JPH04122060A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH04122060A
JPH04122060A JP2243184A JP24318490A JPH04122060A JP H04122060 A JPH04122060 A JP H04122060A JP 2243184 A JP2243184 A JP 2243184A JP 24318490 A JP24318490 A JP 24318490A JP H04122060 A JPH04122060 A JP H04122060A
Authority
JP
Japan
Prior art keywords
layer
well
type
silicide layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2243184A
Other languages
Japanese (ja)
Other versions
JP3064364B2 (en
Inventor
Kiyonobu Hinooka
日野岡 清伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2243184A priority Critical patent/JP3064364B2/en
Publication of JPH04122060A publication Critical patent/JPH04122060A/en
Application granted granted Critical
Publication of JP3064364B2 publication Critical patent/JP3064364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable formation of silicide layer in first and second MOS transistors and to simplify photolithography process by connecting a reverse conductivity well as a resistance layer between a connection point of first and second MOS transistors and an input/output signal terminal. CONSTITUTION:An N-type well 2 is selectively provided to one main surface of a P type silicon substrate 1. A contact region is formed, which consists of a silicide layer 8 provided to surfaces of an N<+>-type diffusion layer 4 which is provided by selective introduction of N-type impurities to a surface of the well 2 and an N<+>-type diffusion layer 3, and the N-type well 2 is made a resistance layer. A resistance R is connected between a drain of P-channel transistor TrQ1 and N-channel transistor TrQ2 which are connected in series between a rower supply VDD and GND through wirings 6, 7 connected to a contact region through a contact hole provided to the layer insulating film 5, and a bonding pad for input/ output signal. Thereby, it is possible to provide a silicide layer to TrQ1 and TrQ2 and to simplify photolithography process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に関し、特に保護回路素子を
有する半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and particularly to a semiconductor integrated circuit having a protection circuit element.

〔従来の技術〕[Conventional technology]

近年、相補型MO8)ランジスタを有する半導体集積回
路においては、第4図に示すように入力保護回路として
、常時オフ型のPチャネルMOSトランジスタとNチャ
ネルMO8)ランジスタを高電位電源と低電位電源間に
直列接続したドレインに内部回路を接続した保護回路を
用いている。
In recent years, in semiconductor integrated circuits having complementary MO8) transistors, normally-off type P-channel MOS transistors and N-channel MO8) transistors are connected between high-potential power supplies and low-potential power supplies as input protection circuits, as shown in Figure 4. A protection circuit is used in which the internal circuit is connected to the drain connected in series with the

また、最近ではゲート電極及びソース・ドレイン領域の
表面に金属シリサイド層を用いることにより多結晶シリ
コン層の抵抗を下げて高速化を図ろうとする製品がある
。特にゲートアレイ等の製品では、ソース・ドレイン領
域上に形成されるコンタクト孔の数が、制限されるため
にソース・ドレイン領域の拡散層抵抗によって回路スピ
ードが制約される場合が多くソース・ドレイン領域の表
面にシリサイド層を設けて抵抗を下げる必要がある。
Recently, there are products that use metal silicide layers on the surfaces of the gate electrode and source/drain regions to lower the resistance of the polycrystalline silicon layer and increase speed. Particularly in products such as gate arrays, the number of contact holes formed on the source/drain region is limited, so the circuit speed is often restricted by the diffusion layer resistance of the source/drain region. It is necessary to provide a silicide layer on the surface to lower the resistance.

さらに、ソース・ドレイン領域の表面に設けたシリサイ
ド層を介して不純物イオンをイオン注入し、ソース・ド
レイン領域を形成することで、ショートチャネル化に必
要な非常に浅い拡散層を形成できる利点がある。従って
ゲートアレイ等においては、ソース・ドレインのシリサ
イド化技術は必須の技術となって来ている。
Furthermore, by implanting impurity ions through the silicide layer provided on the surface of the source/drain region to form the source/drain region, it has the advantage of forming a very shallow diffusion layer required for short channel formation. . Therefore, in gate arrays and the like, silicidation technology for sources and drains has become an essential technology.

このような製品に対しても前記のごとき入力保護回路が
用いられているが、入力保護回路のMOSトランジスタ
を構成するソース・トレイン領域の拡散層が浅いと静電
破壊に対しての強度が十分でなくフォトリングラフィ工
程を追加して入出力保護部のトランジスタのソース・ド
レイン領域にはシリサイド層を設けず、比較的床い拡散
層を設けて静電破壊に対する強度を持たせている。
The input protection circuit described above is also used for such products, but if the diffusion layer in the source train region that constitutes the MOS transistor of the input protection circuit is shallow, it has sufficient strength against electrostatic damage. Instead, a photolithography process is added to provide strength against electrostatic damage by not providing a silicide layer in the source/drain regions of the transistors in the input/output protection section, but by providing a relatively deep diffusion layer.

〔発明が解決しようとする課題〕 この従来の半導体集積回路は、入出力保護部のMOS)
ランシスタのソース・トレイン領域以外のMOS)ラン
シスタにシリサイド層を設けるためのリングラフィ工程
を必要とし、工程数が増加するという問題点があった。
[Problem to be solved by the invention] This conventional semiconductor integrated circuit has a MOS (input/output protection section)
This method requires a phosphorography process to provide a silicide layer on the MOS transistor (other than the source/train region of the transistor), which poses a problem in that the number of steps increases.

〔課題を解決するための手段〕[Means to solve the problem]

及びソース・トレイン領域にソリサイト層を有する第1
のMOS)ランジスタと、前記ウェル以外ヒ、 スタn         前記半導体基板上に設けた逆
導電型ウェルを抵抗層として前記第1及び第2のMOS
)ランシスタの接続点と入圧力信号端子間に接続して構
成される。
and a first layer with a soricite layer in the source train region.
MOS) transistors and transistors other than the wells; transistors of the first and second MOS transistors using opposite conductivity type wells provided on the semiconductor substrate as resistance layers;
) It is configured by connecting between the connection point of the Runsistor and the input pressure signal terminal.

〔実施例〕〔Example〕

本発明について図面を参照して説明する。 The present invention will be explained with reference to the drawings.

第1図(a) 、 (b)は本発明の第1の実施例を示
す平面図及びA−A’線断面図、第2図は本発明の第1
の実施例を説明するための回路図である。
FIGS. 1(a) and (b) are a plan view and a sectional view taken along line A-A' showing the first embodiment of the present invention, and FIG.
FIG. 2 is a circuit diagram for explaining an embodiment of the present invention.

第1図(a) 、 (b)及び第2図に示すように、P
型シリコン基板1の一生面にN型のウェル2を選択的に
設け、N型ウェル2の表面に選択的にN型不純物を導入
して設けたN+型型数散層4びN1型拡散層の表面に設
けたシリサイド層8からなるコンタクト領域を形成して
N型ウェル2を抵抗層とし、層間絶縁膜5に設けたコン
タクト孔を介してコンタクト領域に接続した配線6,7
により電源VDDとGND間に直列接続したPチャネル
トランジスタQ1とNチャネルトランジスタQ2のドレ
インと入圧力信号用のポンディングパッドとの間に抵抗
Rとして接続する。
As shown in Figures 1(a) and (b) and Figure 2, P
An N type well 2 is selectively provided on the entire surface of a type silicon substrate 1, and an N+ type diffused layer 4 and an N1 type diffused layer are provided by selectively introducing N type impurities into the surface of the N type well 2. A contact region made of a silicide layer 8 provided on the surface of the N-type well 2 is formed as a resistance layer, and wirings 6 and 7 are connected to the contact region through contact holes provided in the interlayer insulating film 5.
Therefore, a resistor R is connected between the drains of the P-channel transistor Q1 and the N-channel transistor Q2 connected in series between the power supply VDD and GND, and a bonding pad for input pressure signal.

ここで、シリサイド層8を設けたN+型型数散層4、静
電破壊に対して弱いが仮にこのN+型型数散層4破壊さ
れたとしてもN型ウェル2で覆われているため不良には
ならない、又、トランジスタQ + 、 Q 2に対す
る保護素子としても働くため従来例のようにトランジス
タQ1.Q2が破壊される可能性は低くなる。従って、
トランジスタQ、、Q2にのみシリサイド層を設けない
ようにするためのフォトリングラフィ工程の増加も必要
がなくなる。
Here, the N+ type scattered layer 4 provided with the silicide layer 8 is vulnerable to electrostatic damage, but even if this N+ type scattered layer 4 were to be destroyed, it would be defective because it is covered with the N type well 2. Moreover, since it also serves as a protection element for transistors Q + and Q 2 , unlike the conventional example, transistors Q1 . The possibility of Q2 being destroyed becomes lower. Therefore,
There is also no need to increase the number of photolithography steps required to avoid providing a silicide layer only in the transistors Q, Q2.

