JPH04121071A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH04121071A
JPH04121071A JP2240716A JP24071690A JPH04121071A JP H04121071 A JPH04121071 A JP H04121071A JP 2240716 A JP2240716 A JP 2240716A JP 24071690 A JP24071690 A JP 24071690A JP H04121071 A JPH04121071 A JP H04121071A
Authority
JP
Japan
Prior art keywords
annular
vibrating body
vibrating unit
piezoelectric element
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2240716A
Other languages
Japanese (ja)
Other versions
JP3047025B2 (en
Inventor
Nobuo Tsukada
塚田 伸雄
Masao Kasuga
政雄 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2240716A priority Critical patent/JP3047025B2/en
Publication of JPH04121071A publication Critical patent/JPH04121071A/en
Application granted granted Critical
Publication of JP3047025B2 publication Critical patent/JP3047025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly efficient and small size ultrasonic motor without changing the fundamental construction of the motor by a method wherein at least the effective part of a piezoelectric device where electrode patterns are provided is formed into an annular shape having a certain width from the outer circumference and the rigidity of the part of a vibrating unit inside the annular part is smaller than the rigidity of the annular part of the vibrating unit. CONSTITUTION:A vibrating unit 1 has a disc-shape and the thickness T1 of its annular circumferential part is larger than the thickness T2 of its inner part. A plurality of protrusions 1a are formed on the annular circumferential part. A piezoelectric device 2 has approximately the same shape as the annular thick part of the vibrating unit 1 and attached to the surface of the annular part opposite to the surface on which the protrusions 1a are provided by bonding, etc. The vibrating unit 1 is unified with a center shaft 4 which is planted in a support plate 3 by pushing the center shaft 4 into the center part of the vibrating unit 1. A moving unit 5 is supported by the center shaft 4 with the center shaft 4 as the center of rotation and pressed against the top parts of the protrusions 1a of the vibrating unit 1 by a pressing spring 6. Lead wires 7 are bonded to the electrode patterns of the piezoelectric device by soldering, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電素子の圧電作用を用いて駆動力を発生する
超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic motor that generates driving force using the piezoelectric action of a piezoelectric element.

〔発明の概要〕[Summary of the invention]

本発明は圧電素子の圧電作用を用いて駆動力を発生する
超音波モータにおいて、圧電素子の少なくとも電極パタ
ーンを存する実効部分を円環形状とし、円環形状部分の
振動体の剛性よりも円環形状より内側の振動体の剛性を
小さくすることにより、超音波モータの小型化、性能の
安定化、高効率化の実現を可能にしたものである。
The present invention provides an ultrasonic motor that generates a driving force using the piezoelectric action of a piezoelectric element, in which an effective part of the piezoelectric element including at least an electrode pattern is formed in an annular shape, and the rigidity of the vibrating body of the annular part is lower than the rigidity of the vibrating body of the annular part. By reducing the rigidity of the vibrating body inside the shape, it is possible to make the ultrasonic motor smaller, stabilize its performance, and increase its efficiency.

〔従来の技術〕[Conventional technology]

