, between the delay element 72 and the delay element 73, and between the delay element 73 and the terminating resistor 74 are branched.
The outputs of the delay element 73 and the attenuator 7 have respective attenuation constants.
5.76 and is input to the inverting input - of the adder/subtractor 77,
The output of the delay element 72 is input to the non-inverting input terminal of the adder/subtracter 77.

入力波形をA、加減算器77の3つの入力をそれぞれB
、C,D、即ち、減衰器75の出力波形をB、遅延素子
72の出力波形をC,減衰器76の出力波形をD、加減
算器77の出力波形をEとすると、各波形は第8図に示
すようになる。この第8図に示す各波形を用いて従来の
波形等化回路の動作を説明する。波形Aで示す入力信号
はバッファアンプ71を経た後、遅延時間τの遅延素子
72と減衰定数にの減衰器75に導かれる。従って、波
形Bは波形Aを減衰した形になり、波形Cは波形Aを時
間τだけ遅延した形になる。また、バッファアンプ71
を経た後に遅延素子72.73を通過した後に減衰器7
5と同し減衰定数Kを持つ減衰器76を通過した波形り
は、波形Bと同し形で波形Bを時間2τだけ遅延した形
になる。波形Cは加減算器77の子端子に入力され、波
形Bと波形りは加減算器77の一端子に入力されるので
、加減算器77の出力波形Eは波形Cから波形Bと波形
りを減算した形になる。
The input waveform is A, and each of the three inputs of the adder/subtractor 77 is B.
, C, D, that is, if the output waveform of the attenuator 75 is B, the output waveform of the delay element 72 is C, the output waveform of the attenuator 76 is D, and the output waveform of the adder/subtractor 77 is E, each waveform is the 8th waveform. The result will be as shown in the figure. The operation of the conventional waveform equalization circuit will be explained using each waveform shown in FIG. After passing through a buffer amplifier 71, the input signal shown by waveform A is guided to a delay element 72 with a delay time τ and an attenuator 75 with an attenuation constant. Therefore, waveform B is an attenuated form of waveform A, and waveform C is a form that is delayed from waveform A by time τ. In addition, the buffer amplifier 71
After passing through delay elements 72 and 73, attenuator 7
The waveform passed through the attenuator 76 having the same attenuation constant K as that of 5 is the same as the waveform B, but is delayed by the time 2τ. Waveform C is input to the child terminal of adder/subtractor 77, and waveform B and waveform RI are input to one terminal of adder/subtractor 77, so the output waveform E of adder/subtractor 77 is obtained by subtracting waveform B and waveform RI from waveform C. It takes shape.

このように、従来の波形等化回路は、入力信号を遅延素
子により遅延させ、入力信号に対して時間τおよび2τ
遅れた信号を得、入力信号と時間2τ遅れた信号に対し
てKの重みづけをして時間τ遅れた信号より差し引くこ
とにより、入力信号を半値幅の小さい、隣接ビット間の
波形干渉の少ない波形にして分解能を向上させる回路で
ある。
In this way, the conventional waveform equalization circuit delays the input signal using a delay element, and the time τ and 2τ
By obtaining a delayed signal, weighting the signal delayed by 2τ from the input signal by K, and subtracting it from the signal delayed by time τ, the input signal has a small half-width and less waveform interference between adjacent bits. This is a circuit that improves resolution by converting it into a waveform.

第7図の波形等化回路の伝達関数H(ω)は、H(ω)
=1 2Kcosωτ で表される。
The transfer function H(ω) of the waveform equalization circuit in Fig. 7 is H(ω)
It is expressed as = 1 2K cos ωτ.

〔発明が解決しようとする課題] しかしながら、従来の波形等化回路によれば、隣接ピン
ト間の波形干渉が少ない波形が得られるが、第8図から
分かるように、波形干渉を少なくしようとすれば、ます
ます振幅が減少してしまい、振幅を時間軸上で等間隔に
サンプリングし、このサンプル値を基にデータの復調を
行う復調方式に対しては好ましくないという問題がある
[Problems to be Solved by the Invention] However, with the conventional waveform equalization circuit, a waveform with less waveform interference between adjacent focuses can be obtained, but as can be seen from FIG. For example, the amplitude decreases more and more, which is undesirable for a demodulation method that samples the amplitude at equal intervals on the time axis and demodulates data based on the sampled values.

また、波形干渉を少なくする方式としてはナイキスト等
化等の等化方式があるが、磁気記録における再生信号の
ように波形のばらつきの多い信号に対しては十分な等化
が出来ず、ハードウェアの増大等の問題が残ってしまう
In addition, equalization methods such as Nyquist equalization are available as methods to reduce waveform interference, but it is not possible to achieve sufficient equalization for signals with large waveform variations, such as reproduction signals in magnetic recording, and hardware Problems such as an increase in

本発明は前記従来の波形等化回路の有する問題点を解消
し、人力信号を半値幅の小さい、隣接ビット間の波形干
渉の少ない波形にして分解能を向上させる効果を保ちな
がら、振゛幅を減少させることのない波形等化回路を提
供することを目的とする。
The present invention solves the problems of the conventional waveform equalization circuit, and transforms a human signal into a waveform with a small half-width and less waveform interference between adjacent bits, thereby increasing the amplitude while maintaining the effect of improving resolution. It is an object of the present invention to provide a waveform equalization circuit that does not reduce the waveform.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決する本発明の原理構成が第1図に示さ
れる。第1図(a)に示すように、本発明の波形等化回
路は、入力信号の振幅を時間軸上で等間隔にサンプリン
グし、このサンプル値を基にデータの復調を行う復調方
式において用いられる入力波形を整形する回路を、その
伝達間数H(ω)が、ω=2πf、O≦K、≦1.0≦
K2≦1として、式、H(ω)=1 2K2(1−2に
、cosωτ、)cosωτ2で表されるように構成す
る。具体的には、第1図(b)に示すように、入力信号
を時間(τ、+τ2)遅らせた信号を作る第1の遅延手
段1と、入力信号を時間τ1遅らせた信号を作る第2の
遅延手段2と、第2の遅延手段2の出力信号から時間τ
2遅らせた信号を作る第3の遅延手段3と、入力信号を
時間τ、遅らせた信号に、人力信号と入力信号から時間
2τ1遅れと、第3の遅延手段3の出力信号にそれぞれ
に1の重みを加えて反転した2種の信号を加える第1の
加減算手段4と、この第1の加減算手段5の出力信号を
時間2τ2遅らせた信号を作る第4の遅延手段5と、入
力信号を時間(τ1+τ2)遅らせた信号に、第4の遅
延手段5から出力される信号とこの信号を時間2τ2遅
らせた信号にそれぞれに2の重みを加えて反転した2種
の信号を加える第2の加減算手段6とから波形等化回路
を構成する。
The principle structure of the present invention that solves the above problems is shown in FIG. As shown in FIG. 1(a), the waveform equalization circuit of the present invention is used in a demodulation method that samples the amplitude of an input signal at equal intervals on the time axis and demodulates data based on the sampled values. A circuit that shapes the input waveform of
Assuming that K2≦1, it is configured to be expressed by the equation, H(ω)=1 2K2 (1-2, cosωτ,)cosωτ2. Specifically, as shown in FIG. 1(b), a first delay means 1 generates a signal delayed by a time (τ, +τ2) from the input signal, and a second delay means 1 generates a signal delayed by a time τ1 from the input signal. The delay means 2 and the time τ from the output signal of the second delay means 2
A third delay means 3 generates a signal delayed by 2, the input signal is delayed by a time τ, the input signal is delayed by 2τ1, and the output signal of the third delay means 3 is delayed by 1. A first adding/subtracting means 4 which adds two weighted and inverted signals; a fourth delaying means 5 which produces a signal obtained by delaying the output signal of the first adding/subtracting means 5 by a time 2τ2; A second addition/subtraction means that adds two types of signals to the signal delayed by (τ1+τ2), the signal output from the fourth delay means 5, and the signal obtained by delaying this signal by a time of 2τ2, each of which is inverted by adding a weight of 2 to each. 6 constitutes a waveform equalization circuit.

〔作用〕[Effect]

本発明によれば、入力信号、入力信号を時間τ。 According to the present invention, the input signal is set to a time τ.

と時間2τ1遅らせた信号の3種類の信号が作られ、入
力信号と人力信号を時間2τ、遅らせた信号に対して減
衰率に、の重みが加えられる。そして、入力信号を時間
τ1遅らせた信号からこの重みを加えた2種類の信号を
減算する演算が行われる。この後、演算された信号とこ
の信号を時間2τ2遅らせた信号の2種類が作られ、こ
の2種類α信号に減衰率に2の重みづけか行われた信号
を、入力信号を時間(τ1+τ2)遅らせた信号から差
し引いて出力信号が作られる。
Three types of signals are created: and a signal delayed by a time of 2τ1, and a weight is added to the attenuation rate for the signal obtained by delaying the input signal and the human signal by a time of 2τ. Then, an operation is performed to subtract the two types of signals to which these weights have been added from the signal obtained by delaying the input signal by a time τ1. After this, two types of signals are created: a calculated signal and a signal delayed by a time of 2τ2, and a signal in which the attenuation rate is weighted by 2 is added to these two types of α signals, and the input signal is delayed by a time of (τ1+τ2). An output signal is created by subtracting from the delayed signal.

本等化回路によれば、振幅を減少させることなく、分解
能を向上させる効果があるため、高密度記録により信号
品質が劣化しても信頬性の高い復調が可能となる。
According to the present equalization circuit, the resolution is improved without reducing the amplitude, so even if the signal quality deteriorates due to high-density recording, highly reliable demodulation is possible.

〔実施例〕〔Example〕

以下図面を用いて本発明の波形等化回路の実施例を詳細
に説明する。
Embodiments of the waveform equalization circuit of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例の波形等化回路20の構成を
示すブロック回路図である。この実施例の波形等化回路
20には、バッファアンプ21.31、遅延時間τ、の
3つの遅延素子22.23.32と遅延時間τ2の3つ
の遅延素子28.29.33と、終端抵抗24、30.
34と、減衰定数に、の減衰器25.26と減表定数に
2の減衰器35.36、および加減算器2737がある
FIG. 2 is a block circuit diagram showing the configuration of a waveform equalization circuit 20 according to an embodiment of the present invention. The waveform equalization circuit 20 of this embodiment includes a buffer amplifier 21.31, three delay elements 22, 23, and 32 with a delay time τ, three delay elements 28, 29, and 33 with a delay time τ2, and a terminating resistor. 24, 30.
34, an attenuator 25.26 for the attenuation constant, an attenuator 35.36 for the reduction constant, and an adder/subtractor 2737.

入力信号は2つに分岐され、一方はバッファアンプ2I
を経て遅延時間τ1の2つの遅延素子22゜23を通り
、遅延素子23の出力側を終端する抵抗24により消費
される。また、バッファアンプ21と遅延素子22、遅
延素子22と遅延素子23、および遅延素子23と終端
抵抗24の間の回路も分岐されており、バッファアンプ
21と遅延素子23の出力はそれぞれ減衰定数に、の減
衰器25.56を経て加減算器27の反転入力−に入力
され、遅延素子22の出力は加減算器27の非反転入力
子に入力される。
The input signal is branched into two, one of which is sent to the buffer amplifier 2I.
It passes through two delay elements 22 and 23 with a delay time τ1, and is consumed by a resistor 24 terminating the output side of the delay element 23. Further, the circuits between the buffer amplifier 21 and the delay element 22, between the delay element 22 and the delay element 23, and between the delay element 23 and the terminating resistor 24 are also branched, and the outputs of the buffer amplifier 21 and the delay element 23 are each attenuated by an attenuation constant. , and the output of the delay element 22 is input to the non-inverting input terminal of the adder/subtractor 27.

加減算器27の出力は、遅延時間τ2の2つの遅延素子
28.29を通り、遅延素子29の出力側を終端する抵
抗30により消費される。また、加減算器27の出力と
遅延素子29の出力も分岐されており、それぞれ減衰定
数Kzの減衰器35.36を経て加減算器37の反転入
力−に入力される。
The output of the adder/subtractor 27 passes through two delay elements 28 and 29 with a delay time τ2, and is consumed by a resistor 30 terminating the output side of the delay element 29. Further, the output of the adder/subtractor 27 and the output of the delay element 29 are also branched, and are inputted to the inverting input - of the adder/subtractor 37 through attenuators 35 and 36 each having an attenuation constant Kz.

