JPH04125922A - Semiconductor closed tube diffusion method and closed tube diffusion equipment - Google Patents

Semiconductor closed tube diffusion method and closed tube diffusion equipment

Info

Publication number
JPH04125922A
JPH04125922A JP24656390A JP24656390A JPH04125922A JP H04125922 A JPH04125922 A JP H04125922A JP 24656390 A JP24656390 A JP 24656390A JP 24656390 A JP24656390 A JP 24656390A JP H04125922 A JPH04125922 A JP H04125922A
Authority
JP
Japan
Prior art keywords
tube
vacuum
diffusion
closed tube
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24656390A
Other languages
Japanese (ja)
Other versions
JP2715645B2 (en
Inventor
Masahide Watanabe
渡邊 雅英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2246563A priority Critical patent/JP2715645B2/en
Publication of JPH04125922A publication Critical patent/JPH04125922A/en
Application granted granted Critical
Publication of JP2715645B2 publication Critical patent/JP2715645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To diffuse impurities without crashing an ampoule, by forming a quartz ampoule, in which a semiconductor substrate and a diffusion source are vacuum-sealed, by using silicon carbide, containing said ampoule in a vac uum furnace core tube whose degree of vacuum is lower than or equal to a specified value, and performing heat treatment in a heating furnace. CONSTITUTION:A tube 4 constituted of SiC is used as the furnace core tube of a heating furnace 3. The length of the tube 4 is made longer than that of a hollow part of the furnace 3. A door 8 is installed, via an O ring, on a water cooling frange 5 of one side, and opened and closed. An exhaust tube 9 is connected with a water cooling frange 5 of the other side, and with an exhauster 11. The tube 4 is kept at a degree of vacuum lower than or equal to 1X10<-3>Torr. An ampoule in which a silicon substrate and an Al diffusion source are vacuum-sealed is contained in the tube 4. Thereby semiconductor closed tube diffusion is enabled at a high temperature of about 1250 deg.C, without crashing the ampoule.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコンなどの半導体基体にアルミニウムな
どを拡散するための半導体閉管拡散方法およびそれに用
いる閉管拡散装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor closed tube diffusion method for diffusing aluminum or the like into a semiconductor substrate such as silicon, and a closed tube diffusion device used therein.

〔従来の技術〕[Conventional technology]

シリコン半導体基体へのアルミニウム拡散は、例えばサ
イリスタのような高耐圧を必要とする半導体装置に利用
されている。アルミニウム拡散は、開管拡散法で行うと
外方拡散が生じ、シリコン半導体中へ所要の濃度まで拡
散されていかない、このため、従来、石英アンプル中に
シリコン半導体基板およびアルミニウム拡散源を入れて
、10−3Torr以上の真空下で石英アンプルを封じ
、この石英アンプルを加熱炉へ入れて拡散する、いわゆ
る閉管拡散法がとられている。第2図はそのような閉管
拡散法の実施状態を示し、シリコン基板1と22を溶接
して封じ切り、加熱炉3の中に入れて例えば1250℃
で熱処理する。
Diffusion of aluminum into a silicon semiconductor substrate is used, for example, in semiconductor devices such as thyristors that require high breakdown voltage. When aluminum is diffused using the open tube diffusion method, outward diffusion occurs and the aluminum is not diffused into the silicon semiconductor to the required concentration.For this reason, conventionally, a silicon semiconductor substrate and an aluminum diffusion source are placed in a quartz ampoule. A so-called closed-tube diffusion method is used, in which a quartz ampoule is sealed under a vacuum of 10 -3 Torr or more, and the quartz ampoule is placed in a heating furnace for diffusion. FIG. 2 shows the implementation state of such a closed tube diffusion method, in which the silicon substrates 1 and 22 are welded and sealed, placed in a heating furnace 3, and heated to, for example, 1250°C.
Heat treated with

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年のサイリスタの高電流容量化に伴い、シリコン半導
体基板は直径4インチに達するものもある。このため、
石英アンプルも外径100fiを超えることになり、上
記のように1O−bTorr以上の真空にして1250
℃で10時間程度の拡散を行うと、石英アンプル21が
つぶれてシリコン基板1が破壊することがある。
With the recent increase in the current capacity of thyristors, some silicon semiconductor substrates have a diameter of up to 4 inches. For this reason,
The quartz ampoule also has an outer diameter of more than 100 fi, and as mentioned above, it is heated to 1250 m
If the diffusion is carried out at a temperature of about 10 hours, the quartz ampoule 21 may be crushed and the silicon substrate 1 may be destroyed.

この問題を解決する1つの方法として、石英アンプル2
1の石英厚さを厚くする方法がある。上記の1250℃
における10時間程度の拡散で石英アンプルをつぶさな
いためには、計真上石英厚さを4.5n以上にする必要
がある。ところが石英厚さが451以上あると、真空封
しする時の溶接に困難をきたし、また石英アンプル重量
が大きくする欠点がある。
One way to solve this problem is to use quartz ampule 2.
There is a method of increasing the thickness of quartz in step 1. 1250℃ above
In order to prevent the quartz ampoule from being crushed during the diffusion for about 10 hours, the total thickness of the quartz directly above must be 4.5 nm or more. However, if the quartz thickness is 451 mm or more, welding becomes difficult during vacuum sealing, and the weight of the quartz ampoule increases.

あるいは解決のための別の方法として、真空封じした石
英アンプルを圧力ミリTorr程度の減圧炉で石英アン
プル内外の圧力差の小さい状態で熱処理をし、アンプル
をつぶさないようにする方法がある。現在、世の中に減
圧CVD装置は存在するが、その温度は500℃程度で
石英密閉炉心管を使用しているため、1250℃程度の
温度で熱処理することは不可能である。
Alternatively, another method for solving the problem is to heat-treat a vacuum-sealed quartz ampoule in a reduced-pressure furnace at a pressure of about milliTorr with a small pressure difference between the inside and outside of the quartz ampoule so as not to crush the ampoule. Currently, low-pressure CVD equipment exists in the world, but since the temperature is about 500°C and a closed quartz furnace tube is used, it is impossible to perform heat treatment at a temperature of about 1250°C.

本発明の目的は、半導体基体と拡散源とを真空封じした
石英アンプルを熱処理して石英アンプルをつぶさすこと
なく半導体基体へ不純物を拡散する半導体閉管拡散方法
およびその方法に用いる閉管拡散装置を提供することに
ある。
An object of the present invention is to provide a semiconductor closed-tube diffusion method for diffusing impurities into the semiconductor substrate by heat-treating a quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed without crushing the quartz ampoule, and a closed-tube diffusion device used in the method. It's about doing.

〔R題を解決するための手段〕[Means for solving R problem]

上記の目的を達成するために、本発明の半導体閉管拡散
方法は、半導体基体と拡散源とを真空封しした石英アン
プルを炭化けい素(SiC)よりなり、I X 1O−
3Torr以下の真空度の真空気密炉心管内に収容して
加熱炉内で熱処理するものとする。半導体基体がシリコ
ンよりなり、拡散源がアルミニウムを含む場合が特に有
効である。また、本発明の閉管拡散装置は、中空部を存
する加熱炉と、その中空部より長いSiCよりなる炉心
管と、その炉心管の両端を真空気密に密閉する蓋体と、
少なくとも一方の蓋体を貫通して真空排気装置に連通ず
る排気管とを備えたものとする。そして蓋体が水冷可能
であること、および蓋体がステンレス鋼よりなることが
有効である。
In order to achieve the above object, the semiconductor closed tube diffusion method of the present invention comprises a quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed, and is made of silicon carbide (SiC).
It shall be housed in a vacuum-tight furnace tube with a degree of vacuum of 3 Torr or less and heat treated in a heating furnace. This is particularly effective when the semiconductor substrate is made of silicon and the diffusion source contains aluminum. Further, the closed tube diffusion device of the present invention includes a heating furnace having a hollow portion, a core tube made of SiC that is longer than the hollow portion, and a lid body that vacuum-tightly seals both ends of the core tube.
The exhaust pipe is provided with an exhaust pipe that passes through at least one of the lids and communicates with a vacuum exhaust device. It is also effective that the lid body can be cooled with water and that the lid body is made of stainless steel.

