JPS63195809A - Reading circuit for magnetic recorder - Google Patents

Reading circuit for magnetic recorder

Info

Publication number
JPS63195809A
JPS63195809A JP2629787A JP2629787A JPS63195809A JP S63195809 A JPS63195809 A JP S63195809A JP 2629787 A JP2629787 A JP 2629787A JP 2629787 A JP2629787 A JP 2629787A JP S63195809 A JPS63195809 A JP S63195809A
Authority
JP
Japan
Prior art keywords
circuit
waveform
signal
margine
limiter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2629787A
Other languages
Japanese (ja)
Inventor
Masami Ikeda
池田 政美
Masashi Sakuma
政志 佐久間
Noriyuki Ishikawa
範幸 石川
Nobuyuki Okamoto
岡本 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd, Hitachi Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2629787A priority Critical patent/JPS63195809A/en
Publication of JPS63195809A publication Critical patent/JPS63195809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Magnetic Recording (AREA)

Abstract

PURPOSE:To simultaneously improve a phase margine and a slice level margine based on a reading signal from a magnetic head by connecting waveform equalizing circuits having respectively different attenuation factors to the prestages of a limiter circuit and a gate generating circuit. CONSTITUTION:A reading signal from a magnetic head is respectively applied to the waveform equalizing circuits 11, 15 and the signal equalized by the circuit 11 is differentiated by a differentiation circuit 12 so that a peak position is converted into a zero crossing point of a differentiated waveform and the output of the circuit is discriminated by a data discriminating circuit 17 through a low-pass filter 13 and a limiter circuit 14. On the other hand, the equalized signal from the circuit 15 is inputted to a gate generating circuit 16 through a low-pass filter 13 and sent to the circuit 17. In this case, the waveform equalizing effects of the circuits 11, 15 are different from each other and the attenuation factors are also different. In a phase margine system based on the waveform equalizing circuits, the attenuation factors are set up so that the sum of an S/N jitter value and a pattern peak shifting value is minimized. In a slice level margine system, the attenuation factors are set up so that the sum of voltage dropping rates due to S/N ratios is minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録装置の読出し回路に係り、特に記録再
生特性の向上をはかるに好適な磁気記録装置の読出し回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a readout circuit for a magnetic recording device, and particularly to a readout circuit for a magnetic recording device suitable for improving recording and reproducing characteristics.

〔従来の技術〕[Conventional technology]

磁気ディスク装置等の磁気記録装置では、高記録密度化
に対処するため、磁気ヘッドで読出した波形を再生回路
で処理することにより、等測的に記録再生特性を改良す
る手法が用いられている。
In magnetic recording devices such as magnetic disk drives, in order to cope with higher recording densities, a method is used to improve recording and reproducing characteristics isometrically by processing the waveform read by a magnetic head in a reproducing circuit. .

この手法の1つに、特開昭58−182114号の第1
図に示すような遅延線、減衰、器及び差動増幅器の組合
せからなる波形等化回路が知られている。しかし、遅延
時間や減衰率の回路定数が固定であると、等化の効果す
なわちパターンピークシフトの軽減量が一定で、等化の
程度に過不足が生ずる。
One of these methods is the method described in Japanese Unexamined Patent Publication No. 58-182114.
A waveform equalization circuit consisting of a combination of a delay line, an attenuator, and a differential amplifier as shown in the figure is known. However, if the circuit constants of the delay time and the attenuation rate are fixed, the effect of equalization, that is, the amount of reduction in pattern peak shift, is constant, and the degree of equalization is either too much or too little.

そこで、最近では、読出し波形の特性の相違によるパタ
ーンピークシフトへの影響を低減する手法が提案されて
いる。このような例としては、例えば上述した特開昭5
8−182114号がある。
Therefore, recently, a method has been proposed to reduce the influence on the pattern peak shift due to the difference in characteristics of readout waveforms. As an example of this, for example, the above-mentioned Japanese Patent Application Laid-open No. 5
There is No. 8-182114.

これは、読出し波形の特性に応じて遅延時間や減衰率等
の回路定数を切換えることにより、波形のピークに対し
前後を細くし、波形のアンダーシュートを防ぎ、等化の
過不足を低減せんとするものである。係る波形等化回路
を含む磁気記録装置の読出し回路の一例を示すと第2図
のようになる。
This is done by switching the delay time, attenuation rate, and other circuit constants according to the characteristics of the readout waveform to narrow the waveform before and after its peak, prevent waveform undershoot, and reduce over- or under-equalization. It is something to do. An example of a readout circuit of a magnetic recording device including such a waveform equalization circuit is shown in FIG.

第2図において、例えば磁気ヘッドからの読出し信号は
波形等化回路1により波形等化された後、微分回路2で
ピーク位置を微分波形の零クロス点に変換され、さらに
低域通過フィルタ3.リミッタ回路4を通過し、データ
弁別回路6によりデータ弁別される。そして、このデー
タ弁別のタイミングは波形等化信号を低域通過フィルタ
3によりフィルタリングした後、ゲート発生回路5に入
力し、得られたゲートパルスをデータ弁別回路6に加え
ることにより行□われる。
In FIG. 2, for example, a read signal from a magnetic head is waveform-equalized by a waveform equalization circuit 1, and then a differential circuit 2 converts the peak position to a zero-crossing point of the differential waveform, and then a low-pass filter 3. The data passes through the limiter circuit 4 and is subjected to data discrimination by the data discrimination circuit 6. The timing of this data discrimination is determined by filtering the waveform equalized signal by the low-pass filter 3, inputting it to the gate generation circuit 5, and applying the obtained gate pulse to the data discrimination circuit 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、読出し系の余裕(マージン)のうち、
時間軸、すなわち位相マージンでのパターンピークシフ
トについて配慮したものである。
In the above conventional technology, out of the margin of the reading system,
This takes into consideration the pattern peak shift on the time axis, that is, the phase margin.

ところが、波形等化回路によって変化する信号電圧と、
磁気ディスク面の欠陥や磁気ヘッドさらには読出し回路
自体によって生じるノイズ成分の比、っまりS/N比に
ついては考慮されてぃながった。
However, the signal voltage that changes due to the waveform equalization circuit,
No consideration was given to the ratio of noise components caused by defects on the magnetic disk surface, the magnetic head, and even the readout circuit itself, that is, the S/N ratio.

さらに、読出し系のマージンのうち振幅軸、すなわちス
ライスレベルマージンについても同様に考慮されていな
かった。
Furthermore, among the margins of the readout system, the amplitude axis, that is, the slice level margin, was not considered as well.

一般に、位相マージンを決定する要因としては隣り合う
ビットの干渉で生じるパターンピークシフトと、リミッ
タ回路の信号電圧と磁気ヘッドやAMP等で発生するノ
イズ電圧との比で生じるS/Nジッタがある。上述した
従来技術から、明らかなように、減衰率Kを大きくする
ことによって波形の裾がスリムになり、隣り合うビット
相互の干渉も小さく、したがってパターンピークシフト
量も小さくなる。しかし、減衰率Kをあまり大きくしす
ぎると、第3図のように、逆の方向にパターンピークシ
フトしてしまう。一方、S/Nジッタ量と減衰率にの関
係を考察すると、データパルスはリミッタ回路を経て出
力されるが、リミッタ回路ではピーク点を検知するのに
、微分波形を入力している。このため、第4図に示すよ
うに周波・3  ・ 数に依存して増幅度が大きくなるので、リミッタノイズ
電圧も大きくなっていく。そして、減衰率Kが大きくな
れば、リミッタノイズ電圧も大きくなり、したがって減
衰率にとS/Nジッタ量との関係は第5図のようになる
In general, the factors that determine the phase margin include pattern peak shift caused by interference between adjacent bits, and S/N jitter caused by the ratio of the signal voltage of the limiter circuit to the noise voltage generated by the magnetic head, AMP, etc. As is clear from the prior art described above, by increasing the attenuation rate K, the tail of the waveform becomes slimmer, the mutual interference between adjacent bits becomes smaller, and the amount of pattern peak shift also becomes smaller. However, if the attenuation factor K is made too large, the pattern peak shifts in the opposite direction as shown in FIG. On the other hand, considering the relationship between the S/N jitter amount and the attenuation rate, the data pulse is output through a limiter circuit, and the limiter circuit inputs a differential waveform to detect the peak point. Therefore, as shown in FIG. 4, the degree of amplification increases depending on the frequency, and the limiter noise voltage also increases. As the attenuation rate K increases, the limiter noise voltage also increases, and therefore the relationship between the attenuation rate and the S/N jitter amount is as shown in FIG.

次にスライスレベルマージン系について考察すると、ス
ライスレベルマージンを決める要因には、信号の周波数
によって決まる信号電圧減少率と、ゲート発生回路のS
/N電圧減少率がある。ここで、信号電圧減少率とは周
波数によって変化する信号電圧比であり、S/N電圧減
少率とは読出し信号電圧と読出しノイズ電圧との比であ
られされる。
Next, considering the slice level margin system, the factors that determine the slice level margin are the signal voltage reduction rate determined by the signal frequency and the S
/N voltage reduction rate. Here, the signal voltage reduction rate is a signal voltage ratio that changes depending on the frequency, and the S/N voltage reduction rate is the ratio of the read signal voltage to the read noise voltage.

しかしながら、上述したように、従来技術においてはこ
れらの要因によるスライスレベルマージンの最適化につ
いて、何ら考慮されていなかった。
However, as described above, in the prior art, no consideration was given to optimizing the slice level margin due to these factors.

本発明の目的は、磁気記録再生装置の読出し回路の構成
に際し、位相マージン系とスライスレベルマージン系の
双方のマージン向上をはかることにある。
An object of the present invention is to improve the margins of both a phase margin system and a slice level margin system when configuring a readout circuit of a magnetic recording/reproducing apparatus.

°5 ゛ ・4  ・ 〔問題点を解決するための手段〕 上記した目的を達成するため、本発明においては磁気ヘ
ッドの読出し信号を波形等化する波形等化回路と、この
波形等化された信号を入力し微分波形に変換する微分回
路と、この微分波形を入力してピーク点を検知すること
によりデータパルスを出力するリミッタ回路と、このデ
ータパルスからデータを識別するデータ弁別回路と、こ
のデータ弁別回路に対しデータ弁別のためのタイミング
信号を印加するゲート発生回路からなる磁気記録再生装
置の読出し回路において、リミッタ回路とゲート発生回
路の前段にそれぞれ波形等化の効果の異なる波形等化回
路を設けた磁気記録再生装置の読出し回路を提供する。
°5 ゛・4 ・ [Means for solving the problem] In order to achieve the above-mentioned object, the present invention provides a waveform equalization circuit that equalizes the waveform of a read signal of a magnetic head, and a waveform equalization circuit that equalizes the waveform of a read signal of a magnetic head. A differentiation circuit that inputs a signal and converts it into a differential waveform, a limiter circuit that inputs this differential waveform and outputs a data pulse by detecting a peak point, a data discrimination circuit that identifies data from this data pulse, and In the readout circuit of a magnetic recording/reproducing device, which consists of a gate generation circuit that applies a timing signal for data discrimination to a data discrimination circuit, a waveform equalization circuit with different waveform equalization effects is installed in the stage before the limiter circuit and the gate generation circuit, respectively. A readout circuit for a magnetic recording/reproducing device is provided.

〔作用〕[Effect]

本発明では、リミッタ回路とゲート発生回路のそれぞれ
の前段に波形等化回路を設けている。
In the present invention, a waveform equalization circuit is provided before each of the limiter circuit and the gate generation circuit.

まず、波形等化回路を前段に設けたリミッタ回路による
位相マージン系の改善について説明する。
First, the improvement of the phase margin system using a limiter circuit provided with a waveform equalization circuit at the front stage will be explained.

前述したように、パターンピークシフト量は波形・6 
 ・ 等化回路の減衰器によって低減され、減衰器の減衰率K
が比較的大きな方が望ましい。ところが、減衰率Kが大
きくなれば、リミッタ回路によるリミッタノイズ電圧も
大きくなる。そこで、ノイズ電圧と信号電圧との比、す
なわち、S/N比で決まるS/Nジッタ量とパターンピ
ークシフト量の和が最小となるように減衰率Kを設定す
ることにより、位相マージンは最適となる。
As mentioned above, the pattern peak shift amount is waveform 6
・ Reduced by the attenuator of the equalization circuit, the attenuation factor K of the attenuator
It is desirable that the value is relatively large. However, as the attenuation rate K increases, the limiter noise voltage generated by the limiter circuit also increases. Therefore, by setting the attenuation rate K so that the ratio of the noise voltage to the signal voltage, that is, the sum of the S/N jitter amount determined by the S/N ratio and the pattern peak shift amount, is minimized, the phase margin can be optimized. becomes.

次に、波形等化回路を前段に設けたゲート発生回路によ
るスライスレベルマージン系の改善について説明する。
Next, an explanation will be given of improvement of the slice level margin system using a gate generation circuit provided with a waveform equalization circuit at the front stage.

まず、信号の周波数によって決まる信号電圧減少率につ
いて考察する。入力信号f(1)に対する出力信号g 
(t)の比、すなわち信号電圧比R(t)は減衰率Kに
よって変化し、その特性は第7図のようになる。そして
、この特性のピーク点が信号電圧比の最適点となる。一
方、ゲート発生回路のS/N電圧減少率について考察す
れば、第8図に示すように周波数が高くなると電圧利得
も高くなるため、信号電圧も大きくなりしたがってS/
N電圧減少率は小さくなる。この特性を示すと第9図の
ようになる。そこで、スライスレベルマージン系の最適
点は、信号電圧比の逆数とS/N電圧減少率の和が最小
となるように減衰率Kを設定することにより得られる。
First, consider the signal voltage reduction rate determined by the signal frequency. Output signal g for input signal f(1)
(t), that is, the signal voltage ratio R(t) changes depending on the attenuation rate K, and its characteristics are as shown in FIG. Then, the peak point of this characteristic becomes the optimum point of the signal voltage ratio. On the other hand, if we consider the S/N voltage reduction rate of the gate generation circuit, as shown in Figure 8, as the frequency increases, the voltage gain also increases, so the signal voltage also increases, and therefore the S/N
The N voltage reduction rate becomes smaller. This characteristic is shown in FIG. 9. Therefore, the optimum point of the slice level margin system can be obtained by setting the attenuation rate K so that the sum of the reciprocal of the signal voltage ratio and the S/N voltage reduction rate becomes the minimum.

以上のように、波形等化回路による位相マージン、スラ
イスレベルマージンによる影響は互いに異なり、最適点
も異なることがわかる。
As described above, it can be seen that the effects of the phase margin and slice level margin due to the waveform equalization circuit are different from each other, and the optimum points are also different.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は本発明に係る読出し回路の概略構成を示すブロック
図である。第1図において、磁気ヘッドからの読出し信
号は波形等化回路11,15にそれぞれ印加される。波
形等化回路11で波形等化された信号は、微分回路12
でピーク位置を微分波形の零クロス点に変換された後、
低域通過フィルタ13.リミッタ回路14を通過し、デ
ータ弁別回路17によりデータ弁別される。一方、波形
等化回路15で波形等化された信号は低域通過フィルタ
13を通過した後、ゲート発生回路16に入力し、この
ゲート発生回路16で得られた°7  。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a block diagram showing a schematic configuration of a readout circuit according to the present invention. In FIG. 1, read signals from the magnetic head are applied to waveform equalization circuits 11 and 15, respectively. The signal whose waveform has been equalized by the waveform equalization circuit 11 is sent to the differentiation circuit 12.
After converting the peak position to the zero cross point of the differential waveform,
Low pass filter 13. The data passes through the limiter circuit 14 and is subjected to data discrimination by the data discrimination circuit 17. On the other hand, the signal whose waveform has been equalized by the waveform equalization circuit 15 passes through the low-pass filter 13 and then inputs to the gate generation circuit 16, where the signal obtained by the gate generation circuit 16 is 7 degrees.

ゲートパルスはデータ弁別回路17に加えられるように
なっている。これら波形等化回路11.15はそれぞれ
波形等化の効果が異なるものであって、波形等化回路を
構成する減衰率が異なっている。
The gate pulse is applied to the data discrimination circuit 17. These waveform equalization circuits 11 and 15 have different waveform equalization effects, and have different attenuation rates.

波形等化回路による位相マージン系では、S/Nジッタ
量とパターンピークシフト量の和が最小となるように減
衰率が設定される。パターンピークシフト量とS/Nジ
ッタ量の和について減衰率にの変化に応じてプロットす
ると第6図のようになる。この第6図から位相マージン
系では減衰率に=0.3でパターンピークシフト量とS
/Nジッタ量の和には7.4nsとなり最小となる。こ
の結果、本実施例では位相マージン系を2〜3nS改善
することができた。
In the phase margin system using the waveform equalization circuit, the attenuation rate is set so that the sum of the S/N jitter amount and the pattern peak shift amount is minimized. When the sum of the pattern peak shift amount and the S/N jitter amount is plotted according to changes in the attenuation rate, the result is as shown in FIG. 6. From this Figure 6, in the phase margin system, the pattern peak shift amount and S
/N The sum of the jitter amounts is 7.4 ns, which is the minimum. As a result, in this example, the phase margin system could be improved by 2 to 3 nS.

一方、波形等化回路によるスライスレベルマージン系で
は、信号電圧比の逆数すなわち1/信号電圧比とゲート
発生回路のS/Nによる電圧減少率の和が最小となるよ
うに減衰率が設定される。
On the other hand, in a slice level margin system using a waveform equalization circuit, the attenuation rate is set so that the sum of the reciprocal of the signal voltage ratio, that is, the 1/signal voltage ratio, and the voltage reduction rate due to the S/N of the gate generation circuit is minimized. .

そこで17信号電圧比とゲート発生回路のS/N・q 
 瘤 ・8  ・ による電圧減少率の和について、減衰率にの変化に応じ
てプロットとすると第10図のようになる。
Therefore, 17 signal voltage ratio and S/N・q of gate generation circuit
Figure 10 shows the sum of the voltage reduction rates due to bumps 8. plotted according to changes in the attenuation rate.

したがって、第10図からスライスレベルマージン系で
は、減衰率に=0.55で1/信号電圧比とS/Nによ
る電圧減少率の和は40%となり最小となる。この結果
、本実施例ではスライスレベルマージン系で15〜25
%向上させることができた。
Therefore, as shown in FIG. 10, in the slice level margin system, when the attenuation rate is 0.55, the sum of the voltage reduction rate due to 1/signal voltage ratio and S/N becomes 40%, which is the minimum. As a result, in this example, the slice level margin system is 15 to 25
% could be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リミッタ回路とゲート発生回路の前段
にそれぞれ減衰率の相違する波形等化回路を設けたので
、磁気ヘッドからの読出し信号に対し、位相マージン及
びスライスレベルマージンの双方を同時に向上させるこ
とができる。
According to the present invention, since waveform equalization circuits with different attenuation rates are provided before the limiter circuit and the gate generation circuit, both the phase margin and slice level margin are simultaneously improved for the read signal from the magnetic head. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る磁気記録装置の読出し
回路の概略構成を示すブロック図、第2図は従来の読出
し回路の構成を示すブロック図。 第3図はパターンピークシフト量と減衰率にとの関係を
示す特性図、第4図はリミッタノイズ電圧°10 。 と周波数fとの関係を示す特性図、第5図はS/Nジッ
タ量と減衰率にとの関係を示す特性図、第6図はパター
ンピークシフト量とS/Nジッタ量の和と減衰率にとの
関係を示す特性図、第7図は信号電圧比R(t)と減衰
率にとの関係を示す特性図、第8図は電圧利得と周波数
の関係を減衰率の値に応じて対比させた特性図、第9図
はS/Nによる電圧減少率(%)と減衰率にの関係を示
す特性図、第10図は信号電圧比の逆数とS/Hによる
電圧減少率の和と減衰率にとの関係を示す特性図である
。 1.11.15・・・波形等化回路、2.12・・・微
分回路、3.13・・・低域通過フィルタ、4.14・
・・リミッタ回路、5.16・・・ゲート発生回路、6
゜17・・・データ弁別回路。
FIG. 1 is a block diagram showing a schematic configuration of a readout circuit of a magnetic recording device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a conventional readout circuit. FIG. 3 is a characteristic diagram showing the relationship between pattern peak shift amount and attenuation rate, and FIG. 4 is a limiter noise voltage °10. Figure 5 is a characteristic diagram showing the relationship between the amount of S/N jitter and attenuation rate, and Figure 6 is the sum of pattern peak shift amount and amount of S/N jitter and attenuation. Figure 7 is a characteristic diagram showing the relationship between signal voltage ratio R(t) and attenuation rate, and Figure 8 is a characteristic diagram showing the relationship between voltage gain and frequency depending on the value of attenuation rate. Figure 9 is a characteristic diagram showing the relationship between the voltage reduction rate (%) due to S/N and the attenuation rate, and Figure 10 is a characteristic diagram showing the relationship between the voltage reduction rate (%) due to S/N and the attenuation rate. FIG. 3 is a characteristic diagram showing the relationship between the sum and the attenuation rate. 1.11.15...Waveform equalization circuit, 2.12...Differentiating circuit, 3.13...Low pass filter, 4.14.
...Limiter circuit, 5.16...Gate generation circuit, 6
゜17...Data discrimination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、減衰器を備え磁気ヘッドからの読出し信号をそれぞ
れ入力し、所定の減衰率で波形等化する第1、第2の波
形等化回路と、この第1の波形等化回路で波形等化され
た信号を微分波形に変換する微分回路と、この微分回路
からの微分波形からピーク点を検知し、データパルスを
出力するリミッタ回路と、このリミッタ回路で得られた
データパルスからデータを識別するデータ弁別回路と、
前記第2の波形等化回路で波形等化された信号を入力し
、前記データ弁別回路に対しデータ弁別のためのタイミ
ング信号を印加するゲート発生回路からなることを特徴
とする磁気記録装置の読出し回路。
1. First and second waveform equalization circuits each have an attenuator and input read signals from the magnetic head and equalize the waveforms at a predetermined attenuation rate, and the first waveform equalization circuit performs waveform equalization. A differentiator circuit that converts the differential signal into a differential waveform, a limiter circuit that detects the peak point from the differential waveform from this differentiator circuit and outputs a data pulse, and identifies data from the data pulse obtained by this limiter circuit. a data discrimination circuit;
Reading of a magnetic recording device characterized by comprising a gate generation circuit inputting a signal whose waveform has been equalized by the second waveform equalization circuit and applying a timing signal for data discrimination to the data discrimination circuit. circuit.
JP2629787A 1987-02-09 1987-02-09 Reading circuit for magnetic recorder Pending JPS63195809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2629787A JPS63195809A (en) 1987-02-09 1987-02-09 Reading circuit for magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2629787A JPS63195809A (en) 1987-02-09 1987-02-09 Reading circuit for magnetic recorder

Publications (1)

Publication Number Publication Date
JPS63195809A true JPS63195809A (en) 1988-08-12

Family

ID=12189394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2629787A Pending JPS63195809A (en) 1987-02-09 1987-02-09 Reading circuit for magnetic recorder

Country Status (1)

Country Link
JP (1) JPS63195809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236406A (en) * 1988-03-16 1989-09-21 Fujitsu Ltd Magnetic recording/reproducing circuit
JPH02260203A (en) * 1989-03-31 1990-10-23 Fujitsu Ltd Magnetic recording and reproducing circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236406A (en) * 1988-03-16 1989-09-21 Fujitsu Ltd Magnetic recording/reproducing circuit
JPH02260203A (en) * 1989-03-31 1990-10-23 Fujitsu Ltd Magnetic recording and reproducing circuit

Similar Documents

Publication Publication Date Title
JP3806219B2 (en) Intersymbol interference reduction apparatus and method
US3252098A (en) Waveform shaping circuit
SE416853B (en) DOUBLE-CHANNEL SIGNAL DETECTOR
JPH0443349B2 (en)
KR100445391B1 (en) Time-domain filters for communication channels
US5163003A (en) Apparatus and method for reading from and writing to a magnetic recording medium
JPH0458112B2 (en)
US5337198A (en) Digital magnetic writing and reading apparatus
JPS63195809A (en) Reading circuit for magnetic recorder
JPH0714305A (en) Method and apparatus for detecting digital regenerative signal
JPS62160827A (en) Method and apparatus for pulse signal processing
CN100489989C (en) Equalizer for high density optical disc reproducing apparatus and equalizing method therefor
US5420726A (en) Channel qualifier for a hard disk drive which differentiates a raw data signal before peak detection and qualification of the signal
US5467232A (en) Magnetic recording and reproducing method using phase discrimination and apparatus therefor
US4323932A (en) Readback pulse compensator
JPS6353609B2 (en)
JPS6199906A (en) Waveform equalizing circuit
JP2770886B2 (en) Magnetic recording / reproducing device
US3778792A (en) Blanking circuit for high resolution data recovery systems
JP2978513B2 (en) Automatic equalizer
JP2557529B2 (en) Magnetic recording / reproducing circuit
JP2511847B2 (en) Waveform equalization circuit
Tahara et al. Optimum design of channel filter for digital magnetic recording
JPH06177771A (en) Data reproducing device
JP2675018B2 (en) Magnetic recording method for digital signals