JPH04124245A - Magnetic material having high saturation magnetic flux density - Google Patents

Magnetic material having high saturation magnetic flux density

Info

Publication number
JPH04124245A
JPH04124245A JP2243269A JP24326990A JPH04124245A JP H04124245 A JPH04124245 A JP H04124245A JP 2243269 A JP2243269 A JP 2243269A JP 24326990 A JP24326990 A JP 24326990A JP H04124245 A JPH04124245 A JP H04124245A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
flux density
wear resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243269A
Other languages
Japanese (ja)
Inventor
Takashi Mizushima
孝 水島
Norio Fukuda
憲男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2243269A priority Critical patent/JPH04124245A/en
Publication of JPH04124245A publication Critical patent/JPH04124245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To offer a magnetic material having high saturation magnetic flux density and excellent in wear resistance and workability at low cost by adding a specified amt. of Be to an Ni-Fe series alloy having a prescribed compsn. CONSTITUTION:The compsn. of a magnetic material is constituted of, by weight, 30 to 55% Ni, <=2% Mn, <=0.5% Si, <=10% Cr, 0.005 to 2.5% Be and the balance Fe with inevitable impurities. Be has a function of increasing the hardness of the magnetic material and improves its wear resistance. At the time of subjecting the alloy mixed with Be to magnetic annealing, Be oxide is formed on its surface to increase the hardness of the allay. Even at the time of adding Be by a small amt., the effect of improving its wear resistance can be obtd. This alloy is useful as the magnetic material for a magnetic head core with the high densification of its magnetic recording degree.

Description

【発明の詳細な説明】 口産業上の利用分野コ 本発明は磁気へラドコア材等の製造に使用される高飽和
磁束密度磁性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high saturation magnetic flux density magnetic material used in the production of magnetic helad core materials and the like.

[従来の技術] 磁気記録技術の分野において、近時、磁気記録密度の向
上が図られており、このため高飽和磁束密度を有する磁
性材料の開発が要望されている。
[Prior Art] In the field of magnetic recording technology, efforts have recently been made to improve magnetic recording density, and for this reason, there is a demand for the development of magnetic materials having high saturation magnetic flux density.

また、この磁性材料は磁気へラドコアに使用するもので
あるため、耐摩耗性が優れていることも必要である。こ
のような高飽和磁束密度を有する耐摩耗性磁気へラドコ
ア材として、9%5i−5%A!−Fe合金、Fe−A
f系合金及び50%Co −1,8〜2.1%V−Fe
合金等が注目されている。
Furthermore, since this magnetic material is used for the magnetic helad core, it is also required to have excellent wear resistance. As a wear-resistant magnetic herad core material with such a high saturation magnetic flux density, 9%5i-5%A! -Fe alloy, Fe-A
f-based alloy and 50%Co-1,8~2.1%V-Fe
Alloys are attracting attention.

[発明が解決しようとする課題] しかしながら、上述の9%Si−!JAJ−Fe合金、
FeAIt系合金及び50%CO−1,8〜2.1%V
−Fe合金等の従来の磁性材料は、硬度が高(、且つ脆
いため、これらの材料から所定の板厚の板材を高精度で
製造することは困難である。また、これらの材料を磁気
ヘッドのコアに成形するための加工が容易ではなく、こ
のため加工工程が複雑になるという欠点がある。従って
、これらの材料を使用して磁気へラドコア等の磁性部材
を製造することはコストが極めて高くなるという難点が
ある。
[Problem to be solved by the invention] However, the above-mentioned 9% Si-! JAJ-Fe alloy,
FeAIt alloy and 50% CO-1.8-2.1% V
- Conventional magnetic materials such as Fe alloys have high hardness (and are brittle), so it is difficult to manufacture plates with a predetermined thickness with high precision from these materials. The disadvantage is that it is not easy to process to form into a core, and the processing process is therefore complicated.Therefore, manufacturing magnetic members such as magnetic helad cores using these materials is extremely expensive. The problem is that it is expensive.

本発明はかかる問題点に鑑みてなされたものであって、
飽和磁束密度が高く、耐摩耗性が優れていると共に、加
工性が優れていて低コストで製造することができる高飽
和磁束密度磁性材料を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a high saturation magnetic flux density magnetic material that has a high saturation magnetic flux density, excellent wear resistance, excellent workability, and can be manufactured at low cost.

[課題を解決するための手段] 本発明に係る高飽和磁束密度磁性材料は、30乃至55
%のN1v2%以下のM n N 0.5%以下の5I
NIO%以下のCr及び0.005乃至2.5%のBe
を含有し、残部がFe及び不可避的不純物であることを
特徴とする。
[Means for Solving the Problems] The high saturation magnetic flux density magnetic material according to the present invention has a magnetic flux density of 30 to 55
% N1v2% or less M n N 0.5% or less 5I
NIO% or less Cr and 0.005 to 2.5% Be
The remainder is Fe and unavoidable impurities.

[作用コ 本願発明者等は、耐摩耗性及び磁気特性が優れているも
のの、加工性が低いという9%5i−5%AJ’−Fe
合金等の従来の磁気へラドコア材の欠点を解消した磁性
材料を開発すべく種々実験研究を重ねた結果、高飽和磁
束密度を有し加工性が優れたNi−Fe系合金にBeを
添加することにより、この合金のもつ加工性は実質的に
劣化させることなく、耐摩耗性を向上させることができ
ることを見い出した。従って、このNi−Fe系合金に
所定量のBe等を添加した磁性材料は、製品にするため
の加工工程が従来の9%5i−5%AJ−Fe合金等の
磁性材料に比して極めて容易であり、その製造コストを
著しく低減できる。本発明はこのような観点に立ってな
されたものである。
[Effects] The inventors of the present application found that 9%5i-5%AJ'-Fe has excellent wear resistance and magnetic properties, but has low workability.
As a result of various experimental studies to develop magnetic materials that eliminate the drawbacks of conventional magnetic rad core materials such as alloys, Be was added to Ni-Fe alloys that have high saturation magnetic flux density and excellent workability. It has been found that by doing so, the wear resistance of this alloy can be improved without substantially deteriorating its workability. Therefore, the processing steps required to make a magnetic material made by adding a predetermined amount of Be etc. to this Ni-Fe alloy are significantly higher than that of conventional magnetic materials such as 9%5i-5%AJ-Fe alloy. It is easy and the manufacturing cost can be significantly reduced. The present invention has been made from this viewpoint.

[実施例] 次に、本発明に係る高飽和磁束密度磁性材料の成分添加
理由及び組成限定理由について説明する。
[Example] Next, the reason for adding components and the reason for limiting the composition of the high saturation magnetic flux density magnetic material according to the present invention will be explained.

1二 NY−Fe合金は飽和磁束密度が高いという特徴がある
。このように高飽和磁束密度が得られるのは、Ni含有
量が30乃至55%の範囲にある場合である。従って、
Ni含有量はこの30乃至55%の範囲にする。
12NY-Fe alloy is characterized by a high saturation magnetic flux density. Such a high saturation magnetic flux density is obtained when the Ni content is in the range of 30 to 55%. Therefore,
The Ni content is set within this range of 30 to 55%.

狂1 Mnはその添加によりNi−Fe系合金の熱間加工性を
改善することができる。しかしながら、Mn含有量が2
%を超えると、磁気特性が劣化し、磁性材料として不適
である。従って、Mnの含有量は2%以下とする。
The addition of Mn can improve the hot workability of Ni-Fe alloys. However, the Mn content is 2
%, the magnetic properties deteriorate and the material is unsuitable as a magnetic material. Therefore, the Mn content is set to 2% or less.

に Stは本発明の磁性材料合金の溶製の過程で、脱酸剤と
して添加される。しかしながら、Siは磁性材料中に0
.5%を超えて残存すると、材料を脆化しやすい。この
ため、Si含有量は0.5%以下とする。
St is added as a deoxidizing agent during the melting process of the magnetic material alloy of the present invention. However, Si is 0 in magnetic materials.
.. If more than 5% remains, the material tends to become brittle. Therefore, the Si content is set to 0.5% or less.

以L Crは磁性材料の製造過程で実施する磁性焼鈍工程にお
いて、2次再結晶の発生を促進する。従って、Crの添
加により、材料の磁気特性が向上する。しかしながら、
Crを10%を超えて添加すると、マトリックス中のN
iの磁性に悪影響を及ぼす。このためN Crの含有量
は10%以下にする。
Cr promotes the occurrence of secondary recrystallization in the magnetic annealing process performed during the manufacturing process of magnetic materials. Therefore, the addition of Cr improves the magnetic properties of the material. however,
Adding more than 10% Cr reduces N in the matrix.
It has a negative effect on the magnetism of i. For this reason, the NCr content is set to 10% or less.

L Beは前述のごとくその添加により本発明の磁性材料の
硬度を高める作用を有し、耐摩耗性を向上させるという
極めて有益な性質を有する。Ni−Fe系合金は飽和磁
束密度が高いと共に、十分な加工性を有するという利点
があるものの、基本的には耐摩耗性が低いという欠点を
有する。しかし、Beはその添加によりこのNi−Fe
系合金の耐摩耗性を改善することができる。従って、B
eは本発明の目的を達成する上で極めて重要な成分であ
る。このBeを添加した合金を磁性焼鈍した場合に、そ
の表面にBe酸化物が生成して合金の硬度を高めるもの
と考えられる。
As mentioned above, L Be has the effect of increasing the hardness of the magnetic material of the present invention by its addition, and has extremely beneficial properties of improving wear resistance. Although Ni--Fe alloys have the advantage of having a high saturation magnetic flux density and sufficient workability, they basically have the disadvantage of low wear resistance. However, due to the addition of Be, this Ni-Fe
The wear resistance of the alloys can be improved. Therefore, B
e is an extremely important component in achieving the object of the present invention. It is thought that when an alloy to which Be is added is magnetically annealed, Be oxide is generated on the surface of the alloy, increasing the hardness of the alloy.

Be含有量が0.005%未満の場合には、硬度の上昇
効果が十分に得られない。また、Be含有量が2.5%
を超えると、磁性材料の磁気特性が劣化する。このため
、Beの含有量は0.005乃至2.5%にする。
If the Be content is less than 0.005%, a sufficient effect of increasing hardness cannot be obtained. In addition, Be content is 2.5%
If it exceeds this value, the magnetic properties of the magnetic material will deteriorate. Therefore, the Be content is set to 0.005 to 2.5%.

第1図は横軸にBe含有量をとり、縦軸に飽和磁束密度
をとって、Be含有量と磁気特性との関係を示すグラフ
図である。Be含有量が2.5重量以下の場合には、1
0000 G(ガウス)以上の高飽和磁束密度が得られ
ている。
FIG. 1 is a graph showing the relationship between Be content and magnetic properties, with Be content plotted on the horizontal axis and saturation magnetic flux density plotted on the vertical axis. If the Be content is 2.5 weight or less, 1
A high saturation magnetic flux density of 0000 G (Gauss) or more has been obtained.

また、第2図はその横軸に示す種々の磁性材料から成形
したコアを使用して磁気ヘッドを製造し、この磁気ヘッ
ドに相対湿度が60%の環境下でCr系メタルテープを
500時間走行させた場合のコアの摩耗量を縦軸にとっ
て、各種の材料の耐摩耗性を比較して示すグラフ図であ
る。この第2図において、下方に位置する(右側に位置
する)摩耗量が少なく、耐摩耗性が優れている。
In addition, in Figure 2, a magnetic head was manufactured using cores molded from various magnetic materials shown on the horizontal axis, and a Cr-based metal tape was run on this magnetic head for 500 hours in an environment with a relative humidity of 60%. FIG. 3 is a graph showing a comparison of the wear resistance of various materials, with the vertical axis representing the amount of wear of the core when In FIG. 2, the amount of wear at the bottom (located on the right) is small and the wear resistance is excellent.

この第2図に示すように、45%のNiを含有するFe
−Ni合金(以下、PBという)は約25μmも摩耗し
たのに対し、このPB金合金0.5.1.0及び2.0
%のBeを添加した合金(夫々0.5%−Be11.0
%−Bez2.0%−Be)は、摩耗量が減少しており
、耐摩耗性が向上している。
As shown in Fig. 2, Fe containing 45% Ni
-Ni alloy (hereinafter referred to as PB) was worn by about 25 μm, whereas this PB gold alloy 0.5, 1.0 and 2.0
% Be added (0.5%-Be11.0 respectively)
%-Bez2.0%-Be), the amount of wear is reduced and the wear resistance is improved.

特に、Beを1.0%又は2.0%含有している合金は
、その摩耗量が9%5i−5%AノーFe合金及びフェ
ライトのそれに近く、耐摩耗性が極めて優れたものであ
る。しかしながら、Beは0.005%という少量の添
加でも、耐摩耗性向上の効果が得られる。
In particular, alloys containing 1.0% or 2.0% Be have extremely excellent wear resistance, with the amount of wear being close to that of 9%5i-5%A no-Fe alloys and ferrite. . However, even when Be is added in a small amount of 0.005%, the effect of improving wear resistance can be obtained.

本発明に係る高飽和磁束密度磁性材料は、上述の成分組
成を有する。この場合に、本発明に係る磁性材料中に、
51Mg1Af及びCa等の不可避的不純物がその製造
の過程で含有されてしまうことがある。しかしながら、
これらの成分は、不可避的に含有されてしまう組成範囲
、例えば、夫材料程、 々0.1%以下の範囲であれば、本発明の磁性材料中に
含有されていてもその特性を劣化させることはない。
The high saturation magnetic flux density magnetic material according to the present invention has the above-mentioned component composition. In this case, in the magnetic material according to the present invention,
Unavoidable impurities such as 51Mg1Af and Ca may be contained during the manufacturing process. however,
Even if these components are contained in the magnetic material of the present invention, they will deteriorate the characteristics within the composition range in which they are unavoidably contained, for example, in the range of 0.1% or less for the main material. Never.

次に、本発明の実施例に係る高飽和磁束密度磁性材料を
実際に製造し、その特性を試験した結果について、本願
特許請求の範囲にて規定した組成範囲から外れる比較例
と比較して説明する。
Next, the results of actually manufacturing high saturation magnetic flux density magnetic materials according to examples of the present invention and testing their characteristics will be explained in comparison with comparative examples that fall outside the composition range defined in the claims of the present application. do.

下記第1表はこの実施例及び比較例の各磁性材料の組成
を示す。
Table 1 below shows the composition of each magnetic material in this example and comparative example.

但し、比較例5,6.7は、従来の耐摩耗性磁気へラド
コア材として使用されている磁性材料であり、難加工性
のものである。
However, Comparative Examples 5, 6, and 7 are magnetic materials that are used as conventional wear-resistant magnetic herad core materials and are difficult to process.

これらの各実施例及び比較例の磁性材料について、飽和
磁束密度及び耐摩耗性を測定し、更に加工性の良否を調
べた。その結果を下記第2表に示す。なお、この第2表
において、耐摩耗性は同一条件で摩耗試験を実施した場
合の摩耗量を示し、この摩耗量が少ない程、耐摩耗性が
良好である。
The saturation magnetic flux density and wear resistance of the magnetic materials of each of these Examples and Comparative Examples were measured, and the workability was also examined. The results are shown in Table 2 below. In Table 2, wear resistance indicates the amount of wear when a wear test is conducted under the same conditions, and the smaller the amount of wear, the better the wear resistance.

第 表 第 表 この第1表及び第2表から明らかなように、比較例1乃
至3はBeを含有しないため、耐摩耗性が低い。一方、
比較例4はBeを過剰に含有するため、耐摩耗性は優れ
ているものの、磁気特性が劣化して飽和磁束密度が低い
。また、この比較例4は熱間加工性に若干難がある。更
に、従来磁気へラドコア祠として使用されている比較例
5乃至7は加工性が悪い。
As is clear from Tables 1 and 2, Comparative Examples 1 to 3 have low wear resistance because they do not contain Be. on the other hand,
Comparative Example 4 contains excessive Be, so although it has excellent wear resistance, its magnetic properties deteriorate and its saturation magnetic flux density is low. Moreover, this comparative example 4 has some difficulty in hot workability. Furthermore, Comparative Examples 5 to 7, which have been conventionally used as magnetic rad cores, have poor workability.

これに対し、実施例1乃至5の各磁性材料は、Beを所
定量含有するから、飽和磁束密度が十分に高く、加工性
が優れていると共に、摩耗量が少なく、極めて優れた耐
摩耗性を有している。
On the other hand, since each of the magnetic materials of Examples 1 to 5 contains a predetermined amount of Be, the saturation magnetic flux density is sufficiently high, the workability is excellent, the amount of wear is small, and extremely excellent wear resistance is achieved. have.

次に、本発明に係る磁性材料を製造する方法の一例につ
いて説明する。
Next, an example of a method for manufacturing the magnetic material according to the present invention will be described.

先ず、磁性材料とし、て本願特許請求の範囲に規定した
組成範囲に入るように、所定の成分を含む原料を所定の
配合量で配合し、これを例えば真空溶解炉で溶解する。
First, as a magnetic material, raw materials containing predetermined components are mixed in predetermined amounts so as to fall within the composition range specified in the claims of the present application, and this is melted in, for example, a vacuum melting furnace.

次いで、このようにして溶製した溶湯を鋳造してインゴ
ットを得る。次いで、好ましくは、このインゴットに対
し、冷間圧延と、中間焼鈍とを繰り返して、所定の形状
に加工する。
Next, the molten metal produced in this manner is cast to obtain an ingot. Next, preferably, this ingot is processed into a predetermined shape by repeating cold rolling and intermediate annealing.

このように、冷間圧延及び中間焼鈍を繰り返して所望の
形状に成形するのは、Beの添加により熱間加工性が低
下していることと、熱間加工により材料の表面に不要な
酸化物が生成してしまうことを回避するためである。こ
のようにして、例えば板厚が0.5 ml11の薄板を
得る。
In this way, the reason why cold rolling and intermediate annealing are repeated to form a desired shape is that hot workability is reduced due to the addition of Be, and unnecessary oxides are formed on the surface of the material due to hot working. This is to avoid the generation of . In this way, a thin plate having a thickness of, for example, 0.5 ml11 is obtained.

次いで、例えば、外周縁径が45II1m、中心孔径が
33mmの0リング等の所望の部材を作成し、この部材
を還元雰囲気中、不活性ガス雰囲気中又は真空中で、+
 100乃至1300°Cに0.5乃至4時間加熱する
Next, for example, a desired member such as an O-ring with an outer peripheral diameter of 45II1 m and a center hole diameter of 33 mm is created, and this member is heated in a reducing atmosphere, an inert gas atmosphere, or a vacuum.
Heat to 100-1300°C for 0.5-4 hours.

次いで、約700乃至300°Cの間を所定の降温速度
で徐冷する。これにより、前記部材が磁性焼鈍され、高
飽和磁束密度で優れた耐摩耗性を有する磁性材料からな
る部材が製造される。
Next, it is slowly cooled to about 700 to 300°C at a predetermined temperature decreasing rate. As a result, the member is magnetically annealed, and a member made of a magnetic material having a high saturation magnetic flux density and excellent wear resistance is manufactured.

本願発明者等が前述の大きさの0リングを前述の条件で
磁性焼鈍した結果、Be含有量にもよるが、飽和磁束密
度Bsが10000乃至+5000  (G )と高く
、ビッカース硬度Hvも140乃至450と高い磁性材
料製0リングが得られた。
As a result of magnetic annealing of an O-ring of the above-mentioned size under the above-mentioned conditions by the present inventors, the saturation magnetic flux density Bs was as high as 10000 to +5000 (G), and the Vickers hardness Hv was 140 to +5000 (G), depending on the Be content. An O-ring made of a magnetic material as high as 450 was obtained.

[発明の効果] 本発明によれば、高飽和磁束密度で優れた加工性を有す
るNi−Fe系合金に、Beを所定量添加してその耐摩
耗性を向上させたから、高飽和磁束密度で耐摩耗性が優
れていると共に、従来の磁気へラドコア材等に使用され
ている9%5i−5%Al−Fe合金等の磁性材料より
も加工性が優れた磁性材料を得ることができる。従って
、この磁性材料により磁気ヘッドコア等の磁性部材を低
コストで製造することができ、本発明は磁気記録密度の
高密度化のもとに、磁気へラドコア材用の磁性材料とし
て極めて有益である。
[Effects of the Invention] According to the present invention, a predetermined amount of Be is added to a Ni-Fe alloy that has excellent workability at a high saturation magnetic flux density to improve its wear resistance. It is possible to obtain a magnetic material that has excellent wear resistance and has better workability than magnetic materials such as 9%5i-5% Al-Fe alloy used in conventional magnetic herad core materials. Therefore, magnetic members such as magnetic head cores can be manufactured at low cost using this magnetic material, and the present invention is extremely useful as a magnetic material for magnetic helad core materials as the magnetic recording density increases. .

【図面の簡単な説明】 第1図は本発明の磁性材料において、Be含有量と飽和
磁束密度との関係を示すグラフ図、第2図は種々の磁性
材料の耐摩耗性を比較して示すグラフ図である。
[Brief Description of the Drawings] Fig. 1 is a graph showing the relationship between Be content and saturation magnetic flux density in the magnetic material of the present invention, and Fig. 2 shows a comparison of the wear resistance of various magnetic materials. It is a graph diagram.

Claims (1)

【特許請求の範囲】 Ni30〜55%(重量%、以下同じ) Mn2%以下 Si0.5%以下 Cr10%以下 Be0.005〜2.5%以下 Fe残部および不可避不純物 の組成を有する高飽和磁束密度磁性材料。[Claims] Ni 30-55% (weight%, same below) Mn2% or less Si0.5% or less Cr10% or less Be 0.005~2.5% or less Fe remainder and inevitable impurities A high saturation flux density magnetic material with a composition of
JP2243269A 1990-09-13 1990-09-13 Magnetic material having high saturation magnetic flux density Pending JPH04124245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243269A JPH04124245A (en) 1990-09-13 1990-09-13 Magnetic material having high saturation magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243269A JPH04124245A (en) 1990-09-13 1990-09-13 Magnetic material having high saturation magnetic flux density

Publications (1)

Publication Number Publication Date
JPH04124245A true JPH04124245A (en) 1992-04-24

Family

ID=17101358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243269A Pending JPH04124245A (en) 1990-09-13 1990-09-13 Magnetic material having high saturation magnetic flux density

Country Status (1)

Country Link
JP (1) JPH04124245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063454A1 (en) * 1999-04-15 2000-10-26 Vacuumschmelze Gmbh Corrosion-free iron-nickel alloy for residual-current circuit-breakers and clockworks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063454A1 (en) * 1999-04-15 2000-10-26 Vacuumschmelze Gmbh Corrosion-free iron-nickel alloy for residual-current circuit-breakers and clockworks

Similar Documents

Publication Publication Date Title
US3634072A (en) Magnetic alloy
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
US3794530A (en) High-permeability ni-fe-ta alloy for magnetic recording-reproducing heads
US4440720A (en) Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof
US3743550A (en) Alloys for magnetic recording-reproducing heads
JPS625972B2 (en)
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JPH03277748A (en) Ni-fe-cr soft magnetic alloy for iron core member
JPS6212296B2 (en)
JPH04124245A (en) Magnetic material having high saturation magnetic flux density
JPS6312936B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0250931A (en) Manufacture of ferromagnetic ni-fe alloy and slab of the same alloy having excellent surface properties
US4496402A (en) Fe-Cr-Co Type magnet body of columnar structure and method for the preparation of same
US2990277A (en) High initial permeability magnetic alloy
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH07166281A (en) Wear resistant magnetic alloy
WO2023243533A1 (en) Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY
JPH0288746A (en) High permeability magnetic material
JPS6218619B2 (en)
JP2628806B2 (en) High strength non-magnetic low thermal expansion alloy and method for producing the same
JPH0310052A (en) High permeability amorphous alloy having high corrosion resistance, high strength, and high wear resistance and improvement of magnetic property of same