〔作用〕[Effect]

炉心管をSiCで形成することにより、拡散温度での変
形がなくなり、また炉心管内の真空度をSiCからSi
が分離する10−’ Torr以上の高真空にしないで
、I X 1O−3Torr以下にすることにより半導
体基体の汚染のおそれもない、そして炉心管を加熱炉の
中空部より長くして、その両端の温度の低い部分で、例
えば水冷された蓋体で密閉することにより、真空気密も
容易に保持できる。それ故、密閉のための蓋体に石英に
比して熱膨張係数の大きいSiCに近い熱膨張係数をも
つステンレス鋼を用いても、蓋体の温度が高くならない
ので半導体基体へのステンレス鋼からの鉄、ニッケル、
クロムなどによる汚染のおそれがない。
By forming the reactor core tube with SiC, deformation at diffusion temperature is eliminated, and the degree of vacuum inside the reactor core tube can be changed from SiC to Si.
There is no risk of contamination of the semiconductor substrate by not creating a high vacuum of more than 10-' Torr, where the Vacuum-tightness can be easily maintained by sealing with a water-cooled lid, for example, in a low-temperature area. Therefore, even if stainless steel, which has a coefficient of thermal expansion close to that of SiC, which has a larger coefficient of thermal expansion than quartz, is used for the lid body for sealing, the temperature of the lid body will not become high, so stainless steel will not be used for the semiconductor substrate. iron, nickel,
There is no risk of contamination with chromium, etc.

〔実施例〕〔Example〕

第1図は本発明の一実施例の閉管拡散装置を示し、第2
図と共通の部分には同一の符号が付されている。図にお
いて、加熱炉3の炉心管としてSiCからなる管4が入
れられている。 SiC管4の長さは、後述の水冷フラ
ンジとSiC管の接触部の温度差が大きくならないよう
に加熱炉3よりも片側で300鶴長くなる様にした。フ
ランジ5はステンレス鋼で作成され、SiC管4との間
に介在するO IJソングによりSiC管との間の気密
を保持している。
FIG. 1 shows a closed tube diffusion device according to an embodiment of the present invention;
Parts common to those in the figure are given the same reference numerals. In the figure, a tube 4 made of SiC is inserted as a core tube of a heating furnace 3. The length of the SiC tube 4 was set to be 300 mm longer on one side than the heating furnace 3 so as not to increase the temperature difference between the contact area between the water cooling flange and the SiC tube, which will be described later. The flange 5 is made of stainless steel, and the O IJ song interposed between the flange 5 and the SiC tube 4 maintains airtightness between the flange 5 and the SiC tube.

フランジ5には、焼きつき防止のための水冷管7が取り
つけられている。一方のフランジ5の外側には戸8が備
えられ、戸8とフランジ5の間にも0リング6が挿入さ
れて、フランジの開口部51を密閉している。他方のフ
ランジ5には排気管9が連結されており、電磁弁10を
介して排気装置11に接続されている。 SiC管4の
内部をl X 10−3Torr以下の真空度にすれば
よいので、排気装置11はロータリーポンプで構成して
いる。排気管9にはまた電磁弁12を備えたN2ガス導
入管13も接続している。さらに排気管9には真空計1
4がとりつけられており、真空度がSiCからのSiの
分離のおそれのある10−3Torr以上の高真空にっ
た場合、フィードバック回路15を介して自動的に二つ
の電磁弁が作動し、排気管9例の電磁弁10が閉じ、N
2導入管13側のii磁弁12が開くので、10−3↑
orrの範囲になる。
A water cooling pipe 7 is attached to the flange 5 to prevent seizure. A door 8 is provided on the outside of one flange 5, and an O-ring 6 is inserted between the door 8 and the flange 5 to seal the opening 51 of the flange. An exhaust pipe 9 is connected to the other flange 5, and is connected to an exhaust device 11 via a solenoid valve 10. Since the inside of the SiC tube 4 may be kept at a vacuum level of 1.times.10@-3 Torr or less, the exhaust device 11 is configured with a rotary pump. Also connected to the exhaust pipe 9 is an N2 gas introduction pipe 13 equipped with a solenoid valve 12. Furthermore, the exhaust pipe 9 has a vacuum gauge 1.
4 is installed, and when the degree of vacuum reaches a high vacuum of 10-3 Torr or higher, which may cause the separation of Si from SiC, the two solenoid valves are automatically activated via the feedback circuit 15 to stop the exhaust gas. Solenoid valve 10 of pipe 9 is closed, N
Since the ii magnetic valve 12 on the 2 introduction pipe 13 side opens, 10-3↑
It will be in the range of orr.