分岐された入力信号の他方は、遅延時間τ1の遅延素子
32と遅延時間τ2の遅延素子33を通り、遅延素子3
3の出力側を終端する抵抗34により消費される。また
、遅延素子33の出力は分岐されてそのまま加vJIi
算器37の非反転式カモに入力される。
The other branched input signal passes through the delay element 32 with a delay time τ1 and the delay element 33 with a delay time τ2, and then passes through the delay element 32 with a delay time τ1 and the delay element 33 with a delay time τ2.
3 is consumed by a resistor 34 terminating the output side of 3. Further, the output of the delay element 33 is branched and is directly added to vJIi
It is input to the non-inverting type of calculator 37.

以上のように信号か流れるこの実施例の波形等化回路2
0において、従来例と同じように、入力波形をA、加減
算器37の3つの入力をそれぞれB。
Waveform equalization circuit 2 of this embodiment where the signal flows as described above
0, the input waveform is A, and each of the three inputs of the adder/subtractor 37 is B, as in the conventional example.

C,D、即ち、遅延素子33の出力波形をB、減衰器3
5の出力波形をC,減衰器36の出力波形をD、加減算
器37の出力波形をEとすると、各波形は第3図に示す
ようになる。
C, D, that is, the output waveform of the delay element 33, B, the attenuator 3
Let C be the output waveform of the attenuator 5, D be the output waveform of the attenuator 36, and E be the output waveform of the adder/subtractor 37, the respective waveforms will be as shown in FIG.

この第3図に示す各波形を用いてこの実施例の波形等化
回路の動作を説明する。波形Aで示す入力信号はバッフ
ァアンプ31を経た後、遅延時間τ。
The operation of the waveform equalization circuit of this embodiment will be explained using each waveform shown in FIG. After the input signal shown by waveform A passes through the buffer amplifier 31, it has a delay time τ.

の遅延素子32と遅延時間τ2の遅延素子33を通って
加減算器37の非反転入力子に入力される。従って、波
形Bは波形Aを単に遅延時間τ、+τ2だけ遅延したも
のとなる。一方、加減算器37の反転入力−の1つに減
衰器35を経て入力される波形Cの、減衰器35に入力
される前の波形は、入力信号に対して第8図に示した加
減算器77の出力と同し関係である。従って、波形Cは
第8図に示した波形Aに対する波形Eを減衰定数に2に
より重みつけしたものと同じ形になり、波形りは波形C
を更に時間2τ2だけ遅延した形になる。
The signal is inputted to the non-inverting input terminal of the adder/subtractor 37 through the delay element 32 having a delay time τ2 and the delay element 33 having a delay time τ2. Therefore, waveform B is simply waveform A delayed by delay time τ, +τ2. On the other hand, the waveform C input to one of the inverting inputs of the adder/subtracter 37 via the attenuator 35 before being input to the attenuator 35 is generated by the adder/subtracter shown in FIG. This is the same relationship as the output of 77. Therefore, waveform C has the same shape as waveform E shown in FIG. 8 for waveform A, with the attenuation constant weighted by 2.
is further delayed by time 2τ2.

ここで、波形Cと波形りのピーク値は、波形Bのα点と
β点(波形C,Dのピーク値と同時刻における波形B上
の点)のレベルに合うように減衰定数に2を調整すると
共に、波形Bのピーク点において波形C,Dのレベルが
0になるように遅延時間τ、とτ2とを決めれば、加減
算器37において波形Bから波形Cと波形りを減算する
と、加減算器37の出力に現れる波形Eは第3図に示す
ように、波形Bとピーク値のレベルが変わらず、しかも
半値幅が小さく、隣接ビット間の波形干渉の少ないもの
となる。
Here, the attenuation constant is set to 2 so that the peak values of waveform C and waveform 2 match the levels of α and β points of waveform B (points on waveform B at the same time as the peak values of waveforms C and D). At the same time, if the delay time τ and τ2 are determined so that the levels of waveforms C and D become 0 at the peak point of waveform B, then when waveform C and waveform RI are subtracted from waveform B in adder/subtracter 37, the addition/subtraction As shown in FIG. 3, the waveform E appearing at the output of the converter 37 has the same peak value level as the waveform B, has a small half-width, and has little waveform interference between adjacent bits.

なお、以上説明した実施例の波形等化回路20の伝達関
数H(ω)は次式で与えられる。
Note that the transfer function H(ω) of the waveform equalization circuit 20 of the embodiment described above is given by the following equation.

H((1))=1 2に2(1−2に、cosωr I
)Cos(1) r。
H((1))=1 2 to 2(1-2, cosωr I
)Cos(1) r.

[但し、ω=2πf、 0≦K、≦1.0≦K2≦11
この式において、τ1.τ2は第2図に示した各遅延要
素の遅延量である。τ1は孤立波入力波形の半値幅の1
/2前後に設定され、τ2はサンプリング間隔と等しく
設定される。また、K、、 K2はそ−れぞれ減衰器の
減衰量を表し、通常に、は0.5前後に設定される場合
が多い。更に、K2は隣接サンプル点での干渉を決定す
る定数であり、この干渉蓋を可能な限り小さくするよう
に設定される。この値は入力波形における隣接サンプル
位置での振幅を■、とじ、減衰器に2の入力部での高さ
を■、とじたときに、 Kz−Va/Vs で与えられる。
[However, ω=2πf, 0≦K, ≦1.0≦K2≦11
In this equation, τ1. τ2 is the amount of delay of each delay element shown in FIG. τ1 is 1 of the half-width of the solitary wave input waveform
/2, and τ2 is set equal to the sampling interval. Further, K, and K2 each represent the amount of attenuation of the attenuator, and are usually set to around 0.5 in many cases. Furthermore, K2 is a constant that determines interference at adjacent sample points, and is set to make this interference lid as small as possible. This value is given by Kz-Va/Vs when the amplitudes at adjacent sample positions in the input waveform are divided by .

第4図は第2図の実施例の波形等化回路20のゲイン−
周波数特性(伝達特性)を太線で示し、第7図に示した
波形等化回路70のゲイン−周波数特性を細線で示して
比較したものである。この図から分かるように、第2図
の波形等化回路20の出力波形と第7図の波形等化回路
70の出力波形とは、その面積においてほぼ同じである
ので、ノイズレベルに関しては同一ということが出来る
。この結バンファアンプ 本発明の一実施例 呆2図 第2図の回路に於ける各部の波形 第3図 第2図の回路に於ける波形等化回路の伝達特性本発明の
他の実施例の構成
FIG. 4 shows the gain of the waveform equalization circuit 20 of the embodiment shown in FIG.
The frequency characteristics (transfer characteristics) are shown by thick lines, and the gain-frequency characteristics of the waveform equalization circuit 70 shown in FIG. 7 are shown by thin lines for comparison. As can be seen from this figure, the output waveform of the waveform equalization circuit 20 in FIG. 2 and the output waveform of the waveform equalization circuit 70 in FIG. I can do it. Figure 2 Waveforms of various parts in the circuit shown in Figure 2 Transfer characteristics of the waveform equalization circuit in the circuit shown in Figure 2 Configuration of another embodiment of the invention

Claims (1)

