JPH03249936A - Sealing device - Google Patents

Sealing device

Info

Publication number
JPH03249936A
JPH03249936A JP2045211A JP4521190A JPH03249936A JP H03249936 A JPH03249936 A JP H03249936A JP 2045211 A JP2045211 A JP 2045211A JP 4521190 A JP4521190 A JP 4521190A JP H03249936 A JPH03249936 A JP H03249936A
Authority
JP
Japan
Prior art keywords
groove
evacuated
vessel
gas flow
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2045211A
Other languages
Japanese (ja)
Other versions
JP2733532B2 (en
Inventor
Hisashi Hattori
服部 寿
Teruo Iwata
輝夫 岩田
Hiroshi Sekizuka
関塚 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Ltd
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Ltd
Priority to JP2045211A priority Critical patent/JP2733532B2/en
Priority to US07/661,109 priority patent/US5133561A/en
Priority to KR1019910003099A priority patent/KR0171600B1/en
Publication of JPH03249936A publication Critical patent/JPH03249936A/en
Application granted granted Critical
Publication of JP2733532B2 publication Critical patent/JP2733532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To prevent a vessel from being invaded with oxygen or water by providing plural grooves to the surface of one side of confronting seal part of the vessel, evacuating at least one groove to get vacuum, and supplying the gas flow of specified pressure in the groove located in the outside of the evacuates groove. CONSTITUTION:In the sealing device of the vessel 10 the inside of which is evacuated to a specified pressure, plural grooves 30, 32, 34 are provided on the surface 36-39 of at least one side of the vessel 10. At least one groove 30 or 32 of these grooves is evacuated to get vacuum, a previously defined gas flow or the gas flow of definite pressure is supplied to the groove 34 in the outside of the evacuated groove. As a result, the inside of vessel is prevented from being mixed with undesirable oxygen or water in the air, and the seal part resisting so high temp. that O-ring is not allowed to use is formed, and a required treatment is allowed to apply to a body 18 to be treated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は封止装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a sealing device.

(従来の技術) 一般の熱処理装置において、真空ポンプにより排気され
る処理容器の開口端とこの開口端を塞ぐ蓋体の間にOリ
ングを配置し、上記処理容器の気密を保持する方法が広
く用いられている。
(Prior Art) In general heat treatment equipment, a widely used method is to place an O-ring between the open end of a processing container that is evacuated by a vacuum pump and a lid that closes this open end to maintain the airtightness of the processing container. It is used.

また、スプリングを内蔵したフッ素樹脂材を用いた複数
のシール部と、このシール部は同軸的に平行に配置した
複数の溝部を設けこの溝部を真空排気してシールするも
のとして、  ”Desigh parameters
 for dj、fferentially pump
ed rotating platfori+s”  
、  Rev、Sci、  工nstrum、  58
■、  Fe1)ruary1987 P2O3,P3
10がある。
In addition, a plurality of seal parts using a fluororesin material with a built-in spring and a plurality of groove parts arranged coaxially and parallel to each other are provided, and the groove parts are evacuated and sealed.
for dj, fferentially pump
ed rotating platform+s”
, Rev, Sci, Engstrum, 58
■, Fe1) ruary1987 P2O3, P3
There are 10.

(発明が解決しようとする課題) 0リングをシール部材として用いた場合、このOリング
は柔軟な部材でフッ素ゴム等からなるもので一般に耐熱
温度が200℃前後であり、熱処理装置においてシール
部がこの温度以上になると0リングが溶けて変形し所望
の真空シール効果が得られなくなるという改善点を有す
る。また、熱処理装置を停止してOリングを交換する場
合、この0リングが冷えてシール部に固着して取りはず
しが困難になり、時には処理容器を構成する石英チュー
ブ等を取りはずす時、この石英チューブを破損してしま
うという改善点を有する。
(Problem to be Solved by the Invention) When an O-ring is used as a sealing member, this O-ring is a flexible member made of fluororubber, etc., and generally has a heat resistance temperature of around 200°C, and the sealing part may be damaged in a heat treatment device. An improvement is that when the temperature exceeds this temperature, the O-ring melts and deforms, making it impossible to obtain the desired vacuum sealing effect. In addition, when the heat treatment equipment is stopped and the O-ring is replaced, the O-ring cools down and sticks to the sealing part, making it difficult to remove. There is an improvement point in that it can be damaged.

さらに0リング内に含まれているガスや水分の放出があ
り、この放出量は圧力9時間、温度によって変化し、か
かる0リングをシール部材とした処理容器を用いて被処
理体の熱処理を行った場合、所定の圧力になった後さら
に多大な時間をかけて真空引きを行いOリングからガス
や含有水分を十分放出させてからでないと処理ロフト間
に大きなバラツキが発生するという改善点を有する。
Furthermore, gas and moisture contained in the O-ring are released, and the amount of this release varies depending on the pressure and temperature for 9 hours. In this case, there is an improvement in that large variations will occur between processing lofts unless the O-ring is sufficiently released by evacuation, which takes a considerable amount of time after the predetermined pressure is reached. .

また、モノシラン(Si)Is )等の処理ガスを用い
て被処理体の自然酸化膜を除去する還元熱処理では、真
空ポンプにより十分排気を行ってもOリングからガスや
含有水分の放出が無視できず、所望の還元熱処理が行え
ないという改善点を有する。
In addition, in reduction heat treatment that uses a processing gas such as monosilane (Si)Is to remove the natural oxide film of the object to be treated, the release of gas and moisture from the O-ring can be ignored even if sufficient exhaust is performed with a vacuum pump. First, there is an improvement point in that the desired reduction heat treatment cannot be performed.

次に上記文献に示した技術ではシール部材としてフッ素
樹脂を用いているため耐熱温度が200℃前後であり、
熱処理装置においてシール部がこの温度以上になる場合
、上記と同様の改善点を有する。
Next, the technology shown in the above document uses fluororesin as the sealing member, so the heat resistance temperature is around 200°C.
When the temperature of the sealed portion in the heat treatment apparatus exceeds this temperature, improvements similar to those described above are obtained.

(発明の目的) この発明は上記点に鑑みなされたもので、容器内に不用
な大気中の酸素や水分が混入しないような封止を行う封
止装置を提供するものである。
(Object of the Invention) The present invention was made in view of the above points, and provides a sealing device that performs sealing to prevent unnecessary atmospheric oxygen and moisture from entering the container.

(課題を解決するための手段) この発明は容器内が所定の圧力に排気される容器の封止
装置において、上記容器のシール対向部に複数の溝部を
設け、この溝部の少なくとも一つの溝は真空に排気し、
この真空に排気した外側の溝は予め定められたガス流も
し、くは一定圧のガス流を設けたものである。
(Means for Solving the Problems) The present invention provides a sealing device for a container in which the inside of the container is evacuated to a predetermined pressure, in which a plurality of grooves are provided in the seal facing portion of the container, and at least one of the grooves is Evacuate to vacuum,
This evacuated outer groove is provided with a predetermined gas flow or a constant pressure gas flow.

(実 施 例) 以下、本発明装置をバッチ式縦型熱処理装置に適用した
一実施例について図面を参照して具体的に説明する。
(Example) Hereinafter, an example in which the apparatus of the present invention is applied to a batch type vertical heat treatment apparatus will be specifically described with reference to the drawings.

第1図において縦型のプロセスチューブ10は耐熱性材
料例えば石英チューブからなり、このチューブの下部に
はマニホールド20を設置し、マニホールドの一端には
ガス導入管26を接続し、他端側には排気管28を接続
し図示しない排気ポンプによりプロセスチューブ10内
を真空排気できるようにしである。
In FIG. 1, a vertical process tube 10 is made of a heat-resistant material, such as a quartz tube. A manifold 20 is installed at the bottom of this tube, a gas introduction pipe 26 is connected to one end of the manifold, and a gas introduction pipe 26 is connected to the other end. An exhaust pipe 28 is connected so that the inside of the process tube 10 can be evacuated by an exhaust pump (not shown).

プロセスチューブ10の周囲には少なくとも3ゾーン構
成からなる円筒状の抵抗加熱ヒータ16を設け、上記プ
ロセスチューブ10内を所望の温度例えば500〜12
00℃の範囲に適宜設定可能としている。
A cylindrical resistance heater 16 having at least three zones is provided around the process tube 10 to maintain the inside of the process tube 10 at a desired temperature, e.g.
The temperature can be set appropriately within the range of 00°C.

上記プロセスチューブ10内には被処理体として多数枚
のウェハ18を例えば石英製のウェハボート17上に水
平に収容し、このボート17を載置台12上に設置し、
この設置台12を蓋体40に設置して収納している。
In the process tube 10, a large number of wafers 18 as objects to be processed are horizontally accommodated on a wafer boat 17 made of, for example, quartz, and the boat 17 is placed on a mounting table 12.
This installation stand 12 is installed and stored in the lid body 40.

この蓋体40は昇降機構50により上下移動することが
でき、プロセスチューブ内の予め定められた位置にウェ
ハ18を搬入搬出可能な如く構成している。
This lid body 40 can be moved up and down by a lifting mechanism 50, and is configured so that the wafer 18 can be carried in and out of a predetermined position within the process tube.

上記蓋体40と当接するマニホールド20の下部間口端
部22シール機構の詳細については第2図を参照して説
明する。
Details of the sealing mechanism of the lower opening end 22 of the manifold 20 that comes into contact with the lid 40 will be described with reference to FIG. 2.

蓋体40と当接するマニホールド20の開口端部22、
下端部分に環状の溝部30.32.34を設け、溝部3
0゜32には排気孔31.33を連結し図示しない真空
ポンプにより排気可能としている。
an open end 22 of the manifold 20 that abuts the lid 40;
An annular groove 30, 32, 34 is provided in the lower end portion, and the groove 3
Exhaust holes 31 and 33 are connected to the 0° 32 and can be evacuated by a vacuum pump (not shown).

溝部34にはガス導入孔35を接続し図示しないガス供
給源からガス流量もしくはガス圧調整器を介し窒素ガス
を供給可能としている。
A gas introduction hole 35 is connected to the groove 34 so that nitrogen gas can be supplied from a gas supply source (not shown) via a gas flow rate or gas pressure regulator.

マニホールド20と蓋体40はステンレススチール等の
耐食性金属で構成してあり、開口部22の下端部36.
37.38.39面は研削加工を施こし表面粗さ±2.
cm以下で、下端部36.37.38.39面が形成す
る全平面内において平面度が±5−以下としている。
The manifold 20 and the lid 40 are made of a corrosion-resistant metal such as stainless steel, and the lower end 36 of the opening 22.
37, 38, and 39 surfaces are ground to a surface roughness of ±2.
cm or less, and the flatness is ±5- or less within the entire plane formed by the lower end 36, 37, 38, and 39 surfaces.

マニホールド20と当接する蓋体40の外周面42の表
面粗さは±2−以下であり、上記と同様の平面度は±5
−以下としている。
The surface roughness of the outer circumferential surface 42 of the lid body 40 that comes into contact with the manifold 20 is ±2- or less, and the flatness similar to the above is ±5.
-The following is stated.

上記精密加工を施こす時の加工時の研削跡は、マニホー
ルド20および蓋体40の中心から同心円的に形成され
るようにしている。
Grinding marks during the precision machining are formed concentrically from the centers of the manifold 20 and the lid 40.

次に上記実施例装置の作用について説明する。Next, the operation of the apparatus of the above embodiment will be explained.

ヒータ16によりプロセスチューブ10内の均熱領域の
温度を例えば1000℃の温度に設定し、昇降機構50
を上方へ移動しマニホールド20と蓋体40が当接され
た状態に設定する。
The temperature of the soaking area in the process tube 10 is set to, for example, 1000° C. by the heater 16, and the lifting mechanism 50
is moved upward so that the manifold 20 and the lid 40 are in contact with each other.

ガス導入管26へ供給する処理ガスを止めた状態で、排
気管28より図示しない排気ポンプでプロセスチューブ
10内の排気を行う。
With the processing gas supplied to the gas introduction pipe 26 being stopped, the inside of the process tube 10 is evacuated from the exhaust pipe 28 using an exhaust pump (not shown).

さらに、溝部30.32に連結された排気孔31.33
より図示しない真空ポンプにより排気を行う。
Additionally, an exhaust hole 31.33 connected to the groove 30.32.
Evacuation is performed using a vacuum pump (not shown).

溝部34に連結された導入孔35へ窒素ガスを供給する
とこの溝部34内に収容されていた空気は蓋体40の外
周面42とマニホールド20の下端部36.37の間隙
より押し出され、溝部34内は窒素ガスで満された状態
となる。
When nitrogen gas is supplied to the introduction hole 35 connected to the groove 34 , the air contained in the groove 34 is pushed out from the gap between the outer peripheral surface 42 of the lid 40 and the lower end 36 , 37 of the manifold 20 , and the air is forced out of the groove 34 . The inside is filled with nitrogen gas.

この時溝部34内の圧力は、ガス流量もしくはガス圧調
整器の調整により、加圧状態もしくは減圧状態のいづれ
にも設定することができる。
At this time, the pressure within the groove portion 34 can be set to either a pressurized state or a depressurized state by adjusting the gas flow rate or the gas pressure regulator.

上記外周面42と下端部37の間隙より排出した窒素ガ
スは、溝部32に接続された真空ポンプにより真空排気
され、この溝部32の圧力はI Torr前後となり、
同様にして真空排気された溝部30の圧力は0.0IT
orr前後となり、プロセスチューブ10内の圧力はI
 X 10−’Torr前後となった。
The nitrogen gas discharged from the gap between the outer circumferential surface 42 and the lower end 37 is evacuated by a vacuum pump connected to the groove 32, and the pressure in the groove 32 is around I Torr.
The pressure in the groove 30 that was evacuated in the same way was 0.0IT.
orr, and the pressure inside the process tube 10 is I
It was around X 10-'Torr.

この状態でガス導入管26を介してモノシラン(Si)
I4)ガスを所要量供給し、被処理体であるシリコンウ
ェハ18上に形成された自然酸化膜を還元処理行った結
果良好な所望の処理が行えた。
In this state, monosilane (Si) is introduced through the gas introduction pipe 26.
I4) By supplying the required amount of gas, the natural oxide film formed on the silicon wafer 18, which is the object to be processed, was reduced, and as a result, a good desired process was achieved.

以上説明したように、マニホールド20と蓋体40のシ
ール部は窒素ガスにより空気を除去した後差動排気を行
っているのでプロセスチューブ10内に空気中の酸素や
水分が入り込むことがない、また、Oリングを使用して
いないシール部であるためOリングからの放出ガスや水
分がなく所望の圧力に短時間で到達することができるし
、0リングが使用できない200℃以上の高い温度での
シールを行うことができる。また、マニホールド20の
下端部22に設けた溝部の数を増やせばプロセスチュー
ブ10内をさらに低い圧力にすることができる。
As explained above, the seals between the manifold 20 and the lid 40 are differentially pumped after removing air with nitrogen gas, so that oxygen and moisture in the air do not enter the process tube 10. Since the seal part does not use an O-ring, the desired pressure can be reached in a short time without the release of gas or moisture from the O-ring, and it can be used at temperatures above 200°C where an O-ring cannot be used. Seal can be done. Further, by increasing the number of grooves provided in the lower end portion 22 of the manifold 20, the pressure inside the process tube 10 can be lowered even further.

他の実施例としては第3図のようにマニホールド20の
下部開口端部22と対向する蓋体40の外周面42を内
側に傾斜させたものがある。第1図と同一部分と同一番
号を図示し説明を省略する。
In another embodiment, as shown in FIG. 3, the outer circumferential surface 42 of the lid 40 facing the lower open end 22 of the manifold 20 is inclined inward. The same parts and numbers as in FIG. 1 are shown and their explanations will be omitted.

この蓋体40はプロセスチューブIO内が真空に引かれ
た場合大気圧により1kg/dの圧力で押され。
This lid body 40 is pressed under a pressure of 1 kg/d by atmospheric pressure when the inside of the process tube IO is evacuated.

蓋体中央部がプロセスチューブ側へ変形することと、ヒ
ータ16により加熱され蓋体40の上面と下面で温度差
が付き、蓋体40が上記と同様の方向に変形する。従っ
て蓋体40の外周面42に傾斜が付いた状態でこの外周
面42とマニホールド20の下端部36〜39の面が平
行になるものである。
The central portion of the lid 40 deforms toward the process tube and is heated by the heater 16 to create a temperature difference between the top and bottom surfaces of the lid 40, causing the lid 40 to deform in the same direction as described above. Therefore, while the outer peripheral surface 42 of the lid body 40 is inclined, this outer peripheral surface 42 and the surfaces of the lower ends 36 to 39 of the manifold 20 are parallel to each other.

この傾斜角度θは蓋体の大きさ、厚さ、材質、ヒータ1
6の温度等によって異なるので所要作動時に適宜上記両
面が平行になるよう傾斜角度を設定するものとする。
This inclination angle θ is determined by the size, thickness, material, and heater 1 of the lid.
Since the angle of inclination varies depending on the temperature, etc. of 6, the angle of inclination shall be appropriately set so that the above-mentioned surfaces are parallel to each other during the required operation.

上記傾斜角度を付けた場合の一例を上げれば、蓋体の直
径が300@鳳、厚さ12■、材質ステンレススチール
5US304のものを用い、ヒータの温度を1000℃
とした場合最適な傾斜角度θは0.01〜0.1度の範
囲である。
To give an example of a case where the above inclination angle is applied, the diameter of the lid body is 300 mm, the thickness is 12 mm, the material is stainless steel 5US304, and the temperature of the heater is set to 1000 degrees Celsius.
In this case, the optimum inclination angle θ is in the range of 0.01 to 0.1 degree.

また他の実施例として第4図のようにプロセスチューブ
10の下端縁11とマニホールド20の上端部24の当
接部に本発明にかかる技術を応用したものである。
As another embodiment, the technology according to the present invention is applied to the abutting portion between the lower edge 11 of the process tube 10 and the upper end 24 of the manifold 20, as shown in FIG.

プロセスチューブ10と当接するマニホールド20の上
部開口端部24の上端面部分に環状溝部60.62゜6
4を設け、溝部60.62には排気孔61.63を連結
し図示しない真空ポンプにより排気可能としている。
An annular groove 60.62°6 is formed in the upper end surface portion of the upper open end 24 of the manifold 20 that comes into contact with the process tube 10.
4, and exhaust holes 61, 63 are connected to the grooves 60, 62 to enable exhaust by a vacuum pump (not shown).

溝部64にはガス導入孔65を接続し図示しないガス供
給源からガス流量もしくはガス圧調整器を介し不活性ガ
ス例えば窒素ガスを供給可能としている。
A gas introduction hole 65 is connected to the groove 64 so that an inert gas such as nitrogen gas can be supplied from a gas supply source (not shown) via a gas flow rate or gas pressure regulator.

マニホールド20の上端部66、67、68.69面の
加工精度は前記実施例と同様としている。
The machining accuracy of the upper end portions 66, 67, 68, and 69 surfaces of the manifold 20 is the same as in the previous embodiment.

マニホールド20と当接するプロセスチューブ10の下
端縁11、下端面部分11aの表面粗さは±2−以下で
あり、平面度は±5−以下としている。
The surface roughness of the lower end edge 11 and the lower end surface portion 11a of the process tube 10 that come into contact with the manifold 20 is ±2- or less, and the flatness is ±5- or less.

プロセスチューブ10をヒータ16により例えば100
0℃に加熱した場合、プロセスチューブ10の下端縁1
1の温度は300℃前後となり、 このような使用条件
では本発明を用いることにより初めて真空封止可能とな
る。
For example, the process tube 10 is
When heated to 0°C, the lower edge 1 of the process tube 10
The temperature of No. 1 is around 300°C, and under such usage conditions, vacuum sealing becomes possible for the first time by using the present invention.

また第2図〜第4図の実施例において、真空ポンプを最
外周溝部に接続しこの溝部を真空排気し、3つの溝部を
全て真空排気しても良い、この時の圧力は最外周溝部で
I Torr前後、中間溝部で0.05Torr前後、
最内周溝部で0.005Torr前後となりプロセスチ
ューブ10内の圧力は5 X 10−’Torr前後と
なった。
Furthermore, in the embodiments shown in Figures 2 to 4, a vacuum pump may be connected to the outermost groove to evacuate this groove, and all three grooves may be evacuated. I Torr before and after, around 0.05 Torr at the middle groove part,
The pressure inside the process tube 10 was approximately 0.005 Torr at the innermost circumferential groove portion, and the pressure within the process tube 10 was approximately 5 x 10-' Torr.

尚、本発明は前記実施例に限定されるものではなく、本
発明の要旨の範囲内で種々の変形実施が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the gist of the present invention.

マニホールドに設けた複数の溝部を蓋体に設けても良い
ことはもちろんであり、その化シール両面に設けても良
い、また蓋体の材質を金属以外の石英やSiC等の非金
属としても良いことはもちろんである。
Of course, the plurality of grooves provided in the manifold may be provided on the lid body, and the seals may be provided on both sides, and the material of the lid body may be non-metallic such as quartz or SiC. Of course.

前記実施例では減圧熱処理装置について説明を行ったが
拡散炉や常圧CVD装置等の熱処理装置やその他バッチ
処理装置に応用しても良く、縦型装置に限らず横型装置
に応用できるのは当然のことである。
In the above embodiments, a reduced pressure heat treatment apparatus was explained, but the present invention may also be applied to heat treatment apparatuses such as diffusion furnaces and atmospheric CVD apparatuses, and other batch processing apparatuses, and of course can be applied not only to vertical apparatuses but also to horizontal apparatuses. It is about.

さらに熱処理装置に限らず、封止機構であればエツチン
グ装置やイオン装置等信れにも適用できる。
Furthermore, the present invention is not limited to heat treatment equipment, but can also be applied to etching equipment, ion equipment, etc. as long as it is a sealing mechanism.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば0リング等が使用
できない高温に耐えるシール部を形成することができ、
容器内に不用な大気中の成分が混入せず、もって所望の
処理を被処理体に施こすことが可能になるという顕著な
効果がある。
As explained above, according to the present invention, it is possible to form a seal portion that can withstand high temperatures where O-rings and the like cannot be used.
This has the remarkable effect that unnecessary atmospheric components are not mixed into the container, thereby making it possible to perform the desired treatment on the object to be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る縦型熱処理装置の一実施例説明図
、第2図は第1図の部分説明図、第3図は第2図の他の
実施例説明図、第4図は第1図の他の実施例説明図であ
る。 10・・・プロセスチューブ 16・・・ヒータ17・
・・ボート      18・・・ウェハ20・・・マ
ニホールド   22・・・開口端部30、32.34
・・・溝部   31.33・・・排気管35・・・導
入管      36〜39・・・下端部40・・・蓋
体       42・・・外周面50・・・昇降機構 第 図 第 図 第 3 図 第 図
FIG. 1 is an explanatory diagram of one embodiment of the vertical heat treatment apparatus according to the present invention, FIG. 2 is a partial explanatory diagram of FIG. 1, FIG. 3 is an explanatory diagram of another embodiment of FIG. 2, and FIG. FIG. 2 is an explanatory diagram of another embodiment of FIG. 1; 10... Process tube 16... Heater 17.
...Boat 18...Wafer 20...Manifold 22...Open end 30, 32.34
...Groove portion 31.33...Exhaust pipe 35...Introduction pipe 36-39...Lower end portion 40...Lid body 42...Outer peripheral surface 50...Elevating mechanism Figure 3 Figure diagram

Claims (1)

【特許請求の範囲】[Claims] 容器内が所定の圧力に排気される容器の封止装置におい
て、上記容器のシール対向部の少なくとも一方の面に複
数の溝部を設け、この溝部の少なくとも一つの溝は真空
に排気し、この真空に排気した外側の溝は予め定められ
たガス流もしくは一定圧のガス流を設けたことを特徴と
する封止装置。
In a container sealing device in which the inside of the container is evacuated to a predetermined pressure, a plurality of grooves are provided on at least one surface of the seal facing portion of the container, at least one of the grooves is evacuated to a vacuum, and the container is evacuated to a predetermined pressure. A sealing device characterized in that the outer groove for exhausting air is provided with a predetermined gas flow or a constant pressure gas flow.
JP2045211A 1990-02-26 1990-02-26 Heat treatment equipment Expired - Fee Related JP2733532B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2045211A JP2733532B2 (en) 1990-02-26 1990-02-26 Heat treatment equipment
US07/661,109 US5133561A (en) 1990-02-26 1991-02-26 Sealing device
KR1019910003099A KR0171600B1 (en) 1990-02-26 1991-02-26 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045211A JP2733532B2 (en) 1990-02-26 1990-02-26 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH03249936A true JPH03249936A (en) 1991-11-07
JP2733532B2 JP2733532B2 (en) 1998-03-30

Family

ID=12712935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045211A Expired - Fee Related JP2733532B2 (en) 1990-02-26 1990-02-26 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP2733532B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492636U (en) * 1990-12-28 1992-08-12
US5578132A (en) * 1993-07-07 1996-11-26 Tokyo Electron Kabushiki Kaisha Apparatus for heat treating semiconductors at normal pressure and low pressure
EP1082470A1 (en) * 1998-05-05 2001-03-14 Ultratech Stepper Inc. Microchamber
US6475286B1 (en) * 1999-07-13 2002-11-05 Aixtron Aktiengesellschaft Seal means for separable closing elements, such as separable elements of chemical vapor deposition chamber and deposition reactor apparatus
US20090297725A1 (en) * 2005-07-21 2009-12-03 Ray William Reynoldson Duplex Surface Treatment of Metal Objects
JP2017183557A (en) * 2016-03-31 2017-10-05 光洋サーモシステム株式会社 Thermal treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080876A1 (en) * 2009-12-28 2011-07-07 パナソニック株式会社 Plasma doping apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108145A (en) * 1980-12-25 1982-07-06 Marubishi Yuka Kogyo Kk Rigid polyvinyl chloride resin composition
JPH01169174A (en) * 1987-12-22 1989-07-04 Daido Steel Co Ltd Method for fixing cover to vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108145A (en) * 1980-12-25 1982-07-06 Marubishi Yuka Kogyo Kk Rigid polyvinyl chloride resin composition
JPH01169174A (en) * 1987-12-22 1989-07-04 Daido Steel Co Ltd Method for fixing cover to vessel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492636U (en) * 1990-12-28 1992-08-12
US5578132A (en) * 1993-07-07 1996-11-26 Tokyo Electron Kabushiki Kaisha Apparatus for heat treating semiconductors at normal pressure and low pressure
EP1082470A1 (en) * 1998-05-05 2001-03-14 Ultratech Stepper Inc. Microchamber
EP1082470A4 (en) * 1998-05-05 2003-02-05 Ultratech Stepper Inc Microchamber
US6475286B1 (en) * 1999-07-13 2002-11-05 Aixtron Aktiengesellschaft Seal means for separable closing elements, such as separable elements of chemical vapor deposition chamber and deposition reactor apparatus
JP2003504884A (en) * 1999-07-13 2003-02-04 アイクストロン、アーゲー Sealing means in welding reactor and its application
US20090297725A1 (en) * 2005-07-21 2009-12-03 Ray William Reynoldson Duplex Surface Treatment of Metal Objects
US8317926B2 (en) * 2005-07-21 2012-11-27 Hard Technologies Pty Ltd. Duplex surface treatment of metal objects
JP2017183557A (en) * 2016-03-31 2017-10-05 光洋サーモシステム株式会社 Thermal treatment apparatus

Also Published As

Publication number Publication date
JP2733532B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US5368648A (en) Sealing apparatus
US5520743A (en) Processing apparatus with means for rotating an object mounting means and a disk body located in the mounting means differently relative to each other
US5578132A (en) Apparatus for heat treating semiconductors at normal pressure and low pressure
US5884917A (en) Thermal processing apparatus
JP2000068259A (en) Heat treatment apparatus
JPH02174225A (en) Treatment device
JPH03249936A (en) Sealing device
JP2011040636A (en) Gas port structure and processing apparatus
JP3122883B2 (en) Vapor phase growth equipment
JP3140096B2 (en) Heat treatment equipment
JP2683579B2 (en) Processing equipment
JP2002009010A (en) Thermal treatment and method
JP2849772B2 (en) Sealing device and sealing method
JP2700939B2 (en) Sealing device
JPS6224630A (en) Formation of thermal oxidation film and device therefor
JP4404666B2 (en) Substrate support, substrate processing apparatus, and semiconductor device manufacturing method
US6720274B2 (en) Method for fabricating a semiconductor device and a substrate processing apparatus
JP3055797B2 (en) Vertical heat treatment equipment
JP3473263B2 (en) Low pressure CVD equipment
JPH0729841A (en) Heat treatment furnace
JPH07142418A (en) Vertical furnace for semiconductor production system
JPH0286120A (en) Treatment
JP3269881B2 (en) Semiconductor manufacturing equipment
JP7194805B2 (en) Gas supply unit, substrate processing apparatus, and semiconductor device manufacturing method
JP2009016532A (en) Substrate treatment equipment and manufacturing method for semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees