JPH04122039A - Pad for multiple pin semiconductor element test - Google Patents
Pad for multiple pin semiconductor element testInfo
- Publication number
- JPH04122039A JPH04122039A JP24227290A JP24227290A JPH04122039A JP H04122039 A JPH04122039 A JP H04122039A JP 24227290 A JP24227290 A JP 24227290A JP 24227290 A JP24227290 A JP 24227290A JP H04122039 A JPH04122039 A JP H04122039A
- Authority
- JP
- Japan
- Prior art keywords
- pad
- layer
- semiconductor
- pad layer
- die sorter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 58
- 238000012360 testing method Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 abstract description 25
- 239000002184 metal Substances 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000000523 sample Substances 0.000 abstract description 8
- 230000002950 deficient Effects 0.000 abstract description 5
- 229910018594 Si-Cu Inorganic materials 0.000 abstract description 2
- 229910008465 Si—Cu Inorganic materials 0.000 abstract description 2
- 229910000838 Al alloy Inorganic materials 0.000 abstract 1
- 229910018125 Al-Si Inorganic materials 0.000 abstract 1
- 229910018520 Al—Si Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 42
- 235000012431 wafers Nutrition 0.000 description 12
- 238000003491 array Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 201000003373 familial cold autoinflammatory syndrome 3 Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は多ピン構造のLSI(Larg−e 5ca
Qe Integrated Ci −rcuit
)に係わり、特にそのダイソータ(Die 5ort
er)試験に好適なものである。Detailed Description of the Invention [Purpose of the Invention (Industrial Application Field) The present invention relates to an LSI with a multi-pin structure (Large-e 5ca
Qe Integrated Ci-rcuit
), especially its die sorter (Die 5ort).
er) suitable for testing.
(従来の技術)
半導体素子の集積度は益々向上しており、いわゆるゲー
トアレイ(Gate Array)においても同様な
傾向にある。この機種では、例えば1cm四方の半導体
ウェーハ(Wafer)の中央を囲む領域に能動素子、
受動素子及び抵抗などの回路成分から成る群から選定し
た一種または複数種が造り込まれてセル(CeQQ)群
が形成されており、その外側の半導体ウェーハ部分には
I10バッファ(Buffer)デバイスセル(Dev
ice CeQQ)が形成されている。(Prior Art) The degree of integration of semiconductor devices is increasing more and more, and the same trend is occurring in so-called gate arrays. In this model, for example, active elements are placed in a region surrounding the center of a 1 cm square semiconductor wafer.
A cell (CeQQ) group is formed by incorporating one or more types selected from a group consisting of circuit components such as passive elements and resistors, and I10 buffer device cells ( Dev
ice CeQQ) is formed.
なお、本発明における半導体ウニーノ\は形成するスク
ライブライン(ScribQine)により区分けされ
た領域を指しており、ダイボンディング(Die B
onding)工程などの組立工程前の分割(Brak
ing)工程を終えたものでない。In the present invention, the term "semiconductor unino\" refers to an area divided by a scribe line (ScribQine) to be formed, and refers to a region divided by a scribe line (ScribQine) to be formed.
Breaking (Brak) before assembly process such as onding process
ing) process has not been completed.
このような構造のゲートアレイにあっても集積度が増大
しているために、他機器との電気的な接続を行うのが必
要ないわゆるアウターリード(Ou t e r L
ead)の本数も増大の傾向にある。一方、半導体素子
の組立工程にはトランスファーモールド(Transf
er MoQd)法の外に、集積度が向上してビン数
が増えた半導体素子やゲートアレイにあってはバンブ(
Bu−mp)電極を利用するいわゆるTAB (Tap
−e Automated Bonding)方式
が専ら採用されている。Even in gate arrays with this structure, as the degree of integration is increasing, so-called outer leads (outer leads) are required to make electrical connections with other devices.
The number of ead) is also on the rise. On the other hand, transfer molding is used in the assembly process of semiconductor devices.
In addition to the er MoQd) method, the bump (
The so-called TAB (Tap) uses a Bu-mp) electrode.
-e Automated Bonding) method is exclusively adopted.
ところで、ゲートアレイ用のセルは前記のように能動素
子、受動素子及び抵抗などの回路成分がら成る群から選
定する一種または複数種で構成しており、これらはいわ
ゆるダイソータ(Di −e 5orter)試験を
半導体ウェーハ状態で行ってから組立工程に送られてい
る。ゲートアレイ用のセルの設計にはセルライブラリィ
ベース(CeQQ Library Ba5e)の
レイ?’)ト(Lay 0ut)設計が利用されてお
り、これはLSI設計の中で最も重要な工程であり、L
SI用マスクパターン(Mask Patt−ern
)を設計する作業である。このセルライブラリィベース
のレイアウト設計では2層3層の両配線手法により共通
のセルライブラリィを使用するのが一般的である。これ
は半導体チップの周縁のセルについても例外でなく、I
10バッファセルは1層、2層の配線層を使って形成さ
れている。By the way, as mentioned above, cells for gate arrays are composed of one or more types selected from the group consisting of circuit components such as active elements, passive elements, and resistors, and these are subjected to the so-called die sorter (Di-e 5-orter) test. This is done in the form of semiconductor wafers, which are then sent to the assembly process. Is the cell library base (CeQQ Library Ba5e) used for designing cells for gate arrays? ') Lay 0ut design is used, which is the most important process in LSI design.
Mask pattern for SI
). In this cell library-based layout design, a common cell library is generally used for both two-layer and three-layer wiring methods. This is no exception for cells on the periphery of semiconductor chips;
The 10 buffer cells are formed using one and two wiring layers.
しかも、ゲートアレイではI10バッファセルと半導体
チップ周縁間の距離は50μm〜150μmであり、こ
の空間に150μm以上のピッチ(Pitch)で導電
性金属例えばAQまたはAQ合金(AQ−8L−Cu、
AQ−6L)から成るパッド(P a d)層を形成す
る。パッド層間の距離は120μm〜150μmに形成
され、配線層によって電気的に接続させてセル群やI1
0バッファセルとの導通が得られる。一方、セル群の特
性測定は公知のプローブカード(Prob−e Ca
rd)を利用するダイソータ試験によって良品と不良品
に分けられた上で後の組立工程に移行する。Moreover, in the gate array, the distance between the I10 buffer cell and the periphery of the semiconductor chip is 50 μm to 150 μm, and in this space, conductive metal such as AQ or AQ alloy (AQ-8L-Cu,
A pad (P ad) layer made of AQ-6L) is formed. The distance between the pad layers is formed at 120 μm to 150 μm, and the wiring layers are used to electrically connect the pad layers to the cell group and I1.
0 buffer cell is established. On the other hand, the characteristics of the cell group can be measured using a known probe card (Prob-e Ca
The products are separated into non-defective products and defective products by a die sorter test using RD) before proceeding to the subsequent assembly process.
(発明が解決しようとする課8)
被検査半導体素子に形成した能動素子や受動素子などと
電気的に接続したパッド層に対してプローブカードのニ
ードル(NeedQe)を接触することがダイソータ試
験では不可欠である。しかし、ニードルを80μm以下
に形成することができないためにパッド層のピッチには
限界があり、結果的には多ビンの半導体素子例えばセル
群を形成することができなかった。その上TAB方式に
より組立られた半導体素子では金から成るいわゆツマ
るバンブ(Bump)電極が形成されており、ニードル
との接触により潰されて半導体素子の特性に悪影響がで
ることが判明した。(Question 8 to be solved by the invention) In die sorter testing, it is essential to contact the needle (NeedQe) of the probe card with the pad layer electrically connected to the active elements, passive elements, etc. formed on the semiconductor device to be tested. It is. However, since the needles cannot be formed to be 80 μm or less, there is a limit to the pitch of the pad layer, and as a result, it has been impossible to form a multi-bin semiconductor element, such as a cell group. Furthermore, it has been found that semiconductor devices assembled by the TAB method have so-called bump electrodes made of gold, which are crushed by contact with the needle and have an adverse effect on the characteristics of the semiconductor device.
