JPH0412452Y2 - - Google Patents

Info

Publication number
JPH0412452Y2
JPH0412452Y2 JP16914485U JP16914485U JPH0412452Y2 JP H0412452 Y2 JPH0412452 Y2 JP H0412452Y2 JP 16914485 U JP16914485 U JP 16914485U JP 16914485 U JP16914485 U JP 16914485U JP H0412452 Y2 JPH0412452 Y2 JP H0412452Y2
Authority
JP
Japan
Prior art keywords
terminals
potential difference
measuring
terminal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16914485U
Other languages
Japanese (ja)
Other versions
JPS6279157U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16914485U priority Critical patent/JPH0412452Y2/ja
Publication of JPS6279157U publication Critical patent/JPS6279157U/ja
Application granted granted Critical
Publication of JPH0412452Y2 publication Critical patent/JPH0412452Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は金属等の導電性材料の劣化や欠陥を検
出する装置に係り、特に給電端子と電位差測定用
端子との配列に改良を加えた、材料劣化測定装置
に関する。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a device for detecting deterioration and defects in conductive materials such as metals, and in particular improves the arrangement of power supply terminals and potential difference measurement terminals. , relates to a material deterioration measuring device.

〔従来の技術〕[Conventional technology]

金属等の導電性材料の劣化や割れ等の欠陥を非
破壊方式で検査・測定する方法の一つとして電気
抵抗法がある。この方法は被検査体に通電するこ
とにより、被検査体に亀裂、腐食、減肉などの劣
化や欠陥があつたり、もしくはクリープ等により
材料の組織に変化が生じた場合には、材料の電気
抵抗値が変化するためこの材料に於ける電気の流
れに変化が生じることを利用して測定、検査する
方法である。即ち、材料の抵抗の変化を、一定の
間隔をもつて配置した端子間の電圧降下として測
定することにより測定、検査するよう構成してい
る。
The electrical resistance method is one of the methods for non-destructively inspecting and measuring defects such as deterioration and cracks in conductive materials such as metals. This method applies electricity to the inspected object, and if the inspected object has deterioration or defects such as cracks, corrosion, or thinning, or changes in the structure of the material due to creep, etc., the material's electrical current is applied. This is a method of measurement and inspection that takes advantage of the fact that the resistance value changes, which causes a change in the flow of electricity in this material. That is, it is configured to measure and inspect the change in resistance of the material by measuring the voltage drop between terminals arranged at a constant interval.

第6図は従来型のプローブの構成を示す。プロ
ーブ1の先端部には中央部に電位差測定用端子3
を配置しかつ両側部には給電用端子2を配置し、
各端子を一列に配置した構成となつている。
FIG. 6 shows the configuration of a conventional probe. The tip of the probe 1 has a potential difference measurement terminal 3 in the center.
and power supply terminals 2 are arranged on both sides,
The configuration is such that each terminal is arranged in a row.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

この各端子を一列に配置した構成については以
下に示すような問題点が指摘されておりその解決
が望まれている。
The following problems have been pointed out with respect to the configuration in which the terminals are arranged in a row, and a solution to these problems is desired.

(a) 被検査体の劣化の方向が未知の場合には、こ
の被検査体に対してプローブの方向を変えて何
度も繰り返して計測する必要があり作業能率が
極めて低い。
(a) If the direction of deterioration of the object to be inspected is unknown, it is necessary to change the direction of the probe with respect to the object and repeat measurements many times, resulting in extremely low work efficiency.

(b) 何度もプローブの方向を変えて繰り返して計
測する際には、その都度端子に対する押圧力に
差異が生じることは避けられず、このため計測
誤差大きく、計測精度を高くすることができな
い。
(b) When repeatedly measuring by changing the direction of the probe many times, it is inevitable that there will be differences in the pressing force against the terminal each time, resulting in large measurement errors and making it impossible to improve measurement accuracy. .

(c) 被検査体における欠陥や劣化の方向が被検査
体の表面から確認できる場合であつても、被検
査体表面と内面ではその位置、方向が相違して
いることが多く、従つて表面の状況を基準にし
た計測方向が最大の電位差を生じるとは限ら
ず、このため欠陥や劣化の程度を見誤る虞れが
ある。
(c) Even if the direction of defects or deterioration in the object to be inspected can be confirmed from the surface of the object to be inspected, the position and direction are often different between the surface and inner surface of the object to be inspected. The measurement direction based on the situation does not necessarily produce the maximum potential difference, and therefore there is a risk of misunderstanding the extent of defects or deterioration.

(d) 更に上述のように欠陥や劣化の方向が判明し
ている場合であつても検査方法は以下にその一
例を示すようにきわめて煩雑であり作業能率は
低いものである。
(d) Furthermore, as mentioned above, even when the direction of defects and deterioration is known, the inspection method is extremely complicated and the work efficiency is low, as shown below.

即ち、 (イ) 給電端子を亀裂の方向と直角な方向に、この
亀裂を跨ぐように配置する。
That is, (a) the power supply terminal is arranged in a direction perpendicular to the direction of the crack so as to straddle the crack;

(ロ) 測定端子を、その2点が亀裂に近接位置する
ように配置する。
(b) Arrange the measurement terminals so that the two points are close to the crack.

(ハ) (ロ)の状態で電位差Aを読む。(c) Read the potential difference A in the state of (b).

(ニ) 測定端子を最初の位置から180度回転させて
再度この端子を被計測体に当てる。
(d) Rotate the measurement terminal 180 degrees from the initial position and apply the terminal to the object to be measured again.

(ホ) (ニ)の状態で電位差Bを読む。(e) Read the potential difference B in the state of (d).

(ヘ) AとBを比較してその差が2%以内となるま
で繰り返して測定装置のオフセツトつまみを調
節する。
(f) Compare A and B and repeatedly adjust the offset knob on the measuring device until the difference is within 2%.

(ト) 測定端子の一方を亀裂から1mm以内として、
亀裂を跨がない電位差V1を読む。
(G) One of the measurement terminals should be within 1mm from the crack,
Read no potential difference V 1 across the crack.

(チ) 亀裂を跨いで測定端子を当て、その電位差
V2を読む。
(h) Apply the measurement terminal across the crack and measure the potential difference.
Read V 2 .

(リ) 亀裂の深さdを次式により算出する。(li) Calculate the crack depth d using the following formula.

d=〔V2/V1−1〕×測定端子間距離/2 以上のように従来技術には種々の問題がありそ
の解決が望まれている。
d=[V 2 /V 1 −1]×distance between measurement terminals/2 As described above, there are various problems in the conventional technology, and their solutions are desired.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上述の問題点を除去すべく構成したも
のであり、プローブ先端に対して複数組の給電端
子と電位差測定用端子とを放射状に配置した構成
とした材料検査装置である。
The present invention has been constructed to eliminate the above-mentioned problems, and is a material inspection device in which a plurality of sets of power supply terminals and potential difference measurement terminals are arranged radially with respect to the tip of the probe.

〔作用〕[Effect]

本考案は上述の如くプローブ先端に対して複数
組の給電端子と電位差測定用端子とを放射状に配
置した構成となつているため、各端子を被計測体
に一旦配置したならば、そのままの状態で各端子
を順次切り換え走査することにより、所望の角度
で給電端子と電位差測定用端子とを一直線上に位
置した状態で測定を行うことが可能となる。
As mentioned above, the present invention has a configuration in which multiple sets of power supply terminals and potential difference measurement terminals are arranged radially around the tip of the probe, so once each terminal is arranged on the object to be measured, it remains as it is. By sequentially switching and scanning each terminal with , it becomes possible to perform measurement with the power supply terminal and the potential difference measuring terminal positioned in a straight line at a desired angle.

〔実施例〕〔Example〕

以下本考案の実施例を図面に基づいて具体的に
説明する。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図ないし第3図において、プローブ1の下
面、つまり被検査体に対する対向面に対しては中
心部に複数本の電位差測定用端子3を、このプロ
ーブ下面の中心部を中心とする仮想円上に位置す
るよう配置する。この電位差測定用端子3を配置
した仮想円と同心円であり、かつこの仮想円の外
周に位置する別の仮想円上には複数本の給電端子
2が配置してある。またこれら電位差測定用端子
3と給電端子2とは、所定の2本の端子同士が、
二つの仮想円の所定の直径上に位置するよう各々
配列してあり、2本の電位差測定用端子3と2本
の給電端子2の合計4本の端子により1つの組を
構成している。従つてこれらの端子の組が前記仮
想円の中心を中心として放射状に配置されること
になる。
In FIGS. 1 to 3, a plurality of potential difference measurement terminals 3 are placed at the center of the lower surface of the probe 1, that is, the surface facing the object to be inspected, and a virtual circle centered on the center of the lower surface of the probe is shown. Place it so that it is on top. A plurality of power supply terminals 2 are arranged on another virtual circle that is concentric with the virtual circle in which the potential difference measurement terminal 3 is arranged and located on the outer periphery of this virtual circle. In addition, these potential difference measurement terminals 3 and power supply terminals 2 have two predetermined terminals connected to each other,
They are arranged so as to be located on predetermined diameters of two virtual circles, and a total of four terminals, two potential difference measurement terminals 3 and two power supply terminals 2, constitute one set. Therefore, these sets of terminals are arranged radially around the center of the virtual circle.

以上の様に構成したプローブ1からは各端子
2,3からのリード線4が出ており、これらリー
ド線4は切り換え回路5に接続し、更にこの回路
5は定電流電源6、微小デジタル電圧計7に接続
している。8は記憶と指令信号を発する制御箱で
あり、制御回路9を以て切り換え回路5に接続し
ている。10はこの制御箱の出力端である。
Lead wires 4 from each terminal 2, 3 come out from the probe 1 configured as described above, and these lead wires 4 are connected to a switching circuit 5, which is further connected to a constant current power source 6, a minute digital voltage Connected to 7 in total. Reference numeral 8 denotes a control box for storing memory and issuing command signals, and is connected to the switching circuit 5 through a control circuit 9. 10 is the output end of this control box.

この構成において、上記各仮想円の所定の直径
上に位置する各給電用端子2(例えば給電用端子
2a,2b)及び電位差測定用端子3(例えば電
位差測定用端子3a,3b)の組を選択し、これ
ら各端子に於ける電位差は微小デジタル電圧計7
で計測された後制御箱8に送信され記憶される。
続いて制御箱8からは制御回路9を通じて切り換
え回路5に対して指令信号が送られ、例えば給電
用端子2c,2d、電位差測定用端子3c,3d
などの別の端子の組に於ける電位差の計測モード
が選択される。この状態で、上述と同様の方法に
より電位差が測定され、その測定値が制御箱8に
入力される。この様にして所定の端子の組を順次
切り換え走査して各組の端子の電位差を測定する
ことによりプローブ1自体は被検査体11に対し
て固定的に配置した状態で、この被検査体に対す
る検査位置を順次変更して検査がおこなわれる。
制御箱8はこのように走査された各端子の組の電
位差が入力され、このデータに基づいて演算し、
被検査体11の亀裂、腐食、減肉などの劣化や欠
陥を正確かつ短時間に把握する。この結果は出力
端10を介して所定の表示装置に送られ、プリン
トアウト、CRTによる画像表示などの手段によ
り表示される。
In this configuration, a set of each power supply terminal 2 (for example, power supply terminals 2a, 2b) and potential difference measurement terminal 3 (for example, potential difference measurement terminal 3a, 3b) located on a predetermined diameter of each virtual circle is selected. The potential difference at each of these terminals is measured using a minute digital voltmeter 7.
After being measured, it is transmitted to the control box 8 and stored.
Subsequently, a command signal is sent from the control box 8 to the switching circuit 5 through the control circuit 9, for example, the power supply terminals 2c, 2d, the potential difference measurement terminals 3c, 3d.
A mode for measuring the potential difference at another set of terminals, such as , is selected. In this state, the potential difference is measured by the same method as described above, and the measured value is input into the control box 8. In this way, by sequentially switching and scanning predetermined sets of terminals and measuring the potential difference between each set of terminals, the probe 1 itself is fixedly placed relative to the object to be inspected 11, and Inspection is performed by sequentially changing the inspection position.
The control box 8 is inputted with the potential difference between each pair of terminals scanned in this way, and calculates based on this data.
To accurately and quickly grasp deterioration and defects such as cracks, corrosion, and thinning of an object to be inspected 11. This result is sent to a predetermined display device via the output terminal 10 and displayed by means such as printing out or displaying an image on a CRT.

第4図、第5図は別の実施例を示す。この実施
例においては、電位差測定用端子3が同心円状の
2つ仮想円上に配置してある。つまりこの実施例
の場合は所定の半径上に位置する端子の組は4本
の電位差測定用端子3と2本の給電用端子2とか
ら成る。この構成は、特に未知の欠陥や劣化を発
見、測定する場合に効果的である。つまりこの場
合には検査面積が広くなるので、このような大型
のプローブとすれば一回の測定で広い範囲をカバ
ーすることが可能となり、作業の効率を向上させ
ることができる。
FIGS. 4 and 5 show another embodiment. In this embodiment, two potential difference measuring terminals 3 are arranged on two concentric virtual circles. In other words, in this embodiment, the set of terminals located on a predetermined radius consists of four potential difference measurement terminals 3 and two power supply terminals 2. This configuration is particularly effective when discovering and measuring unknown defects and deterioration. In other words, in this case, the inspection area becomes larger, so if such a large probe is used, it becomes possible to cover a wide range in one measurement, and work efficiency can be improved.

〔効果〕〔effect〕

本考案は以上の様に、プローブ先端に対して複
数組の給電端子と電位差測定用端子を、これら端
子を配置した仮想円の直径等、所定の直線上に位
置させる構成となつており、かつプローブを被検
査体に固定的に配置した状態でこれらの端子の組
を選択走査して測定ができるので、測定作業を大
幅に省力化できると共に、測定精度を向上させる
ことが可能となる。
As described above, the present invention has a configuration in which multiple sets of power supply terminals and potential difference measurement terminals are positioned on a predetermined straight line, such as the diameter of a virtual circle in which these terminals are arranged, with respect to the tip of the probe, and Since the probe can be fixedly placed on the object to be inspected and the set of terminals can be selectively scanned and measured, it is possible to significantly save labor in measurement work and improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の第1の実施例を示すプローブ
の斜視図、第2図は第1図に示すプローブの制御
回路図、第3図は第1図に示すプローブの使用状
態を示す断面図、第4図は第2の実施例を示すプ
ローブの斜視図、第5図は第4図に示すプローブ
の底面図、第6図は従来のプローブの斜視図であ
る。 1……プローブ、2……給電用端子、3……電
位差測定用端子、5……切り換え用回路、7……
微小デジタル電圧計、8……制御箱、11……被
検査体。
Fig. 1 is a perspective view of a probe showing the first embodiment of the present invention, Fig. 2 is a control circuit diagram of the probe shown in Fig. 1, and Fig. 3 is a cross section showing the state of use of the probe shown in Fig. 1. 4 is a perspective view of a probe showing a second embodiment, FIG. 5 is a bottom view of the probe shown in FIG. 4, and FIG. 6 is a perspective view of a conventional probe. 1... Probe, 2... Power supply terminal, 3... Potential difference measurement terminal, 5... Switching circuit, 7...
Micro digital voltmeter, 8...control box, 11...test object.

Claims (1)

【実用新案登録請求の範囲】 (1) 被検査体に対して給電端子と電位差測定用端
子を配置し、これら端子間の電位差を測定する
ことにより被検査体に生じた損傷、劣化などを
発見しかつその程度を測定するものにおいて、
プローブに対して複数の給電端子と電位差測定
用端子とを各々環状に配置し、各給電端子と電
位差測定用端子とは、所定の直線上に位置する
端子の組をそれぞれ形成するよう配置し、かつ
所定の組の端子間における電位差を測定し得る
よう、電位差測定の切り換え回路を形成したこ
とを特徴とする材料劣化測定装置。 (2) 実用新案登録請求の範囲第1項記載におい
て、前記複数の給電端子と電位差測定用端子と
を、同心円を構成する仮想円上に各々配置し、
各端子の組はこの仮想円の所定の直径上に位置
するよう構成したことを特徴とする材料劣化測
定装置。 (3) 実用新案登録請求の範囲第2項記載におい
て、電位差測定用端子を、同心円を構成する2
以上の仮想円上に各々配置し、各端子の組にお
ける電位差測定用端子の配置数を4以上とした
ことを特徴とする材料劣化測定装置。 (4) 実用新案登録請求の範囲第1項記載におい
て、前記切り換え回路を制御箱に接続し、各端
子の組の切り換えをこの制御箱の指令信号によ
り行うよう構成したことを特徴とする材料劣化
測定装置。
[Claims for Utility Model Registration] (1) Discovery of damage, deterioration, etc. caused to the object to be inspected by arranging a power supply terminal and a terminal for measuring potential difference on the object to be inspected and measuring the potential difference between these terminals. And in measuring the degree,
A plurality of power supply terminals and potential difference measurement terminals are respectively arranged in a ring shape with respect to the probe, and each power supply terminal and the potential difference measurement terminal are arranged so as to form a set of terminals located on a predetermined straight line, A material deterioration measuring device characterized in that a switching circuit for measuring a potential difference is formed so as to be able to measure a potential difference between a predetermined set of terminals. (2) Utility model registration Claim 1, wherein the plurality of power supply terminals and potential difference measurement terminals are arranged on virtual circles constituting concentric circles,
A material deterioration measuring device characterized in that each set of terminals is configured to be located on a predetermined diameter of the virtual circle. (3) In claim 2 of the utility model registration claim, the potential difference measuring terminal is defined as two concentric circles.
A material deterioration measuring device characterized in that the potential difference measuring terminals are arranged on the above virtual circles and the number of potential difference measuring terminals in each terminal set is four or more. (4) The material deterioration described in claim 1 of the utility model registration claim, characterized in that the switching circuit is connected to a control box, and each terminal set is switched by a command signal from the control box. measuring device.
JP16914485U 1985-11-05 1985-11-05 Expired JPH0412452Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16914485U JPH0412452Y2 (en) 1985-11-05 1985-11-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16914485U JPH0412452Y2 (en) 1985-11-05 1985-11-05

Publications (2)

Publication Number Publication Date
JPS6279157U JPS6279157U (en) 1987-05-20
JPH0412452Y2 true JPH0412452Y2 (en) 1992-03-25

Family

ID=31102673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16914485U Expired JPH0412452Y2 (en) 1985-11-05 1985-11-05

Country Status (1)

Country Link
JP (1) JPH0412452Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042686A1 (en) * 2001-11-14 2003-05-22 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074256B2 (en) * 2012-12-25 2017-02-01 Ntn株式会社 Quenching quality inspection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042686A1 (en) * 2001-11-14 2003-05-22 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device

Also Published As

Publication number Publication date
JPS6279157U (en) 1987-05-20

Similar Documents

Publication Publication Date Title
JPH0412452Y2 (en)
JPS6247544A (en) Measuring instrument for electric potential difference
JPS60102553A (en) Electron scanning type ultrasonic flaw detection apparatus
JPS626161A (en) Flaw detecting method by leakage magnetic flux measurement
JPH04551B2 (en)
JP3950713B2 (en) Circuit wiring inspection method and apparatus
JPS6035887Y2 (en) Electric resistance probe for flaw detection
JPH06273244A (en) Magnetostrictive stress measuring method in plane biaxial stress field and device thereof
JPS6180076A (en) Apparatus for inspecting mr element
JP2966156B2 (en) Tapered seat surface angle measuring device and measuring method
JPS5841345A (en) Differential transducer
JPH01237443A (en) Lattice plate checking apparatus
JPS6319811Y2 (en)
JPH02213764A (en) Defect inspecting device
JPH0355892Y2 (en)
JPS6131423B2 (en)
JPS6346840Y2 (en)
JPH05113305A (en) Inspecting device for probe
JPH05114631A (en) Prober
JPH0662301U (en) Groove measuring instrument
JP2664067B2 (en) Small signal detection method
JPH06252228A (en) Particle inspection method
JPS5855766Y2 (en) probe card
CN117347472A (en) Eddy current detection method for detecting surface cracks of different bolt apertures and sensor
JPS6333671A (en) Apparatus for testing connector