従来は、第12図に示すような構造の超音波モータが知
られていた。従来の超音波モータでは、支持板3の上に
設置された中心軸4に振動体1の中心部を固定支持した
。そして、中心軸4を回転中心のガイドとして振動体l
の外周部に加圧接触する移動体5を設けた。また、移動
体5の加圧機構として加圧ばね6を中心軸上に座金8及
びストッパ9で固定されている。振動体1及び振動体1
に接着された圧電素子2は中心部に案内穴のみを存する
円板形状をしている。この圧電素子2に高周波電圧を印
加することにより、振動体1にたわみ振動波を励振し、
振動体1との摩擦力を介して移動体5が回転する。例え
ば特開昭63−305770号公報にこのような従来の
構造が開示されている。
Conventionally, an ultrasonic motor having a structure as shown in FIG. 12 has been known. In the conventional ultrasonic motor, the center of the vibrating body 1 is fixedly supported on a central shaft 4 installed on a support plate 3. Then, the vibrating body l is set with the central axis 4 as a guide for the center of rotation.
A movable body 5 is provided which comes into pressure contact with the outer periphery of. Further, as a pressurizing mechanism for the movable body 5, a pressurizing spring 6 is fixed on the central axis with a washer 8 and a stopper 9. Vibrating body 1 and vibrating body 1
The piezoelectric element 2 bonded to the piezoelectric element 2 has a disk shape with only a guide hole in the center. By applying a high frequency voltage to this piezoelectric element 2, a deflection vibration wave is excited in the vibrating body 1,
The moving body 5 rotates through the frictional force with the vibrating body 1. For example, such a conventional structure is disclosed in Japanese Patent Application Laid-Open No. 63-305770.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第12図に示すような超音波モータにおいて、振動体の
径方向の振動モードが一次の場合と二次の場合を比較す
る。振動モードが一次の場合には共振周波数は二次の場
合のほぼχとなり、大きさで比較すると2程度の小型化
が図れる。すなわち、径方向−次のモードの使用は小型
化、低周波化にとって有利である。−次のモードでは振
動体の外周で振幅が最大となるとともに、駆動される移
動体側からは外周で回転力を得る方が高トルクとなるた
め、モータの効率を高めるためには振動体と移動体の圧
接部を外周に設けることが好ましいことになる。しかし
、第12図に示すごと(、振動体の外周で移動体を圧接
することにより、振動体の変形が押え込まれて振動体の
内部ひずみの開放が行われなくなるため、振動子として
の十分な励振が得られず、結果としてモータの性能が低
下するという課題を有していた。
In an ultrasonic motor as shown in FIG. 12, a case where the radial vibration mode of the vibrating body is primary and a case where the vibration mode is secondary will be compared. When the vibration mode is first order, the resonance frequency is approximately χ compared to the second order, and when compared in size, the size can be reduced by about 2 times. That is, the use of the radial-order mode is advantageous for downsizing and lowering the frequency. - In the next mode, the amplitude is maximum at the outer periphery of the vibrating body, and from the side of the moving body being driven, it is higher torque to obtain rotational force at the outer periphery, so in order to increase the efficiency of the motor, it is necessary to It is preferable to provide the pressure contact portion of the body on the outer periphery. However, as shown in Figure 12 (by pressing the moving body with the outer periphery of the vibrating body, the deformation of the vibrating body is suppressed and the internal strain of the vibrating body is not released, so it is not sufficient as a vibrator. However, the problem was that proper excitation could not be obtained, and as a result, the performance of the motor deteriorated.

そこで本発明の目的は上記のような課題を解決するため
、モータの基本構造を変えないで小型かつ高効率の超音
波モータを得ることにある。
SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to obtain a small and highly efficient ultrasonic motor without changing the basic structure of the motor.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明では圧電素子の少な
くとも電極パターンを有する実効部分を外周より一定の
巾を有する円環形状とし、円環形状部分の振動体の剛性
よりも円環形状より内側の振動体の剛性を小さくし、こ
の領域で振動体のひずみの開放を容易にして、振動子と
しての十分な励振を得ることにより、超音波モータの小
型化、高効率化を可能にした。
In order to solve the above problems, in the present invention, the effective part of the piezoelectric element having at least the electrode pattern is formed into an annular shape having a constant width from the outer periphery, and the rigidity of the vibrating body of the annular part is inside the annular shape. By reducing the rigidity of the vibrating body in this area, making it easier to release the strain in the vibrating body in this region, and obtaining sufficient excitation as a vibrator, it has become possible to make the ultrasonic motor more compact and highly efficient.

〔作用〕[Effect]

上記のように構成された超音波モータでは、次のモード
で振動する振動体が外周部で移動体の圧接を受けても、
円環形状の内側の剛性の小さい部分でひずみが開放され
るため、振動子として十分な励振が得られる。また前記
のごとく一次モードの場合小型化、低周波化が可能でさ
らに外周圧接のため高トルクが得られることになる。こ
れにより小型で性能安定性が高く効率の高い超音波モ夕
が実現可能となる。
In the ultrasonic motor configured as described above, even if the vibrating body that vibrates in the following mode is pressed by the moving body on the outer periphery,
Since strain is released in the inner part of the annular shape with low rigidity, sufficient excitation can be obtained as a vibrator. Furthermore, as mentioned above, in the case of the primary mode, it is possible to reduce the size and lower the frequency, and furthermore, because of the outer periphery pressure welding, high torque can be obtained. This makes it possible to realize a compact ultrasonic module with high performance stability and high efficiency.

(実施例〕 以下に本発明の実施例を図面に基づいて説明する。(Example〕 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る超音波モータの第一実施例の図で
ある。振動体1は円板形状であり、外周の…環形状部分
の板厚T+ は内側部分の板厚T2よりも厚くなってお
り、この円環形状部分に複数の突起1aを形成しである
。圧電素子2ば振動体1の円環形状板厚部とほぼ同一形
状であり、突起1aの反対側の面に接着等により接合さ
れている。
FIG. 1 is a diagram of a first embodiment of an ultrasonic motor according to the present invention. The vibrating body 1 has a disk shape, and the thickness T+ of the annular portion on the outer periphery is thicker than the thickness T2 of the inner portion, and a plurality of protrusions 1a are formed in this annular portion. The piezoelectric element 2 has substantially the same shape as the annular plate thickness portion of the vibrating body 1, and is bonded to the surface opposite to the protrusion 1a by adhesive or the like.

振動体lは中心部分で支持板3に植立された中心軸4に
押し込み等により一体化されている。移動体5は中心軸
4を回転中心として軸支され、加圧ばね6により振動体
1の突起1aの上面に圧接している。圧電素子2の電極
パターンにはリード線7がはんだ付は等により接合され
ている。
The vibrating body 1 is integrated at its center with a central shaft 4 set on a support plate 3 by pressing or the like. The movable body 5 is rotatably supported around a central axis 4, and is pressed against the upper surface of the projection 1a of the vibrating body 1 by a pressure spring 6. A lead wire 7 is connected to the electrode pattern of the piezoelectric element 2 by soldering or the like.

リードvA7を介して高周波電圧を圧電素子2に加える
ことにより、振動体1がたわみ振動波を発生し、振動体
1に圧接された移動体5が摩擦駆動により回転する。た
わみ振動波の振動モードには種々あるが、径方向二次の
モードに比べて一次のモートは共振周波数がほぼAとな
り、周波数基準で比較すれば径は2程度となるため、小
型化には次のモードが有利である。第1図に示す超音波
モータも径方向−次のモードであるが、外周の板r¥T
1の部分に比べて内側の板厚T2は薄いため、外周の振
幅最大部分を移動体1に圧接されても、内側の薄板部の
剛性が低いために、ひずみが開放され、十分な励振が得
られる。これにより小型で高効率で安定した性能の超音
波モータが実現可能となる。またたわみ振動波の方式と
して進行波型と定在波型があるが、前記のような構成で
あればどちらの場合でも効果は同しように得られる。
By applying a high frequency voltage to the piezoelectric element 2 via the lead vA7, the vibrating body 1 generates a deflection vibration wave, and the movable body 5 pressed against the vibrating body 1 rotates by frictional drive. There are various vibration modes of flexural vibration waves, but compared to the radial second-order mode, the resonance frequency of the first-order moat is approximately A, and the diameter is about 2 when compared on a frequency basis. The following modes are advantageous: The ultrasonic motor shown in Fig. 1 is also in the following mode in the radial direction, but the outer peripheral plate r\T
Since the inner plate thickness T2 is thinner than the part 1, even if the maximum amplitude part of the outer periphery is pressed against the moving body 1, the stiffness of the inner thin plate part is low, so the strain is released and sufficient excitation is not achieved. can get. This makes it possible to realize a compact ultrasonic motor with high efficiency and stable performance. Furthermore, there are two types of flexural vibration waves: a traveling wave type and a standing wave type, and the same effect can be obtained in either case as long as the configuration is as described above.

