JPS60198853A - High withstand voltage resistance element - Google Patents

High withstand voltage resistance element

Info

Publication number
JPS60198853A
JPS60198853A JP59055633A JP5563384A JPS60198853A JP S60198853 A JPS60198853 A JP S60198853A JP 59055633 A JP59055633 A JP 59055633A JP 5563384 A JP5563384 A JP 5563384A JP S60198853 A JPS60198853 A JP S60198853A
Authority
JP
Japan
Prior art keywords
voltage
regions
resistance
type
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055633A
Other languages
Japanese (ja)
Inventor
Mikiko Saito
美紀子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59055633A priority Critical patent/JPS60198853A/en
Publication of JPS60198853A publication Critical patent/JPS60198853A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high withstand voltage resistance element by a method wherein a plurality of resistance regions formed in wells are connected in series, thereby enabling to obtain the constitution with which necessary withstand voltage can be obtained. CONSTITUTION:A plurality of N<-> well regions 12 are provided in a P type Si substrate 11, and a high density P type regions 14 are formed in the regions 12. Low density P type resistance layers 18 are formed adjoining to the regions 14. Besides, a high density N type regions 13 are provided in wells 12, and a resistance element is formed by electrically connecting said regions 13 to the regions 14. A high withstand voltage resistance element R can be formed by series-connecting a plurality of said resistance elements. The withstand voltage of the resistance element located in each region 12 is relatively low, but the element R can be accomplished by connecting these resistance elements in series. Further, the regions 12 whereon the element R will be proviced are formed simultaneously with the wells 12. Thus, as the element R has the adaptability with a C-MOS process, it can be formed in one body with a high withstand voltage MOSIC having C-MOS logic.

Description

【発明の詳細な説明】 く技術分野〉 本発明は高耐圧半導体集積回路に用いる高耐圧抵抗素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a high voltage resistance element used in a high voltage semiconductor integrated circuit.

〈発明の技術的背景、〉 折本各種の端末機器の需要が高まり、それら端末機器を
小型、高性能化するための研究が行なわれている。
<Technical Background of the Invention> The demand for various terminal devices is increasing, and research is being conducted to make these terminal devices smaller and more efficient.

特に記録・表示装置の小型化、低価格化に、高電圧回路
のIC化が不可欠になってきている。
In particular, the use of ICs for high-voltage circuits has become essential for downsizing and lowering prices of recording and display devices.

現在このようなICとして、グルメクン用の高耐圧MO
8)ランジスタゐアレイと、これを制御する低電圧四ジ
、り回路とを一体化したものが実用化されている。しか
し、このICを実際に使うには、ゾルダウン用の高耐圧
MO8)ランジスタのドレイン電極の1つ1つに負荷抵
抗あるいは飽和型抵抗などのプルアップ素子を外部から
接続する必要がある。従って駆動装置全体を更に小型化
、低価格化していくには、プルアップ素子をも含めた一
体IC化が不可欠である。
Currently, such ICs include high-voltage MO for Gurmekun.
8) A device that integrates a transistor array and a low-voltage four-wire circuit to control it has been put into practical use. However, in order to actually use this IC, it is necessary to externally connect a pull-up element such as a load resistor or a saturation type resistor to each drain electrode of the high-voltage MO8) transistor for sol-down. Therefore, in order to further reduce the size and cost of the entire drive device, it is essential to integrate the pull-up element into an integrated IC.

更に、IC全体の低消費電力を考えると、制御用ロジッ
ク回路は、C!MO8構成にすることが望ましく、プル
アップ素子は、高耐圧MO8並びにCMO8760セス
との適合性がなければならない。
Furthermore, considering the low power consumption of the entire IC, the control logic circuit is C! A MO8 configuration is desirable, and the pull-up element must be compatible with high voltage MO8 and CMO8760 processes.

〈従来技術〉 通常の低電圧ロジック回路では、ゾルダウン素子とプル
アップ素子とを一体化した例として、例えば、E−D構
成(W、N、Carr r J、P、Mize +MO
8/LSI D@sign and Appliaat
ion ;Megram−HlllBook Comp
any−1972P 111 )が良く知られている。
<Prior art> In a normal low voltage logic circuit, as an example of integrating a sol-down element and a pull-up element, for example, an E-D configuration (W, N, Carr r J, P, Mize + MO
8/LSI D@sign and Appliaat
ion; Megram-HllllBook Comp
any-1972P 111 ) is well known.

このE、D構成は、第1図に示すように、エンハンスメ
ント型のMOS )ランジスタN1をプルダウン素子と
し、ディゾレッシ曹ン型のMOS )ランジスタN2を
ツルア、ノ素子としたものである。
In the configurations E and D, as shown in FIG. 1, the enhancement type MOS transistor N1 is used as a pull-down element, and the disolessian type MOS transistor N2 is used as a true element.

しかし、第1図の例では、電源電圧VDDを大きくして
いくと、ディグレッジ璽ン型のMoS ) ?ンジスタ
N3の基板効果が顕著になシ、エンハンスメント型MO
SトランジスタN里のドレイン電圧即ち、出力電圧VD
が電源電圧vDDよシ小さくなってしまうという欠点が
ある。
However, in the example shown in FIG. 1, if the power supply voltage VDD is increased, the degradation type MoS ()? Enhancement type MO
The drain voltage of the S transistor Nri, that is, the output voltage VD
There is a disadvantage that the power supply voltage vDD is smaller than the power supply voltage vDD.

この他の例としては、プルアップ用のPチャンネルMO
8)ランジスタとプルダウン用のNチャンネルMOS 
)ランジスタとを一体IC化した0MO8構成(前述の
文献pH3)がある。
Another example is a P-channel MO for pull-up.
8) N-channel MOS for transistor and pulldown
) There is an 0MO8 configuration in which a transistor and a transistor are integrated into an IC (the above-mentioned document pH3).

第2図は、0MO8構成の断面構造を示したものである
。lはP型シリコンよシなる半導体基板、2はN型不純
物によるN−ウェル領域、3は高濃度PW領領域4は高
濃度N型領域、5は低抵抗の多結晶シリコンよシな石ゲ
ート電極、6はアルミニウム電極でおる。
FIG. 2 shows the cross-sectional structure of the 0MO8 configuration. 1 is a semiconductor substrate made of P-type silicon, 2 is an N-well region made of N-type impurities, 3 is a high-concentration PW region 4 is a high-concentration N-type region, and 5 is a stone gate made of low-resistance polycrystalline silicon. The electrode 6 is an aluminum electrode.

第2図の例では、PチャンネルMO8の基板に当るウェ
ルが、PチャンネルMO8のノースと電気的に接続され
ているので基板効果が起こらない。従って、Nチャンネ
ルMOS )ランジスタのドレイン電圧即ち出力電圧と
して電源電圧に等しい電圧を取シ出すことができる。
In the example of FIG. 2, the well corresponding to the substrate of the P-channel MO8 is electrically connected to the north of the P-channel MO8, so that no substrate effect occurs. Therefore, a voltage equal to the power supply voltage can be extracted as the drain voltage, ie, the output voltage, of the N-channel MOS transistor.

しかし、通常の0MO8に使われているゾルアップ素子
、即ちPチャンネルMO8)ランジスタには、■出力電
圧に等しい?−)電圧を印加する必要がある。■このた
め大きなダート耐圧を必要とする。
However, the sol-up element used in the normal 0MO8, that is, the P-channel MO8) transistor, has ■Is it equal to the output voltage? −) It is necessary to apply a voltage. ■For this reason, a large dirt pressure is required.

■ドレイン耐圧は、高々100V程度しかない、などの
欠点がある。
■Drain breakdown voltage is only about 100V at most, which is a drawback.

〈発明の目的〉 本発明の目的は、上述の欠点を取シ除き、プルダウン用
高耐圧MO8)ランジスタと、これを制御するCMOS
ロジック回路を簡単に一体IC化でき、なおかつ高耐圧
性能を有するゾルアップ素子を提供することにある。
<Object of the Invention> The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a high voltage MO8) transistor for pull-down and a CMOS for controlling it.
It is an object of the present invention to provide a sol-up element that can easily integrate a logic circuit into an integrated IC and has high breakdown voltage performance.

〈発明の構成〉 本発明は、第1導電型の半導体基板内に2つ以上の第2
導電型のウェルを設け、該ウェル内に第1導電型の第1
高濃度領域と第2高濃度領域ならびに該第1.第2の高
濃度領域に接して第1導電形で低不純物濃度の抵抗層領
域とを備え、更に前記ウェル内に第2導電型の高濃度層
を設け、これを第1高濃度領域と電気的に接続して抵抗
素子とし、該抵抗素子の異なるもの同士の前記第1高濃
度領域と前記第2高濃度領域とを接続して高耐圧化した
ことを特徴とする高耐圧抵抗素子である。
<Structure of the Invention> The present invention provides two or more second conductivity type semiconductor substrates in a first conductivity type semiconductor substrate.
A well of a conductivity type is provided, and a first conductivity type of a first conductivity type is provided in the well.
The high concentration region, the second high concentration region, and the first. a resistance layer region of a first conductivity type and a low impurity concentration in contact with the second high concentration region; A high breakdown voltage resistance element is characterized in that the first high concentration region and the second high concentration region of different resistance elements are connected to each other to achieve a high breakdown voltage. .

〈発明の原理〉 本発明では、ウェル内に形成した比較的耐圧の低い前記
抵抗領域を複数個直列接続することにょシ必要な耐圧を
確保している。即ち高耐圧抵抗素子に加わる電圧は、各
抵抗領域に分割して加わるので、分割きれた電圧が抵抗
4m鯵の耐圧N下シ外るように、抵抗領域の数を選ぶこ
とにょル高耐圧抵抗素子が実現できる。
<Principle of the Invention> In the present invention, the necessary breakdown voltage is ensured by connecting in series a plurality of the resistance regions formed in the well and having a relatively low breakdown voltage. In other words, the voltage applied to the high voltage resistance element is divided and applied to each resistance area, so the number of resistance areas must be selected so that the divided voltage is below the voltage resistance N of the 4m resistor. element can be realized.

又、本発明では、第2図の0MO8の例と同様に抵抗領
域に基板効果が起こらないので、出方電圧が電源電圧よ
シ小さくなったシ、負荷の駆動能力が小さくなったシす
ることはない。
Furthermore, in the present invention, as in the example of 0MO8 shown in FIG. 2, the substrate effect does not occur in the resistance region, so the output voltage becomes smaller than the power supply voltage and the load driving ability becomes smaller. There isn't.

これは、抵抗層領域がウェルにょυ基板から絶縁分離さ
五ているのでウェルと電気的に接続されている第1の高
濃度層から多数キャリアが抵抗層領域を通って流れるよ
うに第1.第2の高濃度領域との電位関係を選ぶことが
できるからである。
This is because the resistive layer region is insulatively isolated from the substrate in the well so that majority carriers flow through the resistive layer region from the first high concentration layer electrically connected to the well. This is because the potential relationship with the second high concentration region can be selected.

即ち第2の高濃度領域とウェル間は逆バイアスされても
、第1の高濃度領域とウェル間を常に等電位にできるの
で基板効果は発生しない。
That is, even if a reverse bias is applied between the second high concentration region and the well, the first high concentration region and the well can always be kept at the same potential, so that no substrate effect occurs.

更にウェル領域は高耐圧MOS制御用CMO8のウェル
領域と兼ねることができ、何等特別なプロセスを必要と
しない。
Further, the well region can also serve as the well region of the high voltage MOS control CMO 8, and no special process is required.

〈実施例〉 以下に本発明の実施例について図面を参照して詳細に贈
明−t−る、 第3図に高耐圧NMO8)ランジスタHV −N 、低
電圧CMO8)ランジスタLV−N(NMO8)および
LV −P(PMO8) 、と高耐圧抵抗素子Rとを同
一基板上に形成したときの断面図を示す。
<Embodiments> Examples of the present invention will be described in detail below with reference to the drawings. Fig. 3 shows a high voltage NMO8) transistor HV-N and a low voltage CMO8) transistor LV-N (NMO8). LV-P(PMO8) and a high voltage resistance element R are formed on the same substrate.

11はP型低不純物濃度のシリコン基板例えば20Ω画
、12は表面濃度I X I O/eln N深さ約1
2μmのN−ウェル領域、13は高濃度N型領域14は
高濃度P型領域、15は多結晶シリコンよシなるf−)
電極、16はドレイン端子、17はN型低不純物濃度領
域不純物濃度約5 X 10”/cm’、18はP型低
不純物濃度領域例えば不純物濃度約5 X 10”7c
m” 、厚さ約3.000にである。17゜18は例え
ばイオン注入によシ形成される。
11 is a P-type silicon substrate with a low impurity concentration, for example, 20Ω, and 12 is a surface concentration I X I O/eln N depth of about 1
2 μm N-well region, 13 is a high concentration N type region 14 is a high concentration P type region, 15 is a polycrystalline silicon f-)
Electrodes, 16 is a drain terminal, 17 is an N-type low impurity concentration region with an impurity concentration of approximately 5 x 10"/cm', and 18 is a P-type low impurity concentration region, for example, an impurity concentration of approximately 5 x 10"/cm'.
m" and a thickness of approximately 3,000 mm. The 17.degree.

高耐圧抵抗素子Rが作られるN−ウェル領域は、低電圧
PMO8)ランジスタ用のN−ウェルと同時に形成され
る。
The N-well region in which the high voltage resistance element R is formed is formed at the same time as the N-well for the low voltage PMO transistor (8).

この高耐圧抵抗素子nt−薊えば第4図の等価回路に示
した負荷抵抗として使う場合は、第3図において、高耐
圧MO8)ランジスタのドレイン端子16を抵抗素子R
の端子20に、抵抗素子凡の端子19を電源■DDに結
線するようにアルミ配線を用いればよい。
When using this high voltage resistance element as a load resistor shown in the equivalent circuit of Figure 4, in Figure 3, connect the drain terminal 16 of the high voltage resistance MO8) transistor to the resistance element R.
Aluminum wiring may be used to connect the terminal 20 of the resistor element to the power supply DD.

2つの抵抗素子の大きさを等しく選べば高電圧(〜vD
D )は、均等に各抵抗素子に分割されるので、全体と
して高耐圧が実現できる。
If the sizes of the two resistive elements are chosen equally, a high voltage (~vD
D) is equally divided into each resistance element, so that a high breakdown voltage can be achieved as a whole.

この例では、各ウェル内での抵抗素子の耐圧は、高々1
00VLかないが、これを直列接続することによシ、耐
圧200Vの高耐圧抵抗素子を実現することができた。
In this example, the withstand voltage of the resistance element in each well is at most 1
By connecting these in series, we were able to realize a high voltage resistance element with a withstand voltage of 200V.

又、両方の抵抗素子ともP形の抵抗層領域に正孔を流し
込む役割を果すP電極は、ウェルと等電位であるから、
基板効果は、全く起こらない。
In addition, in both resistance elements, the P electrode, which plays the role of flowing holes into the P-type resistance layer region, has the same potential as the well, so
No substrate effects occur.

〈発明の効果〉 以上のように本発明によれば駆動能力が高くなおかつ高
耐圧な抵抗素子が得られる。又、本発明による高耐圧抵
抗素子は、通常のCMOSグロセスと適合性があるので
、CMOSロジ、り付高耐圧MO8ICと簡単に一体I
C化することができる。即ち本発明によれば高耐圧ゾル
アップ素子と高耐圧プルダウン素子との一体IC化によ
シ、従来できなかりたインバーター回路などのIC化を
実現できる効果を有するものである。
<Effects of the Invention> As described above, according to the present invention, a resistance element having high driving ability and high breakdown voltage can be obtained. In addition, the high voltage resistance element according to the present invention is compatible with ordinary CMOS processing, so it can be easily integrated with CMOS logic and high voltage MO8IC.
It can be converted into C. That is, according to the present invention, by integrating a high-voltage sol-up element and a high-voltage pull-down element into an integrated IC, it is possible to realize an inverter circuit, etc., on an IC, which has not been possible in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、E−D構成の低電圧ロジック回路図\第2図
は、0MO8構成の断面図、第3図は本発明の笑飾物を
示す高耐圧MO8IC回路の断面図、第4図は、高耐圧
MO5回路の等価回路図を示す。 11・・・P型半導体基板、12・・・N型ウェル領域
、13・・・N型高濃度領域、14・・・P型窩濃度領
域、15・・・デート電極、16・・・ドレイン端子、
17・・・N型低不純物濃度領域、18・・・P型低不
純物濃度領域、19.20・・・高耐圧抵抗端子、R・
・・高耐圧抵抗素子。 第1図 第2図
Figure 1 is a low-voltage logic circuit diagram with an E-D configuration; Figure 2 is a cross-sectional view of an 0MO8 configuration; Figure 3 is a cross-sectional view of a high voltage MO8 IC circuit that is a mock-up of the present invention; Figure 4 is , shows an equivalent circuit diagram of a high voltage MO5 circuit. DESCRIPTION OF SYMBOLS 11... P type semiconductor substrate, 12... N type well region, 13... N type high concentration region, 14... P type cavity concentration region, 15... date electrode, 16... drain terminal,
17...N type low impurity concentration region, 18...P type low impurity concentration region, 19.20...High breakdown voltage resistance terminal, R.
...High voltage resistance element. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板内に2つ以上の第2導電
型のウェルを設け、該ウェル内に第1導電型の第1高濃
度領域と第2高濃度領域ならびに該第1.第2の高濃度
領域に接して第1導電型で低不純物濃度の抵抗層領域と
を設け、更に前記ウェル内に第2導電型の高濃度層を設
けこれを第1高濃度領域と電気的に接続して抵抗素子と
し、該抵抗素子の異なるもの同士の前記第1高濃度領域
と前記第2高濃度領域とを接続して高耐圧化したことを
特徴とする高耐圧抵抗素子。
(1) Two or more wells of a second conductivity type are provided in a semiconductor substrate of a first conductivity type, and a first high concentration region and a second high concentration region of the first conductivity type are provided in the well, and the first. A resistance layer region of a first conductivity type and a low impurity concentration is provided in contact with the second high concentration region, and further a high concentration layer of a second conductivity type is provided in the well and is electrically connected to the first high concentration region. A high breakdown voltage resistance element, characterized in that the first high concentration region and the second high concentration region of different resistance elements are connected to each other to provide a high breakdown voltage.
JP59055633A 1984-03-23 1984-03-23 High withstand voltage resistance element Pending JPS60198853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055633A JPS60198853A (en) 1984-03-23 1984-03-23 High withstand voltage resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055633A JPS60198853A (en) 1984-03-23 1984-03-23 High withstand voltage resistance element

Publications (1)

Publication Number Publication Date
JPS60198853A true JPS60198853A (en) 1985-10-08

Family

ID=13004189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055633A Pending JPS60198853A (en) 1984-03-23 1984-03-23 High withstand voltage resistance element

Country Status (1)

Country Link
JP (1) JPS60198853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455376A2 (en) * 1990-04-27 1991-11-06 Digital Equipment Corporation Method for manufacturing an integrated circuit comprising a high-precision resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455376A2 (en) * 1990-04-27 1991-11-06 Digital Equipment Corporation Method for manufacturing an integrated circuit comprising a high-precision resistor

Similar Documents

Publication Publication Date Title
JP3169333B2 (en) Analog multiplexer circuit using bidirectional high voltage transistors.
JPS5851427B2 (en) Manufacturing method of insulated gate type read-only memory
JP2006013417A (en) Separated power supply esd prevention circuit and integrated circuit therefor
JPH0695570B2 (en) Semiconductor integrated circuit device
JP2009049041A (en) Semiconductor device
US5789781A (en) Silicon-on-insulator (SOI) semiconductor device and method of making the same
JP2007042797A (en) Semiconductor integrated circuit
JP2003258117A (en) Semiconductor device
US4859878A (en) Bi-MOS levelshift circuit capable of controlling power consumption
JPH05343648A (en) Master slice system semiconductor integrated circuit device
JPS60198853A (en) High withstand voltage resistance element
JPS5937858B2 (en) Semiconductor device and its manufacturing method
JP2751898B2 (en) Semiconductor device
JP2004342897A (en) Semiconductor device
JPS5944782B2 (en) semiconductor integrated circuit
JPS60123053A (en) Semiconductor device
JPH04122060A (en) Semiconductor integrated circuit
JPS6295852A (en) Semiconductor integrated circuit
JPH08250668A (en) Electrostatic discharge protection device in silicon - on - insulator structure and its manufacture
JP2000307068A (en) Semiconductor device, use thereof, and method of testing the same
JPS5957469A (en) Semiconductor device
JPS61285751A (en) Cmos type semiconductor device
JPH01194348A (en) Semiconductor device
JPH02226760A (en) Semiconductor logic circuit
JPH01282924A (en) Tri-state inverter and flip-flop using it