JPH04122783A - Heat dissipating coating material and heat dissipating composite film - Google Patents

Heat dissipating coating material and heat dissipating composite film

Info

Publication number
JPH04122783A
JPH04122783A JP24489690A JP24489690A JPH04122783A JP H04122783 A JPH04122783 A JP H04122783A JP 24489690 A JP24489690 A JP 24489690A JP 24489690 A JP24489690 A JP 24489690A JP H04122783 A JPH04122783 A JP H04122783A
Authority
JP
Japan
Prior art keywords
heat dissipating
formula
coating agent
heat
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24489690A
Other languages
Japanese (ja)
Inventor
Nariyuki Tanaka
成幸 田中
Takao Nakanishi
中西 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BESUTO KK
Original Assignee
NIPPON BESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BESUTO KK filed Critical NIPPON BESUTO KK
Priority to JP24489690A priority Critical patent/JPH04122783A/en
Publication of JPH04122783A publication Critical patent/JPH04122783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat dissipating coating material excellent in adhesiveness to a flexible printed wiring board and having an effect of reducing water absorptivity by incorporating aluminum nitride into a heat resistant coating material containing a polytitanocarbosilane having a specified crosslinked structure. CONSTITUTION:A polycarbosilane of formula I (wherein R is H, lower alkyl or phenyl) is thermally reacted with a titanium alkoxide of formula II (wherein R' is 1-20C alkyl) to produce a polytitanocarbosilane having a crosslinked structure of formula III, IV or V introduced thereinto and a number-average molecular weight of 700 to 10,000. A heat resistant coating material composed mainly of this polytitanocarbosilane is then mixed with aluminum nitride to give a heat dissipating coating material. This material is suitably used in application for forming a heat dissipating coat on a flexible film of which thermal conductivity is required, such as a flexible printed wiring board.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、フレキシブルプリント配線板その地熱伝導
性を必要とする可撓性のフィルムを被覆する放熱性コー
ティング剤およびこの放熱性コーティング剤を被覆した
放熱性複合フィルムに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a heat dissipating coating agent for covering a flexible film of a flexible printed wiring board that requires geothermal conductivity, and a heat dissipating coating agent for coating a flexible film that requires geothermal conductivity. This invention relates to a heat dissipating composite film.

(従来の技術〕 一般に、フレキシブルプリント配線板などに用いられる
可撓性のフィルムは、たとえばポリエステル、ポリエチ
レン、ポリプロピレン、ポリイミド、ポリアミドイミド
、フン素樹脂、複合エポキシガラス、シリコンラバー、
トリアジン、ビスマレイド、ポリパラバン酸、ポリイミ
ド−ポリアラミド共重合体、ポリブタジェン、ポリエー
テルスルホン、紙、フェノール樹脂などの有i質系材料
から成形されている。
(Prior Art) Generally, flexible films used for flexible printed wiring boards are made of, for example, polyester, polyethylene, polypropylene, polyimide, polyamideimide, fluorine resin, composite epoxy glass, silicone rubber,
It is molded from iridescent materials such as triazine, bismaleide, polyparabanic acid, polyimide-polyaramid copolymer, polybutadiene, polyethersulfone, paper, and phenolic resin.

フレキシブルプリント配線板として上記フィルム材料を
使用するには、所要の厚みに成形した後、このフィルム
の表面に銅箔などを被覆して、プリント、エンチングし
て回路を作り、部品を実装して用いている。
To use the above film material as a flexible printed wiring board, after forming it to the required thickness, the surface of the film is coated with copper foil, etc., printed and etched to create a circuit, and components are mounted and used. ing.

しかし、前記可撓性のフィルムは、電気絶縁性には優れ
るものの熱伝導性が低く、回路等の使用によって発生し
た熱は、フィルム内に蓄積され、実装部品が不必要に加
熱されるという問題点かある。また、前記したフィルム
は、熱膨張率が比較的大きいため、実装部品との間に冷
熱サイクルが生じたときに、接着信顛性が低下するとい
う欠点を有していた。また、上記したポリイミド樹脂フ
ィルムについては、吸水率が高いため、湿度が高い環境
での使用ができないという問題点もある。
However, although the flexible film has excellent electrical insulation properties, it has low thermal conductivity, and the problem is that heat generated from use of circuits, etc. accumulates within the film, and the mounted components are heated unnecessarily. There are some points. Further, since the above-mentioned film has a relatively large coefficient of thermal expansion, it has a drawback that adhesive reliability is reduced when a cooling/heating cycle occurs between the film and the mounted component. Furthermore, the polyimide resin film described above has a high water absorption rate, so there is a problem that it cannot be used in a humid environment.

〔発明が解決しようとする!U) この発明は、上記したように配線板等に用いられる可撓
性の有機質フィルムの放熱性が低く、実装部品との間の
接着体転性が低いこと、およびポリイミド樹脂フィルム
では、上述の問題に加えて吸水性が高いという問題点を
解決し、フレキシブルプリント配線板等に用いられる可
撓性フィルムを密着性良く被覆して、その放熱性を高め
、加えて吸水性を低下させる放熱性コーティングiPI
および放熱性複合フィルムを擾供することをyA題とし
ている。
[Invention tries to solve! U) This invention is based on the fact that, as mentioned above, flexible organic films used for wiring boards etc. have low heat dissipation properties and have low adhesion properties with mounted components, and polyimide resin films have the above-mentioned problems. In addition to this problem, we have solved the problem of high water absorption by coating flexible films used for flexible printed wiring boards with good adhesion to increase their heat dissipation properties, and in addition, we have developed heat dissipation properties that reduce water absorption. coating iPI
The yA theme is to provide a heat dissipating composite film.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するため、この発明においては、 (1)  式(+) (式中、Rは水素原子、低級アルキル基またはフェニル
基)で示されるポリカルボシランと、式(II)Ti(
OR’)4  ・・・・・・(If)(式中、R′は炭
素原子数1〜2oのアルキル基)で示されるチタンアル
コキシドとを加熱反応させることによって、 で示されるいずれかの架橋構造を導入した数平均分子量
が700〜10,000のポリチタノカルボシランを含
有する耐熱塗料 に、窒化アルミニウムを配合して放熱
性コーティング剤とする構成を採用したのである。
In order to solve the above problems, in this invention, (1) a polycarbosilane represented by the formula (+) (wherein R is a hydrogen atom, a lower alkyl group, or a phenyl group) and a formula (II) Ti(
OR')4 ...... (If) (in the formula, R' is an alkyl group having 1 to 2 carbon atoms) by heating and reacting with a titanium alkoxide, any of the crosslinking represented by The company adopted a structure in which aluminum nitride is blended into a heat-resistant paint containing polytitanocarbosilane with a number average molecular weight of 700 to 10,000 into which a structure has been introduced to create a heat-dissipating coating agent.

または、前記放熱性コーティング剤に有機溶剤および分
散剤とを添加して放熱性コーティング剤とすることもで
きる。上記放熱性コーティング剤には、シリコーン系密
着性改質剤を添加してポリイミド樹脂フィルムにコーテ
ィングすることもできる。以下、その詳細を述べる。
Alternatively, an organic solvent and a dispersant may be added to the heat dissipating coating agent to form a heat dissipating coating agent. A silicone-based adhesion modifier can also be added to the heat dissipating coating agent to coat the polyimide resin film. The details will be described below.

まず、この発明における式(1)〜(V)で示されるポ
リチタノカルボシランは、ジメチルジクロロシランの脱
塩素縮重合反応により合成されるポリジメチルシランに
、ジフェニルジクロロシランとホウ酸の縮重合により得
られるポリポロジフェニルシロキサンおよび架橋成分と
なるチタン化合物を添加し、加熱により縮重合させて得
られる。
First, the polytitanocarbosilanes represented by formulas (1) to (V) in this invention are synthesized by polydimethylsilane synthesized by dechlorination polycondensation reaction of dimethyldichlorosilane, and polytitanocarbosilane synthesized by polycondensation reaction of diphenyldichlorosilane and boric acid. It is obtained by adding the polyporodiphenylsiloxane obtained by the method and a titanium compound serving as a crosslinking component, and subjecting the mixture to condensation polymerization by heating.

このようなポリチタノカルボシランの構造単位である 
   +S i −CHx +−と −+Ti−0−)
−の比率(数量比)は、2:1から200:1の範囲内
にあり、また溶融温度は50〜400°Cである。
This is the structural unit of polytitanocarbosilane.
+S i -CHx +- and -+Ti-0-)
The ratio (quantity ratio) of - is in the range of 2:1 to 200:1, and the melting temperature is 50 to 400°C.

式(I)〜(V)で示される有機金属架橋重合体である
ポリチタノカルボシランを主要成分として含有する市販
の耐熱性塗料としては、たとえば宇部興産社製チラノコ
ート#3187などが挙げられる。
Examples of commercially available heat-resistant paints containing polytitanocarbosilane, which is an organometallic crosslinked polymer represented by formulas (I) to (V), as a main component include Tyranocoat #3187 manufactured by Ube Industries, Ltd., and the like.

つぎに、この発明における窒化アルミニウムは、硬度が
高く、耐摩耗性のよい特殊セラミンクであって一般工業
材料として市販の粉末状窒化アルミニウム(粒径0.6
〜4−)を用いればよい。
Next, the aluminum nitride used in this invention is a special ceramic ceramic with high hardness and good wear resistance, and is a powdered aluminum nitride (particle size 0.6
~4-) may be used.

窒化アルミニウムは、上述の耐熱性塗料100重量部に
対して50〜225重量部配合する。なぜなら、50重
量部未満の少量では、被塗着物である母材フィルムに充
分な熱伝導率の低下がみられず、225重量部を越える
多量では、前記母材フィルムとの密着性が劣るからであ
る。
Aluminum nitride is blended in an amount of 50 to 225 parts by weight based on 100 parts by weight of the above-mentioned heat-resistant paint. This is because if the amount is less than 50 parts by weight, the thermal conductivity of the base film will not be sufficiently reduced, and if the amount exceeds 225 parts by weight, the adhesion to the base film will be poor. It is.

この発明に用いる有機溶剤は、前記した有機金属重合体
と相溶性のあるもの、すなわち、キシレン、塗料用シン
ナーなどを限定せずに用いることができるが、特に作業
性の点でメチルイソブチルケトン(以下、旧BKと略称
する)が好ましい。
The organic solvent used in this invention can be any one that is compatible with the organometallic polymer described above, such as xylene, paint thinner, etc., but in particular methyl isobutyl ketone ( (hereinafter abbreviated as old BK) is preferred.

また、この発明に用いる分散剤は、有機金属重合体を主
要材料として含有する耐熱性塗料の分散性を高め、均質
なコーティング剤を得るために添加されるものであって
、たとえばフッ素系の分散剤である住人3M社製FC−
430が好ましいものである。
Further, the dispersant used in this invention is added to improve the dispersibility of heat-resistant paint containing an organometallic polymer as a main material and to obtain a homogeneous coating agent. Residential agent 3M FC-
430 is preferred.

この発明に用いる密着性改質剤としては、通常エポキシ
樹脂に対するシリコーン系の密着性改質剤として知られ
る東し・ダウコーニングシリコン社製5H21PAが好
適なものとして挙げられる。上記密着性改質剤は、コー
ティング対象のポリイミド樹脂フィルムに対して前記コ
ーティング剤の密着性を著しく向上させることが判明し
ている。
As the adhesion modifier used in this invention, 5H21PA manufactured by Toshi-Dow Corning Silicone Co., Ltd., which is generally known as a silicone-based adhesion modifier for epoxy resins, is preferred. It has been found that the adhesion modifier described above significantly improves the adhesion of the coating agent to the polyimide resin film to be coated.

上述の耐熱性塗料100重量部に対して、窒化アルミニ
ウム以外の前記材料を配合する割合は、特に限定されず
ともよく、例えば有機溶剤100重量部、分散剤0.1
重量部、密着性改質剤0.025〜0.1重量部を目安
として、コーティングの手法や乾燥温度または所要の塗
膜の厚さに応じて適宜増減して配合する。
The ratio of the materials other than aluminum nitride to 100 parts by weight of the above-mentioned heat-resistant paint is not particularly limited, and for example, 100 parts by weight of the organic solvent and 0.1 parts by weight of the dispersant.
The adhesion modifier is blended in an amount of 0.025 to 0.1 part by weight, which can be increased or decreased as appropriate depending on the coating method, drying temperature, or required thickness of the coating film.

上記コーティング剤によって放熱性を最も有効に高め得
る被塗物としては、ポリイミド樹脂フィルムが挙げられ
る。ポリイミド樹脂は、芳香族ジアミンとピロメリット
酸の無水物との反応によって得られる複素環系樹脂であ
って、フレキシブルプリント配線板の基材として好適な
ものであり、市販のポリイミド樹脂フィルムとして、た
とえば東し・デュポン社製のカプトン200H(厚さ5
0μ)、カプトン100MT (厚さ25m)、カプト
ン200MT(厚さ50n)が挙げられる。
A polyimide resin film is an example of a coated object whose heat dissipation properties can be most effectively enhanced by the above-mentioned coating agent. Polyimide resin is a heterocyclic resin obtained by the reaction of aromatic diamine and pyromellitic acid anhydride, and is suitable as a base material for flexible printed wiring boards. Kapton 200H (thickness 5
0μ), Kapton 100MT (thickness 25m), and Kapton 200MT (thickness 50n).

このようなポリイミド樹脂フィルムに対して、前記した
放熱性コーティング剤を乾燥時の膜厚が20〜25趨と
なるように、ディッピング、ローラースプレーその他の
塗布法によって被膜する。その後、この被膜を約250
”Cで30分程度で加熱硬化させると、可撓性のある放
熱性複合フィルムが得られる。
Such a polyimide resin film is coated with the above-mentioned heat dissipating coating agent by dipping, roller spraying or other coating method so that the dry film thickness becomes 20 to 25 mm. After that, this coating was applied for about 250 minutes.
By heating and curing at C for about 30 minutes, a flexible heat dissipating composite film can be obtained.

〔作用〕[Effect]

この発明の放熱性コーティング剤は、樹脂面での造膜形
成力に優れ、窒化アルミニウムの配合割合を高めてコー
ティングが容品に行なえるので、熱伝導性および電気絶
縁性の高いコーティング剤が得られる。このコーティン
グ剤は、有機溶剤および分散剤を添加して取り扱い性が
改善されたものとなり、シリコーン系の密着性改質剤を
添加すれば、ポリイミド樹脂フィルムへの密着性に優れ
たものとなる。上記コーティング剤を被着したポリイミ
ド樹脂フィルムからなる放熱性複合フィルムは、熱伝導
性および電気絶縁性に優れると共に、吸水性の低いもの
となる。
The heat-dissipating coating agent of the present invention has excellent film-forming ability on resin surfaces, and can be coated on containers by increasing the blending ratio of aluminum nitride, resulting in a coating agent with high thermal conductivity and electrical insulation. It will be done. This coating agent has improved handling properties by adding an organic solvent and a dispersant, and has excellent adhesion to polyimide resin films by adding a silicone-based adhesion modifier. A heat dissipating composite film made of a polyimide resin film coated with the above coating agent has excellent thermal conductivity and electrical insulation, and has low water absorption.

〔実施例〕〔Example〕

有機金属重合体を主要成分とする耐熱性塗料(宇部興産
社製:チラノコート#3187)  100重量部に、
一般工業材の窒化アルミニウム200重量部を配合する
と共に、分散剤(住人3M社製: FC−430)0.
1重量部と、有機溶剤(MIBK)を100重量部配合
し、ボールミルで48時間かく拌して放熱性コーティン
グ剤Aを得た。
100 parts by weight of a heat-resistant paint containing an organometallic polymer as a main component (manufactured by Ube Industries, Ltd.: Tyrannocoat #3187),
200 parts by weight of aluminum nitride, a general industrial material, was blended, and 0.00 parts by weight of a dispersant (FC-430, manufactured by Susumu 3M Co., Ltd.) was added.
1 part by weight and 100 parts by weight of an organic solvent (MIBK) were mixed and stirred in a ball mill for 48 hours to obtain a heat dissipating coating agent A.

この放熱性コーティング剤Aの100重量部に対してシ
リコーン系密着性改質側(東し・ダウコーニングシリコ
ン社製: 5H21PA)を2重量部添加し、充分にか
く拌して放熱性コーティング剤Bを得た。
To 100 parts by weight of this heat-dissipating coating agent A, 2 parts by weight of a silicone-based adhesion-modifying side (manufactured by Toshi Dow Corning Silicone Co., Ltd.: 5H21PA) was added, and the mixture was sufficiently stirred to form a heat-dissipating coating agent B. I got it.

実験例1 上記のように製造した放熱性コーティング剤Bをポリイ
ミド樹脂フィルム(東し・デュポン社製:カプトン20
0MT )に乾燥時の膜厚20−となるように両面にロ
ールコートし、250°Cで30分間オープンで乾燥、
焼き付けを行なったものを放熱性複合フィルムXとした
Experimental Example 1 The heat dissipating coating agent B produced as described above was coated on a polyimide resin film (Kapton 20 manufactured by Toshi DuPont).
0MT) on both sides to a dry film thickness of 20 -, dry in the open at 250°C for 30 minutes,
The film that was baked was designated as a heat dissipating composite film X.

実験例2 放熱性コーティング剤Aを実験例1と全く同様にしてポ
リイミド樹脂フィルムにコーティングしたものを放熱性
複合フィルムYとした。
Experimental Example 2 A heat-radiating composite film Y was prepared by coating a polyimide resin film with the heat-radiating coating agent A in exactly the same manner as in Experimental Example 1.

実験例1および実験例2で製造した放熱性複合フィルム
X、Yに対して後述する密着性、熱伝導率、吸湿率、湿
度膨張係数、膨張係数および絶縁性の比較実験を行なっ
た。このうち、密着性実験以外の比較実験においては、
放熱性フィルム(東し・デュポン社製:カプトン200
MT )を比較例とした。これらの結果を第1表および
第2表に示した。
Comparative experiments were conducted on the heat dissipating composite films X and Y produced in Experimental Examples 1 and 2 in terms of adhesion, thermal conductivity, moisture absorption, humidity expansion coefficient, expansion coefficient, and insulation, which will be described later. Among these, in comparison experiments other than adhesion experiments,
Heat dissipation film (manufactured by Toshi/DuPont: Kapton 200)
MT) was used as a comparative example. These results are shown in Tables 1 and 2.

密着性試験: 放熱性複合フィルムXまたは放熱性複合フィルムYに対
して以下の剥離テストを行なった。すなわち、フィルム
表面に2m角の切り目(ハーフカット)を入れて、10
0目の基盤目を形成し、市販のガムテープを密着させて
ひき剥がした。フィルム上に放熱性コーティング剤Aま
たはBの被膜が残った目を計数してその数を第1表中に
示した(剥離テスト■)、市販のセロハンテープを用い
た以外は、剥離テスト■と全く同様にして剥離テスト■
を行なった。各フィルムの使用条件下での密着性を調べ
るため、250℃または300°Cのオーブン中に24
時間暴露した後の放熱性複合フィルムX、Yを上記剥離
テスト■と全く同様の試験を行ない、その結果をそれぞ
れ第1表中に併記した。
Adhesion test: The following peel test was conducted on the heat dissipating composite film X or the heat dissipating composite film Y. In other words, make a 2m square cut (half cut) on the surface of the film, and
A base stitch of 0 was formed, a commercially available gummed tape was adhered to it, and then it was peeled off. The number of spots where the film of heat dissipating coating agent A or B remained on the film was counted and the number is shown in Table 1 (Peel test ■). Except for using commercially available cellophane tape, peel test ■ Peeling test in exactly the same way■
I did it. To examine the adhesion of each film under the conditions of use, it was placed in an oven at 250°C or 300°C for 24 hours.
After being exposed for a period of time, the heat dissipating composite films X and Y were subjected to the same test as the above peel test (2), and the results are also listed in Table 1.

熱伝導率試験: フィルム・シート用熱伝導率計(京都電子工業社製: 
 kes+therm QTM−D3)で熱伝導率(W
/m−k)を測定した。
Thermal conductivity test: Thermal conductivity meter for films and sheets (manufactured by Kyoto Electronics Industry Co., Ltd.:
thermal conductivity (W
/m-k) was measured.

吸湿率試験: 23°C124時間の水浸漬の条件下で、ASTM D
−570に準じ、吸湿率試験を行なった。
Moisture absorption test: ASTM D under the condition of water immersion for 124 hours at 23°C
-570, a moisture absorption rate test was conducted.

湿度膨張係数測定試験: 測定温度25°C1測定開始時3.4〜3.8%RH1
測定完了条件84〜86%1it(、測定中の負荷5g
15+m++幅の条件下で、湿度膨張係数を測定した。
Humidity expansion coefficient measurement test: Measurement temperature 25°C1 3.4-3.8% RH1 at the start of measurement
Measurement completion conditions 84-86% 1it (, load during measurement 5g
The humidity expansion coefficient was measured under the condition of 15+m++ width.

膨張係数測定試験: 測定温度100°C〜200”Cにおけるフィルムの線
膨張率を求めた。
Expansion coefficient measurement test: The linear expansion coefficient of the film was determined at a measurement temperature of 100°C to 200''C.

電気絶縁性試験: 表面固有抵抗率(Ω)を測定した。Electrical insulation test: The surface specific resistivity (Ω) was measured.

上記試験の結果を第2表に示した。The results of the above tests are shown in Table 2.

第1表 第2表 第1表の数値からも明らかなように、放熱性コーティン
グ剤Aに対してシリコーン系密着性改質剤を添加した放
熱性コーティング剤Bは、ポリイミド樹脂フィルムを被
覆して(放熱性複合フィルムX)充分な密着性を示し、
使用時に高温(約250°C)に曝されても密着性が低
下しなかった。また、第2表の数値からも明らかなよう
に、放熱性複合フィルムXは、コーティング荊Aを被着
して、ブランクのポリイミド樹脂フィルムに比して、熱
伝導率が約10倍向上し、放熱性が極めて高くなること
が判明した。しかも、吸湿率および湿度膨張係数は低減
され、加熱時の膨張率や電気絶縁性は、基材のポリイミ
ド樹脂フィルム本来の状態と殆ど変化なく、放熱性の絶
縁基板として好ましい性質を示した。
As is clear from the values in Table 1, Table 2, and Table 1, heat dissipating coating agent B, which is obtained by adding a silicone adhesion modifier to heat dissipating coating agent A, coats a polyimide resin film. (Heat dissipating composite film X) shows sufficient adhesion,
Adhesion did not decrease even when exposed to high temperatures (approximately 250°C) during use. Furthermore, as is clear from the values in Table 2, heat dissipating composite film It has been found that heat dissipation is extremely high. In addition, the moisture absorption rate and humidity expansion coefficient were reduced, and the expansion rate and electrical insulation properties upon heating were almost unchanged from the original state of the polyimide resin film as the base material, showing desirable properties as a heat dissipating insulating substrate.

〔効果] この発明の放熱性コーティング剤は、以上説明したよう
に、ポリイミド樹脂フィルム製等のフレキシブルプリン
ト配線基板を密着性良く被覆してその放熱性を高め、加
えてその吸水性を低下させる。したがって、この放熱性
複合フィルムは、フレキシブルプリント配線基板として
使用された際、実装部品を不必要に加熱せず、しかも湿
度が高い環境においても使用することができるという利
点がある。
[Effects] As explained above, the heat dissipating coating agent of the present invention coats a flexible printed wiring board made of polyimide resin film or the like with good adhesion to enhance its heat dissipation, and in addition, reduces its water absorption. Therefore, this heat dissipating composite film has the advantage that when used as a flexible printed wiring board, it does not unnecessarily heat the mounted components and can be used even in a high humidity environment.

特許出願人 日本ベスト株式会社 同Patent applicant: Nippon Best Co., Ltd. same

Claims (4)

【特許請求の範囲】[Claims] (1)式( I ) ▲数式、化学式、表等があります▼・・・・・( I ) (式中、Rは水素原子、低級アルキル基またはフェニル
基)で示されるポリカルボシランと、式(II)Ti(O
R′)_4・・・・・・(II) (式中、R′は炭素原子数1〜20のアルキル基)で示
されるチタンアルコキシドとを加熱反応させることによ
って、 式(III) ▲数式、化学式、表等があります▼ 式(IV) ▲数式、化学式、表等があります▼ または式(V) ▲数式、化学式、表等があります▼ で示されるいずれかの架橋構造を導入した数平均分子量
が700〜10,000のポリチタノカルボシランを含
有する耐熱性塗料に、窒化アルミニウムを配合して成る
放熱性コーティング剤。
(1) Formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(I) (In the formula, R is a hydrogen atom, a lower alkyl group, or a phenyl group) A polycarbosilane represented by the formula (II) Ti(O
R')_4... (II) (In the formula, R' is an alkyl group having 1 to 20 carbon atoms) by heating and reacting with a titanium alkoxide, formula (III) ▲ Formula, Chemical formulas, tables, etc. are available ▼ Formula (IV) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ or Formula (V) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ Number average molecular weight with one of the crosslinked structures introduced A heat dissipating coating agent made by blending aluminum nitride into a heat-resistant paint containing polytitanocarbosilane having a polytitanocarbosilane of from 700 to 10,000.
(2)請求項1記載の放熱性コーティング剤に有機溶剤
および分散剤とを添加して成る放熱性コーティング剤。
(2) A heat dissipating coating agent obtained by adding an organic solvent and a dispersant to the heat dissipating coating agent according to claim 1.
(3)請求項1または2記載の放熱性コーティング剤に
シリコーン系密着性改質剤を添加して成る放熱性コーテ
ィング剤。
(3) A heat dissipating coating agent obtained by adding a silicone adhesion modifier to the heat dissipating coating agent according to claim 1 or 2.
(4)請求項1、2または3記載の放熱性コーティング
剤をポリイミド樹脂フィルムにコーティングして成る放
熱性複合フィルム。
(4) A heat dissipating composite film obtained by coating a polyimide resin film with the heat dissipating coating agent according to claim 1, 2 or 3.
JP24489690A 1990-09-12 1990-09-12 Heat dissipating coating material and heat dissipating composite film Pending JPH04122783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24489690A JPH04122783A (en) 1990-09-12 1990-09-12 Heat dissipating coating material and heat dissipating composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24489690A JPH04122783A (en) 1990-09-12 1990-09-12 Heat dissipating coating material and heat dissipating composite film

Publications (1)

Publication Number Publication Date
JPH04122783A true JPH04122783A (en) 1992-04-23

Family

ID=17125593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24489690A Pending JPH04122783A (en) 1990-09-12 1990-09-12 Heat dissipating coating material and heat dissipating composite film

Country Status (1)

Country Link
JP (1) JPH04122783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026973A1 (en) * 1995-02-28 1996-09-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Film having excellent corona resistance and insulated wire, coil, and motor using it as insulating material
CN103881512A (en) * 2014-02-14 2014-06-25 程实 Ultraviolet-shielding LED (light-emitting diode) heat dissipation paint and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026973A1 (en) * 1995-02-28 1996-09-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Film having excellent corona resistance and insulated wire, coil, and motor using it as insulating material
US6194665B1 (en) 1995-02-28 2001-02-27 Kanegafuchi Kagaku Kogyo Kabushiki Film distinguished in coriona resistant characteristic and insulated wires, coils and motors comprising the film as an insulation material
CN103881512A (en) * 2014-02-14 2014-06-25 程实 Ultraviolet-shielding LED (light-emitting diode) heat dissipation paint and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105026510B (en) Adhesive composition, adhesive sheet and solidfied material and semiconductor devices using them
US5011870A (en) Thermally conductive organosiloxane compositions
US8663793B2 (en) Excellent heat-dissipating black resin composition, method for treating a zinc coated steel sheet using the same and steel sheet treated thereby
KR100804934B1 (en) Excellent heat-dissipating black resin composition, method for treating a steel sheet using the same and steel sheet treated thereby
EP2325000B1 (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
EP2647685B1 (en) Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
JP4379387B2 (en) Epoxy resin inorganic composite sheet and molded product
US4923718A (en) Functional film and process for its production
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
EP1447214A1 (en) Polyimide metal layered products and polyamideimide metal layered product
KR101523144B1 (en) Epoxy composites with improved heat dissipation, and their applications for thermal conductive and dissipative products
JP2009060146A (en) Epoxy resin inorganic composite sheet for sealing semiconductor, and molded product
TW201808626A (en) Thermally conductive silicone rubber composite sheet
JP4378577B2 (en) Heat resistant resin composition, adhesive film using the same, and polyimide film with adhesive layer
TWI628229B (en) Film forming resin composition, insulating film and semiconductor device
JPH04122783A (en) Heat dissipating coating material and heat dissipating composite film
JP7146301B2 (en) Insulating adhesive film and its manufacturing method, multilayer printed wiring board
JP6915433B2 (en) Polyamide-imide resin liquid and its manufacturing method
JPH0196265A (en) Coating agent
JP2000290613A (en) Thermosetting adhesive sheet
JP4441834B2 (en) Heat resistant resin composition
KR101447258B1 (en) Thermal conductive epoxy composites and their applications for light emitting diode fixtures
JPH07268098A (en) Polyimide resin and heat-resistant adhesive
JP2007106836A (en) Silane-modified polyamic acid resin composition
KR101091339B1 (en) Steel Sheet Having Superior Electro-Conductivity and Heat-Dissipating