第2図は本発明による第二実施例を示すもので振動体l
は円板形状で全面にわたり板厚みは一定であるが、外周
部に円環状の圧電素子2を接着等により接合されており
、円環部分に重なるところに複数の突起1aが形成され
ている。その他の構造については第一実施例と同様であ
る。この場合振動体1単体での剛性は均一であるが、圧
電素子2を合わせた振動子としての剛性は、圧電素子2
を接合した円環部分に比べて内側の部分の方が小さくな
り、より簡単な振動体の形状で第一実施例の場合と同様
の効果が得られる。
FIG. 2 shows a second embodiment of the present invention, in which the vibrating body l
Although it has a disk shape and has a constant thickness over the entire surface, an annular piezoelectric element 2 is bonded to the outer periphery by adhesive or the like, and a plurality of protrusions 1a are formed where the annular portion overlaps. The other structures are the same as those in the first embodiment. In this case, the rigidity of the vibrating body 1 alone is uniform, but the rigidity of the vibrator including the piezoelectric element 2 is the same as that of the piezoelectric element 2.
The inner portion is smaller than the annular portion joined together, and the same effect as in the first embodiment can be obtained with a simpler shape of the vibrating body.

第3図は本発明による第三実施例を示すもので振動体l
は円板形状であり、外周の円環形状部分の板厚T1は内
側部分の板厚T2より厚くなっており、この円環形状部
分に複数の突起1aを形成しである。圧電素子2は円板
形状であり、振動体1の中心部に設けた突部1bで案内
された状態で接合されている。その他の構造については
第一実施例と同様である。この場合は圧電素子2が全面
に接合されている分だけ円環部と内側の剛性の差が小さ
くなるが、振動体1の厚みが異なるので内側の剛性は小
さく、第一実施例と同様の効果を有する。また圧電素子
2が円板状であるため圧電素子自体の剛性が高く取扱い
が容易であり、振動体1の中心に設けた突部1.t+T
案内ができるため接着等の作業性が向上するなどの効果
を有する。
FIG. 3 shows a third embodiment of the present invention, in which the vibrating body l
has a disk shape, and the plate thickness T1 of the annular portion on the outer periphery is thicker than the plate thickness T2 of the inner portion, and a plurality of protrusions 1a are formed in this annular portion. The piezoelectric element 2 has a disk shape, and is joined to the vibrating body 1 while being guided by a protrusion 1b provided at the center. The other structure is the same as that of the first embodiment. In this case, the difference in rigidity between the annular part and the inner side is smaller because the piezoelectric element 2 is bonded to the entire surface, but since the thickness of the vibrating body 1 is different, the inner stiffness is smaller, and it is the same as in the first embodiment. have an effect. Further, since the piezoelectric element 2 is disk-shaped, the piezoelectric element itself has high rigidity and is easy to handle. t+T
Since guidance is possible, it has the effect of improving the workability of bonding, etc.

第4回は本発明5こよる第四実施例を示すもので、振動
体1は円板形状であり、外周の円環形状部分の板厚TI
は内側部分の板厚T2よりも厚くなっており、この円環
形状部分に複数の突起1aを形成しである。圧電素子2
は円板形状であり、振動体1の中心部に設けた突部1b
で案内された状態で接合されている。圧電素子2の電極
パターン2aは振動体1の円環状厚板部に対応した部分
にのみ形成され、円環の内側の部分は電極パターンが設
けられていない。その他の構造については第一実施例と
同様である。この場合振動体1の剛性が内側で小さくな
るため第四実施例と同様の効果を有するが、剛性が小さ
くひずみが容易に開放される内側部分には電極パターン
を設けていないため、出力/入力の比率が向上し、より
効率の高い超音波モータが実現できる。また第三実施例
及び第四実施例における振動体1の突部1bは必ずしも
必要なものではなく、単なる平面でも何ら問題はない。
The fourth example shows the fourth embodiment of the present invention.
is thicker than the plate thickness T2 of the inner portion, and a plurality of protrusions 1a are formed in this annular portion. Piezoelectric element 2
has a disc shape, and has a protrusion 1b provided at the center of the vibrating body 1.
It is joined as guided by. The electrode pattern 2a of the piezoelectric element 2 is formed only on a portion corresponding to the annular thick plate portion of the vibrating body 1, and no electrode pattern is provided on the inner portion of the annular portion. The other structure is the same as that of the first embodiment. In this case, the stiffness of the vibrating body 1 is reduced on the inside, so the effect is similar to that of the fourth embodiment, but since no electrode pattern is provided on the inner part where the stiffness is small and strain is easily released, the output/input ratio is improved, making it possible to realize a more efficient ultrasonic motor. Furthermore, the protrusion 1b of the vibrating body 1 in the third and fourth embodiments is not necessarily necessary, and there is no problem with a mere flat surface.

第5図は本発明による第五実施例を示すもので、振動体
lは円板形状であり、外周の円環形状部分の板厚T1は
中心部分の板厚Tzよりも厚く、その中間部分は内側か
ら外側に向かって徐々に厚くなっており、外周部分に複
数の突起1aが形成されている。圧電素子2は振動体l
の外周に沿う円環形状で、突起1aの反対側の面に接合
されている。その他の構造については第一実施例と同様
である6振動体】の内側の板厚を薄くすることにより、
剛性が小さくなりひずみの開放が容易となるが、全体構
造としての剛性も低下してしまう。これに対し、−次の
振動モードの場合には中心部でひずみが最大になるとい
う特性を生かして、中心部はど薄くシ外周部はど厚くす
ることで、全体の剛性を保ちつつ内部ひずみの開放を効
率的に行うことができるという効果を有する。
FIG. 5 shows a fifth embodiment of the present invention, in which the vibrating body l has a disk shape, and the plate thickness T1 of the annular portion on the outer periphery is thicker than the plate thickness Tz of the central portion, and is gradually thickened from the inside to the outside, and a plurality of protrusions 1a are formed on the outer periphery. The piezoelectric element 2 is a vibrating body l
It has an annular shape along the outer periphery of the projection 1a and is joined to the surface opposite to the projection 1a. The rest of the structure is the same as in the first embodiment. By reducing the thickness of the inner plate of the 6 vibrating bodies,
Although the rigidity is reduced and strain relief is facilitated, the rigidity of the entire structure is also reduced. On the other hand, in the case of - next vibration mode, the strain is maximum at the center, so by making the center thinner and thicker at the outer periphery, the internal strain can be reduced while maintaining the overall rigidity. This has the effect that the opening can be carried out efficiently.

第6図は本発明による第六実施例を示すもので、(4)
は平面図、0は断面図である。振動体1は円板形状で、
外周部には円環状に等間隔に複数の突起1aを配置し、
円環の内側部分は中心から放射状に伸びる複数のスリン
)Icが周方向に対し等間隔に設けられている。圧電素
子2は振動体1の突起1aの配置部とほぼ同一の円環形
状であり、突起1aの反対側の面ニこ接合されている。
FIG. 6 shows a sixth embodiment of the present invention, (4)
0 is a plan view, and 0 is a sectional view. The vibrating body 1 has a disk shape,
A plurality of protrusions 1a are arranged at equal intervals in an annular shape on the outer periphery,
The inner portion of the ring is provided with a plurality of rings (Ic) extending radially from the center at equal intervals in the circumferential direction. The piezoelectric element 2 has substantially the same annular shape as the arrangement portion of the protrusion 1a of the vibrating body 1, and is joined across the surface on the opposite side of the protrusion 1a.

圧電素子2の電極パターン2a及び2bばあらがしめ1
2分割された電極パターンを形成後、図示のごとく(+
)又は(=)方向に分極処理を施し、その後ひとつおき
に電極パターンで結線するように形成したものであり、
それぞれ二本のり−F’H1a、7bがはんだ付は等に
より接合されている。その他の構造については第一実施
例と同様である。ここでリード線7a、7bを介して9
0’位相の異なる高周波電圧を電極パターン2a、2b
に印加することにより、周方向に3つの山を有するたわ
み進行波が発生し、振動体1の突起1aに圧接された移
動体5が回転する。この場合は進行波方式であり、たわ
みが円周方向に進行していくため、円周方向に均一性を
保つことが望ましいため、剛性を小さくするためのスリ
ットlcは等間隔で且つできる限り多く設けることが効
果的である。このようなスリット方式は例えば振動体1
の板厚が薄く、内側の部分をさらに薄くすることが困難
な場合などに、剛性を小さくする手段として有効である
。これにより第一実施例と同様の効果が得られる。
Electrode patterns 2a and 2b of piezoelectric element 2 are fixed 1
After forming the electrode pattern divided into two parts, as shown in the figure (+
) or (=) direction, and then formed so that every other electrode is connected with an electrode pattern,
Two glues F'H1a and 7b are connected by soldering or the like. The other structure is the same as that of the first embodiment. Here, 9 is connected via lead wires 7a and 7b.
High frequency voltages with different 0' phases are applied to electrode patterns 2a and 2b.
By applying this, a flexural traveling wave having three peaks in the circumferential direction is generated, and the movable body 5 pressed against the protrusion 1a of the vibrating body 1 rotates. In this case, the traveling wave method is used, and since the deflection progresses in the circumferential direction, it is desirable to maintain uniformity in the circumferential direction, so the slits lc are arranged at equal intervals and as many as possible to reduce the rigidity. It is effective to provide For example, in this slit method, the vibrating body 1
This is effective as a means of reducing rigidity in cases where the plate thickness is thin and it is difficult to make the inner part even thinner. This provides the same effect as the first embodiment.

第7図は本発明による第七実施例を示すもので振動体1
は円板形状で、外周部には円環形状の圧電素子2が接合
されている。圧電素子の電極パターン2aは4分割され
、それぞれ図示のごとく分極処理されている。振動体1
の圧電素子接合と反対側の面には、圧電素子2の円環形
状と重なる部分に電極パターンとは図示するような角度
で等間隔に4本の突起1aか設けられ、さらに円環の内
側部分には圧電素子の電極パターンの境界線と一致する
角度に、中心から放射状に伸びる4本のスリットが形成
されている。その他の構造については第一実施例と同様
である。ここで電極パターン2aに高周波電圧を印加す
ると、周方向に2つの山を有するたわみ定在波が発生し
、振動体lの突起1aに圧接された移動体5が回転する
。この場合は定在波方式であり、電極パターン2aの境
界線の部分が節の部分となり、この付近で応力が葉中す
るため、この境界線の近傍でしがも内側部分にスリット
を設けることによりひずみの開放が行われ、第一実施例
と同様の効果が得られることになる。
FIG. 7 shows a seventh embodiment of the present invention, in which the vibrating body 1
has a disk shape, and an annular piezoelectric element 2 is bonded to the outer periphery. The electrode pattern 2a of the piezoelectric element is divided into four parts, each of which is polarized as shown. Vibrating body 1
On the surface opposite to the piezoelectric element bonding, four protrusions 1a are provided at equal intervals at an angle as shown in the figure, and four protrusions 1a are provided at equal intervals at the angle shown in the figure in the part overlapping the annular shape of the piezoelectric element 2. Four slits extending radially from the center are formed in the portion at angles that match the boundaries of the electrode pattern of the piezoelectric element. The other structures are the same as those in the first embodiment. When a high frequency voltage is applied to the electrode pattern 2a, a flexural standing wave having two peaks in the circumferential direction is generated, and the movable body 5 pressed against the protrusion 1a of the vibrating body 1 rotates. In this case, it is a standing wave method, and the boundary line of the electrode pattern 2a becomes a node, and the stress is distributed around this area, so it is necessary to provide a slit on the inner side near this boundary line. As a result, the strain is released, and the same effect as in the first embodiment is obtained.

第8図は本発明乙こよる第八実施例を示すもので、円周
方向三次のモートの2つの波をX波長ずらして重ねたも
ので、それぞれのモードを発生させる電極パターンの境
界線上で外周に沿う円環部分に突起1aを設け、円環の
内側部分にはスリットlCを設けたものである。この場
合についても圧電素子電極パターンの境界線上で応力が
集中するため、ここにスリットlcを設けることにより
、ひずみが開放されるため一実施例と同様の効果が得ら
れる。
FIG. 8 shows an eighth embodiment of the present invention, in which two waves of the third-order moat in the circumferential direction are overlapped with a shift of X wavelength, and the waves are overlapped on the boundary line of the electrode pattern that generates each mode. A protrusion 1a is provided on the annular portion along the outer periphery, and a slit 1C is provided on the inner portion of the annular ring. In this case as well, since stress is concentrated on the boundary line of the piezoelectric element electrode pattern, by providing the slit lc here, the strain is released, so that the same effect as in the first embodiment can be obtained.

第5図乃至第8図の場合には圧電素子2は円環形状のも
のを用いているが、第3図及び第4図の場合のように円
板形状のものを用いた場合でも同様の効果が得られるも
のであり、さらに円板形状としての効果が得られること
は言うまでもない。
In the cases of FIGS. 5 to 8, the piezoelectric element 2 is annular, but the same effect can be obtained even when a disc-shaped piezoelectric element 2 is used as in the cases of FIGS. 3 and 4. Needless to say, the effect can be obtained, and furthermore, the effect as a disk shape can be obtained.

第9図、第1.0図、第1I図は本発明による第九実施
例、弟子実施例、弟子−実施例を示すもので、それぞれ
第6図、第7図、第8図の場合とほぼ同様であるが、振
動体lのスリン)lcO代わりに扇形の窓1dを設けて
剛性を低下させたものである。
9, FIG. 1.0, and FIG. 1I show a ninth embodiment, a disciple embodiment, and a disciple-embodiment according to the present invention, and the cases of FIGS. 6, 7, and 8, respectively. It is almost the same, but a fan-shaped window 1d is provided in place of the sulin) lcO of the vibrating body 1 to reduce the rigidity.

C発明の効果〕 本発明は以上説明したように、円板型の振動体に対して
圧電素子の少なくとも電極パターンを存する実効部分は
振動体の外周Gこ沿う円環形状とし、円環形状部分の振
動体の剛性よりも円環形状より内側の振動体の剛性を小
さくすることにより、振動体の外周部で移動体を圧接し
ても振動体中心部のひずみの開放が容易なために十分な
励振が得られる。この結果として小型で性能が安定し、
効率の高い超音波モータが実現できるという効果を有す
る。
C Effects of the Invention] As explained above, the present invention provides that, for a disc-shaped vibrating body, at least the effective portion of the piezoelectric element having an electrode pattern is annular along the outer circumference G of the vibrating body, and the annular portion is By making the rigidity of the vibrating body inside the annular shape smaller than that of the vibrating body, even if the moving body is pressed against the outer periphery of the vibrating body, the strain at the center of the vibrating body can be easily released. A strong excitation can be obtained. As a result, it is compact and has stable performance.
This has the effect of realizing a highly efficient ultrasonic motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第一実施例、第2図は第二実施例
、第3図は第三実施例、第4図は第四実施例、第5図は
第五実施例、第6図は第六実施例、第7図は第七実施例
、第8閏は第八実施例、第9図は第九実施例、第10図
は弟子実施例 第11図は弟子−実施例を示す図で、第
121E]は従来の超音波モータを示す図である。 1・・・振動体 2・・・圧電素子 3・・・支持板 4・・・中心軸 5・・・移動体 6・・・加圧ばね 7 ・ ・ ・ リード線 8・・・座金 9・ ・・ストッパ 以 上
Fig. 1 shows a first embodiment of the present invention, Fig. 2 shows a second embodiment, Fig. 3 shows a third embodiment, Fig. 4 shows a fourth embodiment, Fig. 5 shows a fifth embodiment, and a sixth embodiment. The diagram shows the sixth embodiment, Figure 7 shows the seventh embodiment, the eighth leap shows the eighth embodiment, Figure 9 shows the ninth embodiment, and Figure 10 shows the disciple example. 121E] is a diagram showing a conventional ultrasonic motor. 1... Vibrating body 2... Piezoelectric element 3... Support plate 4... Central shaft 5... Moving body 6... Pressure spring 7... Lead wire 8... Washer 9...・More than stopper

Claims (1)

【特許請求の範囲】[Claims]  少なくとも圧電素子によって構成され、前記圧電素子
の圧電作用により機械的たわみ振動波を発生する振動体
と、前記振動体に摩擦接触する移動体とを有する超音波
モータにおいて、前記圧電素子の少なくとも電極パター
ンを有する実効部分は円環形状であり、前記振動体の剛
性は前記円環形状部分に対し、円環形状の内側部分を小
さくしたことを特徴とする超音波モータ。
An ultrasonic motor comprising at least a piezoelectric element, a vibrating body that generates a mechanical deflection vibration wave due to the piezoelectric action of the piezoelectric element, and a movable body that makes frictional contact with the vibrating body, wherein at least an electrode pattern of the piezoelectric element is provided. An ultrasonic motor characterized in that an effective part having a ring shape is annular, and the rigidity of the vibrating body is made smaller at an inner part of the annular shape than in the annular part.
JP2240716A 1990-09-11 1990-09-11 Ultrasonic motor Expired - Fee Related JP3047025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2240716A JP3047025B2 (en) 1990-09-11 1990-09-11 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240716A JP3047025B2 (en) 1990-09-11 1990-09-11 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH04121071A true JPH04121071A (en) 1992-04-22
JP3047025B2 JP3047025B2 (en) 2000-05-29