本発明はこのような事情により成されたもので、特に測
定用パッドを半導体素子と電気的に接続したそれとは別
に設置することにより電気的な測定を可能にして、ニー
ドルの制約から解放すると共に、小ピツチの半導体素子
用パッドを提供することを目的とするものである。The present invention was developed under these circumstances, and in particular, by installing the measurement pad separately from the one electrically connected to the semiconductor element, it is possible to perform electrical measurement, thereby freeing the user from the restrictions of the needle. The purpose of this invention is to provide a small pitch pad for a semiconductor device.
[発明の構成]
(課題を解決するための手段)
半導体ウェーハ(Wafer)の中央部分を囲む領域に
形成する半導体セル群と、前記半導体ウェーハの周縁付
近に設置する前記半導体素子群のインターフェース領域
と、前記インターフェース領域と半導体素子群間を電気
的に接続する多層配線層と2前記半導体ウェーハの外周
付近もしくは多層配線層に形成するピッチが150μm
未満のパッド層に本発明に係わる多ビン半導体素子テス
ト用パッドの特徴がある。[Structure of the Invention] (Means for Solving the Problems) A semiconductor cell group formed in a region surrounding a central portion of a semiconductor wafer, and an interface region of the semiconductor element group installed near the periphery of the semiconductor wafer. , a multilayer wiring layer that electrically connects the interface region and the semiconductor element group, and a pitch formed near the outer periphery of the semiconductor wafer or in the multilayer wiring layer is 150 μm
The features of the multi-bin semiconductor device testing pad according to the present invention are in the pad layer below.
(作用)
ゲートアレイなどのように半導体ウェハーの中央部分に
集積回路素子やトランジスタなどの半導体セル群を配置
し、その周囲の半導体チップにIloなどインターフェ
イス領域を設置し、更にその外側に本発明に係わる多ピ
ン半導体装置用パッドを形成する方式を採っている。と
言うのは第2のパッド層をダイソータ試験用ニードルの
ピッチより大きく形成することによりその制約から解放
すると共に、第2のパッド層と多ビン半導体装置用パッ
ドを金属細線により電気的に接続してダイソータ試験を
第2のパッド層により行う方式とした。第2のパッド層
の形成により多ピン半導体装置用パッドのピッチはダイ
ソータ試験と無関係に150μm未満と極めて小さく形
成できるために多ピン化が可能となる。(Function) Semiconductor cells such as integrated circuit elements and transistors are placed in the central part of a semiconductor wafer, such as in a gate array, and an interface area such as Ilo is placed on the surrounding semiconductor chip, and further outside of this, a group of semiconductor cells such as integrated circuit elements and transistors is placed. A method of forming related pads for multi-pin semiconductor devices is adopted. This is because the second pad layer is formed to be larger than the pitch of the die sorter testing needles, which frees us from this constraint, and the second pad layer and the multi-bin semiconductor device pad are electrically connected using thin metal wires. Therefore, a method was adopted in which the die sorter test was performed using the second pad layer. By forming the second pad layer, the pitch of the pad for a multi-pin semiconductor device can be formed to be extremely small, less than 150 μm, regardless of the die sorter test, thereby making it possible to increase the number of pins.
(実施例)
本発明に係わる実施例の上面口を参照して説明すると、
シリコン(SiQicon)から成る半導体ウェーハ1
の中央部分には集積回路素子やトランジスタなどの半導
体素子で構成する半導体セル群2を設置するが、図に示
す半導体セル群2や配線層3はその状況を表すための図
であり、正確なものでない。また半導体セル群2は従来
例と同様にライブラリィベースのレイアウト設計も利用
して形成することもある。(Example) To explain with reference to the top opening of an example of the present invention,
Semiconductor wafer 1 made of silicon (SiQicon)
A semiconductor cell group 2 consisting of semiconductor elements such as integrated circuit elements and transistors is installed in the center of the figure.The semiconductor cell group 2 and wiring layer 3 shown in the figure are for illustration purposes only, and are not accurate. It's not something. Further, the semiconductor cell group 2 may also be formed using a library-based layout design, as in the conventional example.
半導体ウェーハ1の周辺部分には集積回路素子やトラン
ジスタなどのインターフェース領域(図示せず)を形成
し、半導体セル群2との接続には多層配線層3を使用す
る。即ち、半導体セル群2に設ける電極端子には導電性
金属層例えばAQまたはAQ金合金AQ−Si、AQ−
Si−Cu)を例えばスパッタリング(Spatter
ing)工程により形成して電気的に接続し、次に層間
絶縁物層を堆積後更に配線層3として導電性金属層例え
ばAQまたはAQ金合金AQ−S i、 AQ −5i
−Cu)を堆積して半導体セル群2との電気的接続を図
る。配線層としては2層の配線構造の外に3層などの多
層配線構造も利用されるのは勿論である。ところで、セ
ル群2の外側に位置する半導体ウェーハ1部分に形成す
るインターフェース領域(図示せず)即ちI10バッフ
ァセルには前記多層配線層を構成する各配線層が接続さ
れ、I10バッファセル領域の外に電源ライン(L−i
ne)なども形成され、四角の半導体チップのコーナ(
Corner)部分には自己試験装置例えば発振器など
も設置する。An interface region (not shown) for integrated circuit elements, transistors, etc. is formed in the peripheral portion of the semiconductor wafer 1, and a multilayer wiring layer 3 is used for connection with the semiconductor cell group 2. That is, the electrode terminals provided in the semiconductor cell group 2 are coated with a conductive metal layer such as AQ or AQ gold alloy AQ-Si, AQ-
For example, sputtering (Si-Cu)
ing) step for electrical connection, and then depositing an interlayer insulating layer and then further forming a conductive metal layer as a wiring layer 3, such as AQ or AQ gold alloy AQ-S i, AQ-5i.
-Cu) is deposited to establish electrical connection with the semiconductor cell group 2. Of course, as the wiring layer, a multilayer wiring structure such as a three-layer wiring structure can be used in addition to a two-layer wiring structure. Incidentally, each wiring layer constituting the multilayer wiring layer is connected to an interface area (not shown) formed in a portion of the semiconductor wafer 1 located outside the cell group 2, that is, an I10 buffer cell, and Connect the power line (L-i
ne) etc. are also formed, and the corners (
A self-test device, such as an oscillator, is also installed in the corner.
また、外部機器との接続に備えて不可欠な多ビン半導体
装置用パッドとして、導電性金属層例えばAlまたはA
1合金(AQ−S i、 AQ−S 1−Cu)から成
る第1のパッド層4を前記多層配線層の一部か、I10
バッファセル領域と半導体チップの周縁間の空間部分に
形成する。更に半導体ウェーハに形成するスクライブラ
イン付近に設置するフォトリソグラフィ (Photo
Li−thography)用合せマーク(Mark)
と同様にスクライブラインとI10バッファセル領域間
の空間120〜150μmの間に第1のパッド層4を形
成することもできる。これは80μm〜100μm四方
でピッチを150μm未満に形成する。しかし、ダイソ
ータ試験用として機能する導電性金属から成る第2のパ
ッド層5を第1のパッド層4と別に、ピッチを大きく形
成して、ニードルを備えたプローブカードの製造に備え
ている。In addition, conductive metal layers such as Al or Al are used as pads for multi-bin semiconductor devices that are essential for connection with external equipment.
1 alloy (AQ-S i, AQ-S 1-Cu) is a part of the multilayer interconnection layer or I10
It is formed in a space between the buffer cell region and the periphery of the semiconductor chip. Additionally, photolithography is installed near the scribe lines formed on semiconductor wafers.
Mark for Li-thography
Similarly, the first pad layer 4 can also be formed in a space of 120 to 150 μm between the scribe line and the I10 buffer cell region. This is 80 μm to 100 μm square with a pitch of less than 150 μm. However, a second pad layer 5 made of conductive metal that functions as a die sorter test is formed separately from the first pad layer 4 with a large pitch in preparation for manufacturing a probe card equipped with needles.
第2のパッド層5の設置場所としては複数の位置が選定
できる。即ち、スクライブラインの外側の半導体ウェー
ハ部分が普通である。また、これはピッチを150μm
以上例えば200μm程度、80μm〜100μm四方
に真空蒸着法やスパッタリング法により堆積して形成す
る。また第2のパッド層5と第1のパッド層4間にはA
Qなどの金属細線6を圧着法例えばボンディング法によ
り固着して電気的に導通状態としてから、通常のダイソ
ータ工程を第2のパッド層5により行う。これにより半
導体セル群2の半導体特性が調査でき、不良品に所定の
マークが付けられて組立工程に移行することになる。組
立工程に移行するのに先立って金属細線6を例えばプレ
イド(B 1 a d)により切断して、組立工程例え
ばプレイキング(B r a k i n g)工程時
にも何等影響がない状態にすることができる。ダイシン
グライン(D−icing Line)を境として第
1のパッド層4と第2のパッド層5を金属細線6により
接続した例ではプレイキング工程時に切断することが可
能になる。このように本発明に係わる多ピン半導体素子
テスト用パッドではダイソータ試験に使用するプローブ
カードから要求される最小パッドピッチ距離を無視する
ことができるために半導体素子に必要な多ピンを造り込
むことができる大きな特徴がある。A plurality of positions can be selected as the installation location of the second pad layer 5. That is, the portion of the semiconductor wafer outside the scribe line is normal. Also, this means that the pitch is 150 μm.
For example, the film is deposited in a square area of about 200 μm or 80 μm to 100 μm by vacuum evaporation or sputtering. Further, there is an A between the second pad layer 5 and the first pad layer 4.
After the thin metal wires 6 such as Q are fixed by a pressure bonding method, for example, a bonding method to make them electrically conductive, a normal die sorter process is performed using the second pad layer 5. As a result, the semiconductor characteristics of the semiconductor cell group 2 can be investigated, and defective products are marked with a predetermined mark and moved to the assembly process. Prior to proceeding to the assembly process, the thin metal wire 6 is cut by, for example, a plaid (B 1 ad) so that it will not be affected at all during the assembly process, such as a pre-king process. be able to. In an example in which the first pad layer 4 and the second pad layer 5 are connected by a thin metal wire 6 along a dicing line (D-icing line), it is possible to cut the first pad layer 4 and the second pad layer 5 at the time of the pre-king process. As described above, the multi-pin semiconductor device testing pad according to the present invention can ignore the minimum pad pitch distance required by the probe card used for die sorter testing, making it possible to build in the large number of pins required for the semiconductor device. It has great features.
[発明の効果コ
本発明では■プローブカードによる制約なしでダイソー
タテストをウェーハ状態で行われるので、組立工程では
不良品が削除できるためにイールド(YieQd)が向
上し、■プローブカードによる制約なしでパッドのピッ
チが決められるので、半導体素子を超小型化することが
でき、ひいてはコストダウン(Cost Down)
を図ることができ、■半導体チップ内部のパッドにプロ
ーブカードを接触しなくても良いので、TAB方式を採
用する機種ではバンブ電極の損傷が防止でき、信頼性の
向上が得られ半導体特性を長期にわたって発揮すること
ができる。[Effects of the Invention] In the present invention, ■ Since the die sorter test is performed on the wafer without the constraints of a probe card, the yield (YieQd) can be improved because defective products can be removed in the assembly process, and ■ There is no constraint due to the probe card. Since the pitch of the pads can be determined by
■Since there is no need for the probe card to touch the pads inside the semiconductor chip, models that use the TAB method can prevent damage to the bump electrodes, improve reliability, and maintain semiconductor characteristics over a long period of time. can be demonstrated over a period of time.
図は本発明に係わる一実施例を示す上面図である。
1:半導体チップ、 2:セル群、
3:配線層、 4:第1のパッド、5:第2の
パッド、 6:金属細線。
代理人 弁理士 大 胡 典 夫
1:f−賂体手・ツ1
2:セル群
3−配線層
4:ii”llのツマ・ソド
5;箋2のノマッド
6:金!M線The figure is a top view showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1: Semiconductor chip, 2: Cell group, 3: Wiring layer, 4: First pad, 5: Second pad, 6: Fine metal wire. Agent Patent Attorney Norihiro Ogo 1: f-bribe body/tsu 1 2: cell group 3-wiring layer 4: ii”ll nomad 5; note 2 nomad 6: gold! M line
Claims (1)
セル群と、前記半導体チップの周縁付近に設置する前記
半導体素子群のインターフェース領域と、前記インター
フェース領域と半導体素子群間を電気的に接続する多層
配線層と、前記半導体ウェーハの外周付近もしくは多層
配線層に形成するピッチが150μm未満のパッド層を
具備することを特徴とす多ピン半導体素子テスト用パッ
ドA semiconductor cell group formed in a region surrounding a central portion of a semiconductor wafer, an interface region for the semiconductor element group installed near the periphery of the semiconductor chip, and a multilayer wiring electrically connecting the interface region and the semiconductor element group. A pad for testing a multi-pin semiconductor device, comprising a pad layer having a pitch of less than 150 μm and formed near the outer periphery of the semiconductor wafer or in the multilayer wiring layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24227290A JPH04122039A (en) | 1990-09-12 | 1990-09-12 | Pad for multiple pin semiconductor element test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24227290A JPH04122039A (en) | 1990-09-12 | 1990-09-12 | Pad for multiple pin semiconductor element test |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04122039A true JPH04122039A (en) | 1992-04-22 |
Family
ID=17086796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24227290A Pending JPH04122039A (en) | 1990-09-12 | 1990-09-12 | Pad for multiple pin semiconductor element test |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04122039A (en) |
-
1990
- 1990-09-12 JP JP24227290A patent/JPH04122039A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7262513B2 (en) | Apparatus and method extending flip-chip pad structures for wirebonding on low-k dielectric silicon | |
US4446477A (en) | Multichip thin film module | |
US6313540B1 (en) | Electrode structure of semiconductor element | |
US5554940A (en) | Bumped semiconductor device and method for probing the same | |
KR101120683B1 (en) | Silicon interposer testing for three dimensional chip stack | |
EP1897138B1 (en) | Semiconductor device and mounting structure thereof | |
US7737439B2 (en) | Semiconductor component having test pads and method and apparatus for testing same | |
US6166556A (en) | Method for testing a semiconductor device and semiconductor device tested thereby | |
US5319224A (en) | Integrated circuit device having a geometry to enhance fabrication and testing and manufacturing method thereof | |
JP2002016212A (en) | Semiconductor device and its manufacturing method | |
JP2009246218A (en) | Semiconductor device and method for manufacturing the same | |
JPH09330934A (en) | Semiconductor device and its manufacture | |
US9331035B2 (en) | Semiconductor device and method of manufacturing the same | |
JPH09139471A (en) | Auxiliary pad for on-circuit-array probing | |
JPH0773106B2 (en) | Method for manufacturing semiconductor device | |
US20060163729A1 (en) | Structure and manufacturing method of a chip scale package | |
JPH07122604A (en) | Semiconductor integrated circuit device | |
KR20200111369A (en) | Semiconductor device comprising residual test pattern | |
JP4150604B2 (en) | Semiconductor device | |
JPH04122039A (en) | Pad for multiple pin semiconductor element test | |
JP2001118994A (en) | Semiconductor device | |
TW502355B (en) | Bonding pad structure to avoid probing damage | |
US20060076159A1 (en) | Contour structures to highlight inspection regions | |
JPH02267947A (en) | Semiconductor device | |
JPH09330993A (en) | Semiconductor device |