この閉管拡散装置を用いての閉管拡散方法の一実施例を
第3図に示す、第3図の線31は温度のフローチャート
を、線32は真空度のフローチャートを示す。先ず、加
熱炉3の温度が700℃になった状態で戸8を開いて第
2図に示したような石英アンプル21の炉入れを行う。
An embodiment of the closed tube diffusion method using this closed tube diffusion device is shown in FIG. 3. Line 31 in FIG. 3 shows a flowchart of temperature, and line 32 shows a flowchart of degree of vacuum. First, when the temperature of the heating furnace 3 reaches 700° C., the door 8 is opened and a quartz ampoule 21 as shown in FIG. 2 is placed in the furnace.

炉入れ後、排気装置11を稼働させ、10”3Torr
の真空度にする。1O−3Torrにするまで約10分
要したa 10−3Torrになったことを確認して、
炉を1250℃まで10℃/分の速度で昇温させ、12
50℃で10時間拡散させた。拡散後、炉を一り℃/分
 で冷却させ、700℃になったところで炉を切り、自
然冷却に切り換えるのと同時に排気装置11を停止させ
、導入管13からN2ガスを炉内に入れ、大気状態とし
た。炉が200℃以下になったところで戸8から石英ア
ンプルのとりだしを行った。
After putting it into the furnace, operate the exhaust system 11 and reduce the temperature to 10”3 Torr.
to a degree of vacuum. It took about 10 minutes to reach 10-3Torr.a After confirming that it had reached 10-3Torr,
The furnace was heated to 1250°C at a rate of 10°C/min,
Diffusion was carried out at 50°C for 10 hours. After the diffusion, the furnace was cooled at a rate of 1°C/min, and when the temperature reached 700°C, the furnace was turned off. At the same time as switching to natural cooling, the exhaust device 11 was stopped, and N2 gas was introduced into the furnace from the inlet pipe 13. It was assumed to be an atmospheric condition. When the temperature of the furnace reached 200°C or below, the quartz ampoule was taken out from door 8.

本実施例に使用した石英アンプル21は、4インチ径の
シリコン基板が内部に収容されており、石英アンプルの
径は130鶴になる。また石英の厚さは3fiであった
0石英アンプル取り出し後、石英アンプルのつぶれ状況
を調べたが、全くつぶれは生じていなかった。またSi
C管の熱膨張による支障も生じず、SiCからのSlの
分離の問題も全く生じなかった。
The quartz ampoule 21 used in this example contains a silicon substrate with a diameter of 4 inches, and the diameter of the quartz ampoule is 130 mm. The thickness of the quartz was 3fi. After taking out the quartz ampoule, the state of crushing of the quartz ampoule was examined, but no crushing had occurred at all. Also, Si
There were no problems caused by thermal expansion of the C-tube, and no problem with separation of Sl from SiC occurred.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、減圧炉の炉心管の材料にSiCを用い
ることにより、1250℃程度の高温にすることができ
るため、真空封じ切りをした石英アンプルを真空にした
炉心管内で熱処理して石英アンプルがつぶれることなく
半導体閉管拡散を行うことが可能になった。従って大口
径の半導体基体に対する閉管拡散もでき、特に開管拡散
の適用の不可能なシリコン基板へのり拡散の実施に極め
て有効である。なお、SiC炉心管の両端に水冷蓋体あ
るいはステンレス綱蓋体を用いるより高温拡散にも支障
のない密閉ができる。
According to the present invention, by using SiC as the material for the core tube of the depressurization furnace, it is possible to raise the temperature to a high temperature of about 1250°C. It has become possible to carry out closed-tube diffusion of semiconductors without crushing the ampoule. Therefore, closed-tube diffusion can be performed on large-diameter semiconductor substrates, and it is particularly effective for performing adhesive diffusion on silicon substrates to which open-tube diffusion cannot be applied. In addition, by using water-cooled lids or stainless steel lids at both ends of the SiC reactor core tube, it is possible to achieve a seal that does not interfere with high-temperature diffusion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の閉管拡散装置の断面図、第
2図は従来の閉管拡散方法を示す断面図、第3図は本発
明の一実施例の閉管拡散方法における温度および真空度
のフローチャートである。 l:シリコン基板、2ニアルミニウム拡散源、3:加熱
炉、4:SiC管、5:フランジ、6:。 リング、7:水冷管、8;戸、9:排気管、11;排気
装置、21:石英アンプル。
Fig. 1 is a sectional view of a closed tube diffusion device according to an embodiment of the present invention, Fig. 2 is a sectional view showing a conventional closed tube diffusion method, and Fig. 3 is a temperature and vacuum in a closed tube diffusion method according to an embodiment of the present invention. FIG. l: silicon substrate, 2 aluminum diffusion source, 3: heating furnace, 4: SiC tube, 5: flange, 6:. Ring, 7: Water cooling pipe, 8: Door, 9: Exhaust pipe, 11: Exhaust device, 21: Quartz ampoule.

Claims (1)

【特許請求の範囲】 1)半導体基体と拡散源とを真空封じした石英アンプル
を、炭化けい素よりなり、1×10^−^3Torr以
下の真空度の真空気密炉心管に収容して加熱炉内で熱処
理することを特徴とする半導体閉管拡散方法。 2)請求項1記載の半導体閉管拡散方法において、半導
体基体がシリコンよりなり、拡散源がアルミニウムを含
む半導体閉管拡散方法。 3)中空部を有する加熱炉と、その中空部より長い炭化
けい素よりなる炉心管と、その炉心管の両端を真空気密
に密閉する蓋体と、少なくとも一方の蓋体を貫通して真
空排気装置に連通する排気管とを備えたことを特徴とす
る閉管拡散装置。 4)請求項3記載の閉管拡散装置において、蓋体が水冷
可能である閉管拡散装置。 5)請求項3あるいは4記載の閉管拡散装置において、
蓋体がステンレス鋼よりなる閉管拡散装置。
[Claims] 1) A quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed is housed in a vacuum-tight core tube made of silicon carbide and has a vacuum level of 1×10^-^3 Torr or less, and then heated in a heating furnace. A semiconductor closed tube diffusion method characterized by heat treatment within a semiconductor tube. 2) The semiconductor closed tube diffusion method according to claim 1, wherein the semiconductor substrate is made of silicon and the diffusion source contains aluminum. 3) A heating furnace having a hollow part, a furnace core tube made of silicon carbide that is longer than the hollow part, a lid body that vacuum-tightly seals both ends of the furnace core tube, and a vacuum pump that penetrates at least one lid body to evacuation. A closed tube diffusion device characterized by comprising an exhaust pipe communicating with the device. 4) The closed tube diffusion device according to claim 3, wherein the lid body can be cooled with water. 5) In the closed tube diffusion device according to claim 3 or 4,
A closed tube diffuser whose lid is made of stainless steel.
JP2246563A 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device Expired - Lifetime JP2715645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246563A JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246563A JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Publications (2)

Publication Number Publication Date
JPH04125922A true JPH04125922A (en) 1992-04-27
JP2715645B2 JP2715645B2 (en) 1998-02-18

Family

ID=17150277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246563A Expired - Lifetime JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Country Status (1)

Country Link
JP (1) JP2715645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088430A (en) * 2013-01-17 2013-05-08 陈功 Improved structure of device for eliminating phosphorus oxychloride in phosphorus diffusion furnace
RU2522786C2 (en) * 2012-05-28 2014-07-20 Открытое Акционерное Общество "Новосибирский Завод Полупроводниковых Приборов С Окб" (Оао"Нзпп С Окб") Quartz ampoule design for diffusion of dopants into silicon (arsenic diffusion) with built-in tool for controlling rate of post-diffusion cooling of silicon p-n structures
RU2538027C2 (en) * 2012-05-28 2015-01-10 Открытое акционерное общество "Новосибирский завод полупроводниковых приборов с ОКБ" (ОАО "НЗПП с ОКБ") Control and stabilisation of post diffusion (antinomy diffusion) cooling of low-voltage (~6 v) silicon planar structures of vrd and device to this end

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142387A (en) * 1977-05-18 1978-12-12 Hitachi Ltd Growth method for epitaxial layer
JPS6010621A (en) * 1983-06-29 1985-01-19 Gijutsu Joho Kenkyusho:Kk Depressurized epitaxial growing equipment
JPS6018541U (en) * 1983-07-18 1985-02-07 日本電気株式会社 Vapor phase growth equipment
JPH0286119A (en) * 1988-09-22 1990-03-27 Tel Sagami Ltd Heat-treating device
JPH02142119A (en) * 1988-11-22 1990-05-31 Fujitsu Ltd Chemical vapor growth device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142387A (en) * 1977-05-18 1978-12-12 Hitachi Ltd Growth method for epitaxial layer
JPS6010621A (en) * 1983-06-29 1985-01-19 Gijutsu Joho Kenkyusho:Kk Depressurized epitaxial growing equipment
JPS6018541U (en) * 1983-07-18 1985-02-07 日本電気株式会社 Vapor phase growth equipment
JPH0286119A (en) * 1988-09-22 1990-03-27 Tel Sagami Ltd Heat-treating device
JPH02142119A (en) * 1988-11-22 1990-05-31 Fujitsu Ltd Chemical vapor growth device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522786C2 (en) * 2012-05-28 2014-07-20 Открытое Акционерное Общество "Новосибирский Завод Полупроводниковых Приборов С Окб" (Оао"Нзпп С Окб") Quartz ampoule design for diffusion of dopants into silicon (arsenic diffusion) with built-in tool for controlling rate of post-diffusion cooling of silicon p-n structures
RU2538027C2 (en) * 2012-05-28 2015-01-10 Открытое акционерное общество "Новосибирский завод полупроводниковых приборов с ОКБ" (ОАО "НЗПП с ОКБ") Control and stabilisation of post diffusion (antinomy diffusion) cooling of low-voltage (~6 v) silicon planar structures of vrd and device to this end
CN103088430A (en) * 2013-01-17 2013-05-08 陈功 Improved structure of device for eliminating phosphorus oxychloride in phosphorus diffusion furnace

Also Published As

Publication number Publication date
JP2715645B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US5368648A (en) Sealing apparatus
US4871416A (en) Method and device for cleaning substrates
KR100280689B1 (en) Heat treatment device
TWI498989B (en) Gas port construction and processing device
JPH04125922A (en) Semiconductor closed tube diffusion method and closed tube diffusion equipment
KR20030016188A (en) Apparatus and method for insulating a seal in a process chamber
JPH03249936A (en) Sealing device
JPH0729841A (en) Heat treatment furnace
JPH03208334A (en) Manufacturing device for semiconductor
JP3240180B2 (en) Heat treatment equipment
JP2786249B2 (en) Vacuum processing equipment
JP3463785B2 (en) Sealing device and processing device
JP3328853B2 (en) Heat treatment apparatus and heat treatment method
JPH07142418A (en) Vertical furnace for semiconductor production system
JP3227280B2 (en) Heat treatment equipment
JP3119708B2 (en) Heat treatment apparatus and heat treatment method
JP2849772B2 (en) Sealing device and sealing method
JPH04230022A (en) Super vacuum chemical deposition re- actor device
JPH0745624A (en) Heat treatment device
JPH04186616A (en) Heat treating apparatus
JPS63200523A (en) Chemical vapor deposition system
JPH076965A (en) High temperature vertical furnace of semiconductor manufacturing device
JPH03134153A (en) Method and device for forming oxide film
TW449789B (en) Furnace for semiconductor manufacture
JPS63166218A (en) Wafer cooling method for semiconductor thermal processing equipment