第3図(a) 、 (b)は本発明の第2の実施例を示
す平面図及びB−B’線断面図である。
FIGS. 3(a) and 3(b) are a plan view and a sectional view taken along the line BB', showing a second embodiment of the present invention.

第3図(a) 、 (b)に示すように、N型ウェル2
の表面とP型シリコン基板1の表面が接するPN接合の
端部にN型ウェル2の周囲を取囲むように、P+型拡散
層9及びシリサイド層8を設けた以外は第1の実施例と
同様の構成を有している。
As shown in FIGS. 3(a) and (b), N-type well 2
This is the same as the first embodiment except that a P+ type diffusion layer 9 and a silicide layer 8 are provided to surround the N type well 2 at the end of the PN junction where the surface of the P type silicon substrate 1 is in contact with the surface of the P type silicon substrate 1. They have similar configurations.

ここで、負電圧のサージに対しては、トランジスタQ 
1. Q 2への印加電圧はN型ウェル2の順方向電圧
(IV以下)でクランプされるが、正電圧のサージに関
しては、N型ウェル2の逆方向ブレークダウン電圧でク
ランプされることになる。
Here, for negative voltage surge, transistor Q
1. The voltage applied to Q 2 is clamped at the forward voltage of the N-well 2 (below IV), but for positive voltage surges, it will be clamped at the reverse breakdown voltage of the N-well 2.

N型ウェル2とP型シリコン基板1で決まるN型ウェル
2の耐圧は80v程度であり保護効果が十分ではない。
The withstand voltage of the N-type well 2 determined by the N-type well 2 and the P-type silicon substrate 1 is about 80V, and the protection effect is not sufficient.

P+型拡散層9を配置すれば逆方向ブレークダウン電圧
は、N型ウェル2とP+型拡散層9で決定されるために
15V程度まで低下させることができ番保護能力がさら
に高まる。
By arranging the P+ type diffusion layer 9, the reverse breakdown voltage can be lowered to about 15V since it is determined by the N type well 2 and the P+ type diffusion layer 9, thereby further increasing the protection ability.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、−導電型半導体基板に設
けた逆導電型ウェルを抵抗層として第1及び第2のMO
S)ランジスタの接続点と入d力信号端子との間に接続
することにより第1及び第2のMOS)ランジスタにシ
リサイド層を設けることかでき、フォトリングラフィ工
程を簡略化できるという効果を有する。
As explained above, the present invention provides first and second MO
S) A silicide layer can be provided on the first and second MOS transistors by connecting between the connection point of the transistor and the input d input signal terminal, which has the effect of simplifying the photolithography process. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の第1の実施例を示
す平面図及びA−A′線断面図、第2図は本発明の第1
の実施例を説明するための回路図、第3図(a) 、 
(b)は本発明の第2の実施例を示す平面図及びB−B
′線断面図、第4図は、従来の半導体集積回路を説明す
るための回路図である。 1・・・・・・P型シリコン基板、2・・・・・・N型
つニノベ3.4・・・・・N+型型数散層5・・・・・
・層間絶縁膜、6゜7・・・・・・配線、8・・・・・
・シリサイド層、9・・・・・P+型拡散層、Q+・・
・・・・Pチャネルトランジスタ、Q2・・Nチャネル
トランシタ、 R・・・・ 抵抗。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along line A-A' of the first embodiment of the present invention, and FIG.
A circuit diagram for explaining the embodiment of FIG. 3(a),
(b) is a plan view showing the second embodiment of the present invention and B-B
4 is a circuit diagram for explaining a conventional semiconductor integrated circuit. 1...P type silicon substrate, 2...N type silicon substrate 3.4...N+ type scattered layer 5...
・Interlayer insulating film, 6゜7...Wiring, 8...
・Silicide layer, 9...P+ type diffusion layer, Q+...
...P channel transistor, Q2...N channel transistor, R...resistance.

Claims (1)

【特許請求の範囲】 1、一導電型半導体基板上に設けた逆導電型ウェルに設
け内部回路と電源間に接続し且つゲート電極を電源に接
続したゲート電極及びソース・ドレイン領域にシリサイ
ド層を有する第1のMOSトランジスタと、前記ウェル
以外の領域に設けて前記第1のMOSトランジスタとG
ND間に接続し且つゲート電極をGNDに接続したゲー
ト電極及びソース・ドレイン領域にシリサイド層を有す
る第2のMOSトランジスタと 前記半導体基板上に設けた逆導電 型ウェルを抵抗層として前記第1及び第2のMOSトラ
ンジスタの接続点と入出力信号端子間に接続したことを
特徴とする半導体集積回路。 2、抵抗層として用いる逆導電型ウェルと半導体基板と
のPN接合の端部の上に一導電型の高濃度拡散層を前記
ウェルの周囲を取囲んで設けた請求項1記載の半導体集
積回路。
[Claims] 1. A silicide layer is provided in a well of an opposite conductivity type provided on a semiconductor substrate of one conductivity type and connected between an internal circuit and a power supply, and a gate electrode and a source/drain region where the gate electrode is connected to a power supply. a first MOS transistor provided in a region other than the well, and a first MOS transistor provided in a region other than the well;
a second MOS transistor having a gate electrode connected between GND and a gate electrode connected to GND, and a silicide layer in the source/drain region, and a reverse conductivity type well provided on the semiconductor substrate as a resistance layer; A semiconductor integrated circuit characterized in that a connection is made between a connection point of a second MOS transistor and an input/output signal terminal. 2. The semiconductor integrated circuit according to claim 1, wherein a high concentration diffusion layer of one conductivity type is provided surrounding the periphery of the well on the end of the PN junction between the semiconductor substrate and the opposite conductivity type well used as a resistance layer. .
JP2243184A 1990-09-13 1990-09-13 Semiconductor integrated circuit Expired - Lifetime JP3064364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243184A JP3064364B2 (en) 1990-09-13 1990-09-13 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243184A JP3064364B2 (en) 1990-09-13 1990-09-13 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH04122060A true JPH04122060A (en) 1992-04-22
JP3064364B2 JP3064364B2 (en) 2000-07-12

Family

ID=17100076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243184A Expired - Lifetime JP3064364B2 (en) 1990-09-13 1990-09-13 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3064364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169647A (en) * 2000-06-13 2012-09-06 Renesas Electronics Corp Semiconductor device, manufacturing method of the same, resistor and semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169647A (en) * 2000-06-13 2012-09-06 Renesas Electronics Corp Semiconductor device, manufacturing method of the same, resistor and semiconductor element

Also Published As

Publication number Publication date
JP3064364B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US20090050969A1 (en) Semiconductor device
JPH10340996A (en) Protection circuit
JP5079974B2 (en) Semiconductor device
JP2005045016A (en) Semiconductor integrated circuit
JPH04241452A (en) Semiconductor integrated circuit device
JPS63244874A (en) Input protective circuit
JPH04122060A (en) Semiconductor integrated circuit
JPH02238668A (en) Semiconductor device
JPH03276757A (en) Semiconductor device
JPH1012746A (en) Semiconductor device
JPH08162539A (en) Data output buffer
JP2003179226A (en) Semiconductor integrated circuit device
US7667280B2 (en) Semiconductor device
JPS60123053A (en) Semiconductor device
JPH01189955A (en) Semiconductor device
JPH05206387A (en) Semiconductor integrated circuit
JPH0532908B2 (en)
JPS62115764A (en) Semiconductor integrated circuit device
JPH03101162A (en) Semiconductor integrated circuit device
KR950007082A (en) Semiconductor integrated circuit having electrostatic protection device and manufacturing method thereof
JPH03270268A (en) Semiconductor integrated circuit device
JPS60198853A (en) High withstand voltage resistance element
JPH0496269A (en) Cmos semiconductor device
JPH04239763A (en) Output buffer
JPH0243347B2 (en)