【特許請求の範囲】 1、入力信号の振幅を時間軸上で等間隔にサンプリング
し、このサンプル値を基にデータの復調を行う復調方式
において用いられる入力波形を整形する回路であって、 回路の伝達関数H(ω)が、ω=2πf、0≦K_1≦
1、0≦K_2≦1として、式、H(ω)=1−2K_
2(1−2K_1cosωτ_1)cosωτ_2で表
されることを特徴とする波形等化回路。 2、入力信号を時間(τ_1+τ_2)遅らせた信号を
作る第1の遅延手段(1)と、 入力信号を時間τ_1遅らせた信号を作る第2の遅延手
段(2)と、 第2の遅延手段(2)の出力信号から時間τ_2遅らせ
た信号を作る第3の遅延手段(3)と、 入力信号を時間τ_1遅らせた信号に、入力信号と入力
信号から時間2τ_1遅れと、第3の遅延手段(3)の
出力信号にそれぞれK_1の重みを加えて反転した2種
の信号を加える第1の加減算手段(4)と、この第1の
加減算手段(4)の出力信号を時間2τ_2遅らせた信
号を作る第4の遅延手段(5)と、入力信号を時間(τ
_1+τ_2)遅らせた信号に、第4の遅延手段(5)
から出力される信号とこの信号を時間2τ_2遅らせた
信号にそれぞれK_2の重みを加えて反転した2種の信
号を加える第2の加減算手段(6)と、 を備えたことを特徴とする請求項1に記載の波形等化回
路。 3、前記時間τ_2の値がサンプリング周期と一致して
いることを特徴とする請求項1または2に記載の波形等
化回路。
[Claims] 1. A circuit for shaping an input waveform used in a demodulation method that samples the amplitude of an input signal at equal intervals on the time axis and demodulates data based on the sampled values, the circuit comprising: The transfer function H(ω) of is ω=2πf, 0≦K_1≦
1, 0≦K_2≦1, the formula, H(ω)=1-2K_
A waveform equalization circuit characterized by being represented by 2(1-2K_1cosωτ_1)cosωτ_2. 2. A first delay means (1) that produces a signal that delays the input signal by time (τ_1+τ_2), a second delay means (2) that produces a signal that delays the input signal by time τ_1, and a second delay means ( A third delay means (3) generates a signal delayed by a time τ_2 from the output signal of the input signal (2); a third delay means (3) generates a signal delayed by a time τ_1 from the input signal; A first addition/subtraction means (4) which adds two types of signals which are inverted by adding a weight of K_1 to the output signal of 3), and a signal obtained by delaying the output signal of this first addition/subtraction means (4) by a time of 2τ_2. A fourth delay means (5) that delays the input signal by a time (τ
_1+τ_2) The fourth delay means (5) is applied to the delayed signal.
A second addition/subtraction means (6) that adds two types of signals which are inverted by adding a weight of K_2 to a signal outputted from a signal outputted from the second inverter and a signal obtained by delaying this signal by a time of 2τ_2, respectively. 1. The waveform equalization circuit according to 1. 3. The waveform equalization circuit according to claim 1 or 2, wherein the value of the time τ_2 matches a sampling period.
JP24607190A 1990-09-18 1990-09-18 Waveform equalizing circuit Pending JPH04126402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24607190A JPH04126402A (en) 1990-09-18 1990-09-18 Waveform equalizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24607190A JPH04126402A (en) 1990-09-18 1990-09-18 Waveform equalizing circuit

Publications (1)

Publication Number Publication Date
JPH04126402A true JPH04126402A (en) 1992-04-27

Family

ID=17143037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24607190A Pending JPH04126402A (en) 1990-09-18 1990-09-18 Waveform equalizing circuit

Country Status (1)

Country Link
JP (1) JPH04126402A (en)

Similar Documents

Publication Publication Date Title
CN112712816B (en) Training method and device for voice processing model and voice processing method and device
JP2002189498A (en) Digital speech processor and computer program recording medium
US6816547B1 (en) Waveform equalizer
JPH04126402A (en) Waveform equalizing circuit
JP5889224B2 (en) Echo suppression gain estimation method, echo canceller and program using the same
US20210319800A1 (en) Frequency band expansion device, frequency band expansion method, and storage medium storing frequency band expansion program
JP2022045086A (en) System for finding reverberation
JPH0248831A (en) Noise suppression method
JP2511847B2 (en) Waveform equalization circuit
JP4249424B2 (en) Waveform equalizer and recorded information reproducing apparatus
JP2770886B2 (en) Magnetic recording / reproducing device
JP2562659B2 (en) ADPCM signal decoding device
KR970050838A (en) Digital V. C. Egg&#39;s Equalizer
JPH06180807A (en) Waveform equalizing circuit
JPS63195809A (en) Reading circuit for magnetic recorder
JPS58182115A (en) Waveform equalizing circuit
JP3231406B2 (en) Signal processing device
JPH06177771A (en) Data reproducing device
KR970050839A (en) Digital V. C. Egg&#39;s Equalizer
JPH07320207A (en) Data recording method, and method and device for recording/reproducing data
Au-Yang et al. GUIDELINES FOR REDUCTION OF RANDOM MODAL TEST DATA
JPS5819208B2 (en) Frequency spectrum analyzer
JP2007306294A (en) Signal generating method, signal generating apparatus, and impulse response measuring method
JPS60137116A (en) Waveform equalizer
JPS62154263A (en) Signal processing circuit