Family

ID=17063646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240716A Expired - Fee Related JP3047025B2 (en) 1990-09-11 1990-09-11 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP3047025B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051575A (en) * 2000-08-03 2002-02-15 Seiko Instruments Inc Ultrasonic motor and electronic apparatus therewith
JP2003180092A (en) * 2001-12-07 2003-06-27 Canon Inc Vibration wave driver
WO2010140619A1 (en) * 2009-06-03 2010-12-09 株式会社ニコン Vibration actuator, lens barrel, and camera
JP2011114988A (en) * 2009-11-27 2011-06-09 Toshiba Corp Electrostatic actuator
JP2015029408A (en) * 2013-07-04 2015-02-12 キヤノン株式会社 Vibration-type drive device, image forming apparatus, and robot
JP2020066530A (en) * 2018-10-26 2020-04-30 シンフォニアテクノロジー株式会社 Workpiece transport device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051575A (en) * 2000-08-03 2002-02-15 Seiko Instruments Inc Ultrasonic motor and electronic apparatus therewith
JP2003180092A (en) * 2001-12-07 2003-06-27 Canon Inc Vibration wave driver
US7245058B2 (en) 2001-12-07 2007-07-17 Canon Kabushiki Kaisha Vibration wave driving apparatus, and method of setting shape of support member supporting elastic member forming vibration member of vibration wave driving apparatus
WO2010140619A1 (en) * 2009-06-03 2010-12-09 株式会社ニコン Vibration actuator, lens barrel, and camera
CN102460936A (en) * 2009-06-03 2012-05-16 株式会社尼康 Vibration actuator, lens barrel, and camera
JP5541281B2 (en) * 2009-06-03 2014-07-09 株式会社ニコン Vibration actuator, lens barrel and camera
CN102460936B (en) * 2009-06-03 2014-12-03 株式会社尼康 Vibration actuator, lens barrel, and camera
US8908301B2 (en) 2009-06-03 2014-12-09 Nikon Corporation Vibration actuator, lens barrel, and camera
JP2011114988A (en) * 2009-11-27 2011-06-09 Toshiba Corp Electrostatic actuator
TWI410038B (en) * 2009-11-27 2013-09-21 Toshiba Kk Electrostatic actuator
JP2015029408A (en) * 2013-07-04 2015-02-12 キヤノン株式会社 Vibration-type drive device, image forming apparatus, and robot
JP2020066530A (en) * 2018-10-26 2020-04-30 シンフォニアテクノロジー株式会社 Workpiece transport device

Also Published As

Publication number Publication date
JP3047025B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JPH04121071A (en) Ultrasonic motor
JP3526298B2 (en) Vibrating body and vibration wave driving device
JP4261894B2 (en) Vibration type driving device
JPS63242185A (en) Piezoelectric motor
JP2549310B2 (en) Ultrasonic motor
JPS63277482A (en) Ultrasonic motor
JPS6248276A (en) Piezoelectric motor
JPS6185076A (en) Vibration wave ring motor
JP2549309B2 (en) Ultrasonic motor
JPS63277480A (en) Ultrasonic motor
JPS6118370A (en) Piezoelectric motor
JP3089750B2 (en) Ultrasonic motor
JPH11332263A (en) Rotor for ultrasonic motor
JPS6318975A (en) Piezoelectric motor
JP3207488B2 (en) Ultrasonic actuator
JP2000245175A (en) Vibration actuator
JPH02276479A (en) Ultrasonic motor
JPS62207182A (en) Oscillatory wave motor
JP2885802B2 (en) Ultrasonic motor
JP3001957B2 (en) Annular ultrasonic motor
JP3104423B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPS6377385A (en) Surface-wave motor
JPH01315271A (en) Piezoelectric motor
JPH0646582A (en) Device for supporting rotor of ultrasonic motor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees