JPH04120293A - Method for coating titanium or titanium alloy - Google Patents

Method for coating titanium or titanium alloy

Info

Publication number
JPH04120293A
JPH04120293A JP23899890A JP23899890A JPH04120293A JP H04120293 A JPH04120293 A JP H04120293A JP 23899890 A JP23899890 A JP 23899890A JP 23899890 A JP23899890 A JP 23899890A JP H04120293 A JPH04120293 A JP H04120293A
Authority
JP
Japan
Prior art keywords
plating
nickel
titanium
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23899890A
Other languages
Japanese (ja)
Other versions
JP2690611B2 (en
Inventor
Eiji Hirai
英次 平井
Kazuyoshi Kurosawa
一吉 黒澤
Yoshio Matsumura
松村 由男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP23899890A priority Critical patent/JP2690611B2/en
Priority to CA002035970A priority patent/CA2035970C/en
Priority to EP91301020A priority patent/EP0441636B1/en
Priority to DE69102553T priority patent/DE69102553T2/en
Priority to US07/653,087 priority patent/US5116430A/en
Publication of JPH04120293A publication Critical patent/JPH04120293A/en
Application granted granted Critical
Publication of JP2690611B2 publication Critical patent/JP2690611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a coating film on a Ti surface excellent in adhesion property, heat resistance and wear resistance by providing a flash plating film of Cu or Ni on the surface of Ti by substitution method, forming a Ni or Ni-P alloy plating film thereon and heating in vacuum to form an alloy layer of Ti and Ni plating, and further activating and providing a finish composite plating. CONSTITUTION:A flash plating film of Cu or Ni is provided on the surface of Ti or Ti alloy by substitution method to form an extremely thin film of 0.1-2mum thickness. Then, a Ni or Ni-P alloy plating layer or Ni or P composite plating layer containing fine ceramics is formed thereon and heated in vacuum of 10<-2>-10<-5>Torr at >=450 deg.C for one hour or longer to make an alloy between the Ti and Ni-base plating layer. Then, for example, the surface is treated for activation with a nitric acid-hydrofluoric acid soln. and coated with a composite plating film comprising Ni, P or Co as the matrix and containing various kinds of fine hard ceramic powders.

Description

【発明の詳細な説明】 [産業上の利用分野] チタンおよびチタン合金は、自動車や自動二輪車のエン
ジンバルブ、バルブリテーナ−、コネクティングロッド
、ロッカーアーム等の軽量化をめざす機能部品への利用
が増加しており、また、耐薬品性及び耐摩耗性等が要求
されるポンプ部品例えば羽根車、軸等にも利用されてい
る。
[Detailed Description of the Invention] [Field of Industrial Application] Titanium and titanium alloys are increasingly being used in functional parts that aim to reduce weight, such as engine valves, valve retainers, connecting rods, and rocker arms for automobiles and motorcycles. It is also used in pump parts such as impellers and shafts that require chemical resistance and wear resistance.

本発明は、これらのチタンおよびチタン合金に、密着性
、耐熱性、耐摩耗性の優れた皮膜を形成させる方法に関
するものである。
The present invention relates to a method for forming a film with excellent adhesion, heat resistance, and wear resistance on titanium and titanium alloys.

[従来の技II] チタンおよびチタン合金の表面に耐摩耗性皮膜を形成さ
せる方法には、従来ガス窒化法、塩浴窒化法、イオン窒
化法や、イオンブレーティング、CVD、PVD法等の
乾式メッキ法、あるいは前処理としてMarshall
法、T homa法、ASTM法等を利用する各種湿式
メッキ法がある。
[Conventional Technique II] Conventional methods for forming wear-resistant films on the surfaces of titanium and titanium alloys include gas nitriding, salt bath nitriding, ion nitriding, and dry methods such as ion blating, CVD, and PVD. Marshall as a plating method or pretreatment
There are various wet plating methods using the method, Thomas method, ASTM method, etc.

先ず窒化法の場合について説明すると、この方法は処理
温度が高いために熱歪による変形が大きく、さらに硬化
層を得るのに長時間を要するので生産性に欠ける等の欠
点を有している。
First, the case of the nitriding method will be explained. This method has drawbacks such as high processing temperature, which causes large deformation due to thermal strain, and furthermore, a long time required to obtain a hardened layer, resulting in a lack of productivity.

また、前記の乾式メッキ法や湿式メッキ法は。Also, the dry plating method and wet plating method mentioned above.

何れの場合もチタンまたはチタン合金に対するメッキ皮
膜の密着性が劣り、使用の際に皮膜剥離が起り易いとい
った欠点を有している。即ち1強度の摩擦に十分に耐え
るには皮膜が耐摩耗性に優れていることと皮膜の素地金
属への密着性に優れていることが必須要件であり、従っ
て剥離が起こり易い皮膜は強度の摩耗に耐えられるもの
ではない。
In either case, the adhesion of the plating film to titanium or titanium alloy is poor, and the film tends to peel off during use. In other words, in order to sufficiently withstand friction of 1 strength, it is essential that the coating has excellent abrasion resistance and excellent adhesion to the base metal. It cannot withstand wear and tear.

最近、チタンまたはチタン合金に耐摩耗性皮膜を形成さ
せる方法として、マルチン・トーマの方法が公開(特開
平1−79397)になった。この発明は、チタンまた
はチタン合金製構成部材の表面に摩耗防止層を形成させ
る方法に関するものである。しかしながら、この方法は
(1)酸化雰囲気で熱処理を施すため、化学的析出法に
より形成されたニッケル等の皮膜がかなりに酸化し、次
工程の電気メッキによりクロム皮膜を形成させる際、そ
の酸化皮膜を除去する必要があり、そのために比較的長
い時間の除膜処理を必要とするといった欠点を有してい
る。また、(2)耐摩耗性層として、最表面に形成され
るクロム皮膜は耐焼付性及び耐熱耐摩耗性が不十分であ
るといった問題を有している。
Recently, the Martin-Thoma method has been published (Japanese Patent Laid-Open No. 1-79397) as a method for forming a wear-resistant film on titanium or titanium alloy. The present invention relates to a method for forming an anti-wear layer on the surface of a component made of titanium or a titanium alloy. However, in this method (1) heat treatment is performed in an oxidizing atmosphere, so the nickel film formed by the chemical precipitation method is considerably oxidized, and when the chromium film is formed by electroplating in the next step, the oxide film is removed. It has the disadvantage that it requires a relatively long film removal process. Furthermore, (2) the chromium film formed on the outermost surface as the wear-resistant layer has a problem in that it has insufficient seizure resistance and heat and wear resistance.

[発明が解決しようとする課題] 先行技術の問題点としては、先述の(1)において説明
した酸化皮膜の除去に比較的に長い時間を要するので工
程管理上それだけ負担がかかるといった問題、及び(2
)に記載したクロム皮膜の耐焼付性及び耐摩耗性が不十
分といった品質上の問題等が挙げられるので、本発明者
等はこれらの問題を課題として解決しようとするもので
ある。
[Problems to be Solved by the Invention] Problems with the prior art include the problem that it takes a relatively long time to remove the oxide film, which is a burden on process control, as explained in (1) above, and ( 2
) There are quality problems such as insufficient seizure resistance and wear resistance of the chromium film, and the present inventors aim to solve these problems.

[課題を解決するための手段] 本発明者等は、前記課題を解決し得る方法として、チタ
ンまたはチタン合金に耐熱性と耐摩耗性に優れた皮膜を
形成させる方法を発明し、これを特願平2−30494
号(以下、先発明という)にて特許出願している。
[Means for Solving the Problems] As a method for solving the above-mentioned problems, the present inventors have invented a method of forming a film with excellent heat resistance and wear resistance on titanium or a titanium alloy, and have developed this method as a special method. Ganpei 2-30494
No. (hereinafter referred to as the earlier invention) has been applied for a patent.

しかしながら、本発明者等は更に先発明に係わって研究
を行った結果、先発明の処理工程の一部を改良すること
により、チタンまたはチタン合金に、より一層皮膜密着
性に優れた耐熱耐摩耗性皮膜を形成させる方法を見出す
に至ったのである。
However, as a result of further research related to the earlier invention, the inventors of the present invention found that by improving a part of the treatment process of the earlier invention, titanium or titanium alloy can be coated with a heat-resistant and wear-resistant film with even better film adhesion. They discovered a method to form a sexual film.

即ち本発明は、チタンまたはチタン合金の表面に先ず置
換法にて銅またはニッケルの極めて薄いフラッシュメッ
キを施すものであって、このメッキ面にさらにニッケル
メッキ、ニッケル・リン合金メッキあるいはニッケル・
リン複合メッキ皮膜を形成させ、その後特定条件のもと
に真空加熱処理してチタンまたはチタン合金の表面にこ
れらの皮膜との合金層を形成させ、さらに表面を極めて
短時間の活性化処理を施し最後に最上層皮膜として最終
複合メッキを施すことを要旨とするものである。即ち本
発明は、チタンまたはチタン合金の表面に置換法による
銅またはニッケルのフラッシュメッキを施した後、ニッ
ケルメッキ、ニッケル・リン合金メッキあるいはニッケ
ル・リン複合メッキを施し、その後真空圧10−1〜1
0″″’ Torr、炉内温度少なくとも450℃で1
時間以上真空加熱処理してチタンまたはチタン合金と前
記メッキ金属の合金層を形成させ、次いで表面を活性化
処理して最後に最終複合メッキを施すことを特徴とする
チタンまたはチタン合金に密着性、耐熱性、耐摩耗性の
優れた皮膜を形成させる方法、に関するものである。
That is, in the present invention, an extremely thin flash plating of copper or nickel is first applied to the surface of titanium or a titanium alloy by a displacement method, and then this plated surface is further plated with nickel, nickel-phosphorous alloy plating, or nickel-phosphorous alloy plating.
A phosphorus composite plating film is formed, and then an alloy layer with these films is formed on the surface of titanium or titanium alloy by vacuum heat treatment under specific conditions, and the surface is then subjected to an extremely short activation treatment. Finally, the gist is to apply final composite plating as the top layer coating. That is, in the present invention, the surface of titanium or titanium alloy is flash-plated with copper or nickel by a substitution method, and then nickel plating, nickel-phosphorus alloy plating, or nickel-phosphorus composite plating is applied, and then vacuum pressure 10-1~ 1
0″″’ Torr, furnace temperature at least 1 at 450°C
adhesion to titanium or titanium alloy, characterized by subjecting titanium or titanium alloy to a vacuum heat treatment for more than an hour to form an alloy layer of titanium or titanium alloy and the plated metal, then activating the surface and finally applying final composite plating; The present invention relates to a method for forming a film with excellent heat resistance and abrasion resistance.

[作用] チタンまたはチタン合金の表面に施す置換法による銅ま
たはニッケルのフラッシュメッキは、メッキ厚は特定す
るものではないが好ましくは0.1〜2μ園である。0
.1μI以下では皮膜の均一析出が困難であり、逆に2
μm以上では、その後の真空加熱処理によるTi、Ni
、 T1Ni、 T1Ni、またはT1Cu 。
[Function] When performing flash plating of copper or nickel on the surface of titanium or titanium alloy by a substitution method, the plating thickness is not specified, but is preferably 0.1 to 2 μm thick. 0
.. If it is less than 1μI, it is difficult to deposit a film uniformly;
If it is larger than μm, Ti, Ni can be removed by the subsequent vacuum heat treatment.
, T1Ni, T1Ni, or T1Cu.

T1Cu2等のチタンとニッケルまたは銅との合金層の
形成を徐々に妨げる傾向を示すので好ましくない。フラ
ッシュメッキの膜厚は、特に0.1〜1μmの範囲内に
おいて最も密着性の優れた皮膜を形成させることができ
る。
This is not preferred because it tends to gradually hinder the formation of an alloy layer of titanium and nickel or copper such as T1Cu2. A film with the best adhesion can be formed especially when the film thickness of flash plating is within the range of 0.1 to 1 μm.

次に本発明のフラッシュメッキに適用し得るメッキ液浴
として例示すると、銅のフラッシュメッキの場合は、硫
酸銅Log/ Q、水酸化ナトリウム10gIQ、ホ)
Lt ? ’J ’/ (37%) 20mff1/a
、EDTA20g/ Qの450℃の溶液を用いること
が挙げられる。
Next, to give an example of a plating solution bath that can be applied to the flash plating of the present invention, in the case of copper flash plating, copper sulfate Log/Q, sodium hydroxide 10gIQ, E)
Lt? 'J'/ (37%) 20mff1/a
, using a solution of EDTA 20g/Q at 450°C.

次にニッケルのフラッシュメッキの場合、塩化ニッケル
30g/ Q、次亜リン酸ナトリウム10g/ Q、ク
エン酸ナトリウム10g/ fiの60℃の溶液が挙げ
られ、何れも化学的置換法によってフラッシュメッキを
得ることができる。
Next, in the case of flash plating of nickel, a solution of nickel chloride 30g/Q, sodium hypophosphite 10g/Q, and sodium citrate 10g/fi at 60°C can be used, all of which can be used to obtain flash plating by a chemical substitution method. be able to.

フラッシュメッキ上に施すニッケルメッキは、例えばス
ルファミン酸ニッケル800に/ Q、塩化ニッケル1
5g/ Q、はう酸30g/ Qを含有するメッキ液を
用いて、またニッケル・リン合金メッキは、例えばスル
ファミン酸ニッケル800g/ 11、塩化ニッケル1
5g/ Q、はう酸30g/ Q、次亜りん酸ソーダ3
g/ Qを含有するメッキ液を用いて、またニッケル・
リン複合メッキは、ニッケル・リン合金メッキ液浴中に
1例えば平均粒径が1μ園のSiC。
Nickel plating applied on flash plating is, for example, nickel sulfamate 800/Q, nickel chloride 1
Using a plating solution containing 5g/Q, 30g/Q of phosphoric acid, and nickel-phosphorus alloy plating, for example, nickel sulfamate 800g/11, nickel chloride 1
5g/Q, oxalic acid 30g/Q, sodium hypophosphite 3
Using a plating solution containing g/Q, nickel and
For phosphorus composite plating, SiC with an average particle size of, for example, 1 μm is placed in a nickel-phosphorus alloy plating solution bath.

Si3N*t BNt^Q 、Oa、 VC,ZrB、
 、 CrB、ダイヤモンドから選ばれる1種または2
種以上の微粉を200g/2添加したメッキ液を用いて
、通電メッキすることによって得られる。フラッシュメ
ッキの後で施すこれらメッキの膜厚は、特定するもので
はなし\が好ましくは5〜30μmであり、この範囲内
の厚さとすることにより、本メッキ後に行われる真空加
熱において本メッキ皮膜はフラッシュメッキと共にチタ
ンまたはチタン合金と台金化して相互の密着性に優れた
結果をもたらす。5μ園未満では膜厚不足から優れた結
果が得難く逆に30μ麿を越える膜厚としてもその効果
の向上は望めずかつコスト的にも好ましくない。
Si3N*t BNt^Q, Oa, VC, ZrB,
, CrB, and one or two selected from diamond
It is obtained by electroplating using a plating solution to which 200 g/2 of fine powder of 50% or more is added. The film thickness of these platings applied after flash plating is not specified, but is preferably 5 to 30 μm, and by setting the thickness within this range, the main plating film will remain stable during vacuum heating performed after main plating. Flash plating and titanium or titanium alloy are used as a base metal to achieve excellent mutual adhesion. If the film thickness is less than 5 μm, it is difficult to obtain excellent results due to the insufficient film thickness, and if the film thickness exceeds 30 μm, no improvement in the effect can be expected and it is also unfavorable in terms of cost.

ニッケルメッキ皮膜は約200℃まで十分な硬度を有し
、ニッケル・リン合金メッキ並びにニッケル・リン複合
メッキ皮膜は約350℃まで十分な硬度を有する。本発
明では後で述べる耐熱耐摩耗性皮膜を考慮し、ニッケル
メッキ、ニッケル・リン合金メッキあるいはニッケル・
リン複合メッキの何れかを選定する。
Nickel plating films have sufficient hardness up to about 200°C, and nickel-phosphorus alloy plating and nickel-phosphorus composite plating films have sufficient hardness up to about 350°C. In the present invention, considering the heat-resistant and wear-resistant coating described later, nickel plating, nickel-phosphorus alloy plating, or nickel-phosphorus alloy plating,
Select one of phosphorus composite plating.

本発明法においては、チタンまたはチタン合金とメッキ
金属とにより合金層を形成させ、かつ優れた皮膜密着性
を得るために熱処理条件として、真空度10−1〜10
−’ Torrでの真空加熱処理を行うものである。真
空度が10″″” Torr未満ではメッキ皮膜が酸化
される危険があり、逆に10−’ Torrを越える真
空度を得るには非常にコストがかかり、また本発明の方
法においてはこの様な高真空度を必要とするものではな
い0次に処理温度と処理時間の条件については金属の拡
散を考慮して前述の真空雰囲気内に450℃以上で1時
間以上保持することが必要である。
In the method of the present invention, in order to form an alloy layer with titanium or a titanium alloy and a plated metal, and to obtain excellent film adhesion, the heat treatment conditions include a vacuum degree of 10-1 to 10
−' Torr vacuum heat treatment is performed. If the degree of vacuum is less than 10'''' Torr, there is a risk that the plating film will be oxidized, and conversely, obtaining a degree of vacuum greater than 10-' Torr is extremely costly, and the method of the present invention Regarding the zero-order processing temperature and processing time conditions that do not require a high degree of vacuum, it is necessary to hold the film in the vacuum atmosphere described above at 450° C. or higher for one hour or more in consideration of metal diffusion.

このような特定された条件のもとに真空加熱処理を施す
ことにより既形成皮膜は酸化されず、かつ次工程で複合
メッキ皮膜を形成させる際、あらかじめ、処理されたチ
タンまたはチタン合金の表面を化学的に活性化処理すれ
ば、その上に密着性に優れた最終複合メッキ皮膜を形成
できることを見出したのである。前記活性化処理として
は、その方法を特定するものではないが、例ば3〜10
%のフッ酸を含む硝フッ酸水溶液で、常温で2〜5秒の
短時間処理が好ましい。
By performing vacuum heat treatment under these specified conditions, the already formed film will not be oxidized, and when forming a composite plating film in the next step, the surface of the treated titanium or titanium alloy will be coated in advance. They discovered that a final composite plating film with excellent adhesion could be formed thereon by chemically activating it. Although the method of the activation treatment is not specified, for example, 3 to 10
A short time treatment of 2 to 5 seconds at room temperature is preferred with a nitric-hydrofluoric acid aqueous solution containing % of hydrofluoric acid.

次に、最上層皮膜としての最終複合メッキは。Next is the final composite plating as the top layer coating.

本発明においては特定するものではないが、好ましくは
5iCt 5isN4. BN、 AQ、0.、 VC
,ZrB、、 CrBtダイヤモンドから選ばれるファ
インセラミックスを分散共析させた。ニッケル・リンあ
るいはコバルトをマトリックスとする複合メッキを挙げ
ることができる。これらの最終複合メッキ皮膜を形成さ
せることにより、密着性に極めて優れた耐熱耐摩耗性皮
膜を形成させることができるのである。
Although not specified in the present invention, preferably 5iCt 5isN4. BN, AQ, 0. , VC
Fine ceramics selected from diamonds such as , ZrB, and CrBt were dispersed and co-deposited. Composite plating with nickel-phosphorous or cobalt as a matrix can be mentioned. By forming these final composite plating films, it is possible to form a heat-resistant and abrasion-resistant film with extremely excellent adhesion.

以下に水沫の好ましい工程例を概説する。Preferred examples of the water droplet process are outlined below.

先ず、チタンまたはチタン合金の表面を例えばAQ、O
aの粉末でシミツトプラストした後、有機溶剤洗浄、ア
ルカリ脱脂、水洗、酸洗、水洗等の工程を経て、置換法
による銅フラッシュメッキまたはニッケルフラッシュメ
ッキを施す0次にその表面にニッケルメッキ、ニッケル
・リン合金メッキあるいはニッケル・リン複合メッキを
施し1次に真空加熱処理を行う、該熱処理後、活性化処
理し。
First, the surface of titanium or titanium alloy is coated with, for example, AQ, O
After stainplast with the powder of a, the surface is subjected to processes such as organic solvent cleaning, alkaline degreasing, water washing, pickling, and water washing, followed by copper flash plating or nickel flash plating using the substitution method.Next, the surface is nickel plated, Nickel-phosphorus alloy plating or nickel-phosphorus composite plating is applied, first vacuum heat treatment is performed, and after the heat treatment, activation treatment is performed.

最後に最上層皮膜として最終複合メッキ皮膜を形成させ
るものである。
Finally, a final composite plating film is formed as the top layer film.

[実施例] 実施例1 (1)試験片−JIS Ti 2種Cw 50mmX 
 11100mmXt 2.0■−) (2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 3 アルカリ脱脂(FC−315、日本バー力ライジン
グ(社)製 弱アルカリクリーナー、50g/ Q、7
0℃、3分浸漬) 4 水洗 5 塩酸(17%常温)による酸洗(30秒)6 水洗 7 銅フラッシュメッキ(置換法) 浴組成  硫酸鋼       log/Q水酸化ナト
リウム  10gIQ ホルマリン(37%)20飄Q/Q E D T A       20g/ Q処理温度 
45℃ 皮膜厚  0.7μ園 8 水洗 9 ニッケル・リンメッキ処理 浴組成  スルファミン酸ニッケル 800g/ Q塩
化ニッケル     15g/Q ホウ酸       30g/ Q 次亜リン酸ソーダ   3g/ Q 処理温度 57℃ 電流密度 20A/dm” 皮膜厚  20μ菖 10水洗 11熱風乾燥(約80℃) 12真空加熱処理 真空度  10−’Torr炉内温
度 600℃ 処理時間 2時間 13活性化処理 処理水溶液・・・HF5%、HNo、60%常温、3秒
浸漬 14水洗 15最終複合メッキ処理 ニッケル・リン・SiC複金メッキ処理浴組成  スル
ファミン酸ニッケル 800g/ Q塩化ニッケル  
  15g/ Q ホウ酸      30g/ fi 次亜リン酸ソーダ   3g/ Q SiC200g/ Q 処理温度 57℃ 電流密度 15A/dll” 皮膜厚  20μ鳳 16水洗 17熱風乾燥(約80℃) 実施例2 (1)試験片・・・Ti−6AΩ−4V(形状は、実施
例1と同じ)(2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 アルカリ脱脂(実施例1の場合と同じ)水洗 塩酸による酸洗(実施例1の場合と同じ)水洗 銅フラッシュメッキ(置換法) (皮膜厚0.2μ−とした以外は実施例1の場合と同じ
) 8 水洗 9 ニッケル・リン・SiC複金メッキ処理浴組成 ス
ルファミン酸ニッケル 800g/ AI塩化ニッケル
    15gIQ ホウ酸      30g/ Q 次亜リン酸ソーダ  3g/ Q SiC20Gg/Q 処理温度 57℃ 電流密度 15A/dwm″ 皮膜厚  20μ膳 10水洗 11熱風乾燥(約80℃) 12真空加熱処理 真空度  10−” Torr炉内
温度 450℃ 処理時間 1.5時間 13活性化処理(実施例1の場合と同じ)14水洗 15最終複合メッキ処理 ニッケル・リン・SiC複金メッキ処理(実施例1の場
合と同じ) 16水洗 17熱風乾燥(約80℃) 実施例3 (1)試験片・・・JIS Ti 2種(形状は、実施
例1と同じ) 試験片の表面処理 アルミナによるショツトブラスト処理 トリクレン蒸気洗浄 アルカリ脱脂(実施例1の場合と同じ)水洗 塩酸による酸洗(実施例1の場合と同じ)水洗 銅フラッシュメッキ(W換法) (皮膜厚1.2μ−とした以外は実施例1の場合と同じ
) 水洗 ニッケル・リンメッキ処理(皮膜厚10μ−とした以外
は実施例1の場合と同じ) 水洗 熱風乾燥(約80℃) 真空加熱処理 真空度  10−’Torr炉内温度 
850℃ 処理時間 1時間 活性化処理(2秒浸漬した以外は実施例1の場合と同じ
) 水洗 複合メッキ処理 ニッケル・リン・BN複合メッキ処理 浴組成 スルファミン酸ニッケル 800g/ Q塩化
ニッケル   15g/ Q ホウ酸      30g/ Q 次亜リン酸ソーダ  3g/ Q B N         200g/ Q処理温度 5
7℃ 電流密度 15A/dm” 皮膜厚  20μ脂 16水洗 17熱風乾燥(約80℃) 実施例4 (1)試験片・・・JIS Ti 2種(形状は、実施
例1と同じ) (2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 3 アルカリ脱脂(実施例1の場合と同じ)4 水洗 5 塩酸による酸洗(実施例1の場合と同じ)6 水洗 7 ニッケルフラッシュメッキ(置換法)浴組成 塩化
ニッケル     30g/ Q次亜リン酸ナトリウム
 LOg/ Q クエン酸ナトリウム  10gIQ 処理温度 60℃ 皮膜厚  0.5μ論 水洗 ニッケル・リン・WCC合金メッキ処 理浴組成スルファミン酸ニッケル 800g/ Q塩化
ニッケル    15g/ Q ホウ酸       30g/ Q 次亜リン酸ソーダ   3g/ Q W C200g/ Q 処理温度 57℃ 電流密度 15A/da” 皮膜厚  20μ脂 水洗 熱風乾燥(約80℃) 真空加熱処理 真空度   10−”Torr炉内温度
  550℃ 処理時間  3時間 活性化処理(5秒浸漬とした以外は実施例1の場合と同
じ) 水洗 最終複合メッキ処理(実施例1の場合と同じ)16水洗 17熱風乾燥(約80℃) 実施例5 (1)試験片・・・Ti−6A Q−4V(形状は、実
施例1と同じ)(2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 3 アルカリ脱脂(実施例1の場合と同じ)4 水洗 5 塩酸による酸洗(実施例1の場合と同じ)6 水洗 7 ニッケルフラッシュメッキ(置換法)(皮膜厚0.
2μ諺とした以外は実施例4の場合と同じ) 8 水洗 9 ニッケル・リンメッキ処理(実施例1の場合と同じ
) lO水洗 11熱風乾燥(約80℃) 12真空加熱処理 真空度   10−’ Torr炉
内温度  800℃ 処理時間   1時間 13活性化処理(実施例4の場合と同じ)14水洗 15複金メッキ処理(実施例3の場合と同じ)16水洗 17熱風乾燥(約80℃) 実施例6 (1)試験片・・・Ti−6AΩ−4V(形状は、実施
例1と同じ)(2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 3 アルカリ脱脂(実施例1の場合と同じ)4 水洗 5 塩酸による酸洗(実施例1の場合と同じ)6 水洗 7 ニッケルフラッシュメッキ(置換法)(皮膜厚1.
5μmとじた以外は実施例4の場合と同じ) 8 水洗 ニッケル・リン・BNN合金メッキ処 理浴組成スルファミン酸ニッケル 800g/ Q塩化
ニッケル    15t/Q ホウ酸   −30g/ Q 次亜リン酸ソーダ   3g/ Q B N          200g/ Q処理温度 
57℃ 電流密度 15A/d■2 皮膜厚  10μm 水洗 熱風乾燥(約80℃) 真空加熱処理 真空度   10−’Torr炉内温度
  700℃ 処理時間  1.5時間 活性化処理(2秒浸漬とした以外は実施例1の場合と同
じ) 水洗 複合メッキ処理 ニッケル・リン・AQ20.複合メッキ処理浴組成 ス
ルファミン酸ニッケル 800g/ Q塩化ニッケル 
   15g/ Q ホウ酸       30g/ Q 次亜リン酸ソーダ   3g/ Q A Q z O−200g/Ω 処理温度 57℃ 電流密度 15A/d■2 皮膜厚  20μm 16水洗 17熱風乾燥(約80℃) 比較例1 (1)試験片・・・JIS Ti 2種(形状は実施例
1の場合と同じ) (2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 3 アルカリ脱脂(実施例1の場合と同じ)4 水洗 5 塩酸による酸洗(実施例1の場合と同じ)6 水洗 7 銅フラッシュメッキ(II置換法 (実施例1の場合と同じ) 8 水洗 9 ニッケル・リンメッキ処理(実施例1の場合と同じ
) 10水洗 11熱風乾燥(約80℃) 12真空加熱処理 真空度  10−’Torr炉内温
度 400℃ 処理時間 40分 13活性化処理(実施例1の場合と同じ)14水洗 15複金メッキ処理(実施例1の場合と同じ)16水洗 17熱風乾燥(約80℃) 比較例2 (1)試験片・・・JIS Ti 2種(形状は、実施
例1と同じ) (2)試験片の表面処理 1 アルミナによるショツトブラスト処理2 トリクレ
ン蒸気洗浄 アルカリ脱脂(実施例1の場合と同じ)水洗 塩酸による酸洗(実施例1の場合と同じ)水洗 銅ストライクメッキ 浴組成 硫酸鋼     60g/ Qロッセル塩  
160g/Q カセイソーダ  50g/ Q 処理温度 常温 電流密度 0.5A/d菖2 皮膜厚  1μm 水洗 無電解ニッケル・リンメッキ キザイ■ナイコME浴使
用 処理条件はキザイ■仕様による 皮膜厚  20μ閣 水洗 熱風乾燥(約80℃) 酸化雰囲気での加熱処理 450℃X20時間(マンフル炉使用)皮膜除去 HNO,水溶液浸漬(約33%、 15分浸漬) 常温 水洗 電気クロムメッキ処理 浴組成 Cry、    265g/QH,So、  
 1重量% (Cry、に対して) 温度  45℃ 電流密度 40A/da” 皮膜厚  20μm 水洗 熱風乾燥(約80℃) 参考例1 (1)試験片・・・JIS Ti 2種(形状は、実施
例1と同じ) 試験片の表面処理(特願平2−30494、実施例1)
アルミナによるショツトブラスト処理 トリクレン蒸気洗浄 アルカリ脱脂(実施例1の場合と同じ)水洗 5 塩酸による酸洗(実施例1の場合と同じ)6 水洗 7 銅ストライクメッキ(比較例2の場合と同じ)8 
水洗 9 ニッケル・リンメッキ処理(実施例1の場合と同じ
) 10水洗 11熱風乾燥(約80℃) 12真空加熱処理 真空度   10−’Torr処理
温度  450℃ 処理時間  3時間 13活性化処理(実施例1の場合と同じ)14水洗 15最終複合メッキ処理(実施例1の場合と同じ)16
水洗 17熱風乾燥(約80℃) 参考例2 (1)試験片・・・JIS Ti 2種(形状は、実施
例1と同じ) (2)試験片の表面処理(特願平2−30494、実施
例2)アルミナによるショツトブラスト処理 トリクレン蒸気洗浄 アルカリ脱脂(実施例1の場合と同じ)水洗 塩酸による酸洗(実施例1の場合と同じ)水洗 ニッケルストライクメッキ 浴組成  塩化ニッケル  100g/ Q塩酸   
    30g/ Q 処理温度 40℃ 電流密度 3A/da” 皮膜厚  3μ朧 水洗 ニッケル・リン・WCC合金メッキ処理実施例4の場合
と同じ) 水洗 熱風乾燥(約80℃) 真空加熱処理(参考例1の場合と同じ)活性化処理(実
施例1の場合と同じ) 水洗 15最終複合メッキ処理 ニッケル・リン・SiC複合メッキ処理(実施例1の場
合と同じ) 16水洗 17熱風乾燥(約80℃) 以上実施例、比較例ならびに参考例の方法でそれぞれ試
験片に形成させた皮膜の密着性を万能試験機を用いた折
り曲げによる方法で評価した。
[Example] Example 1 (1) Test piece - JIS Ti type 2 Cw 50mmX
11100mm
4 Water washing 5 Pickling with hydrochloric acid (17% room temperature) (30 seconds) 6 Water washing 7 Copper flash plating (replacement method) Bath composition Sulfuric acid steel log/Q Sodium hydroxide 10 g IQ Formalin (37%) 20飄Q/QEDTA 20g/Q treatment temperature
45℃ Film thickness 0.7μ Garden 8 Water washing 9 Nickel/phosphorous plating treatment bath composition Nickel sulfamate 800g/Q Nickel chloride 15g/Q Boric acid 30g/Q Sodium hypophosphite 3g/Q Processing temperature 57℃ Current density 20A/dm ” Film thickness 20 μm 10 Water washing 11 Hot air drying (approx. 80°C) 12 Vacuum heat treatment Vacuum degree 10-'Torr Furnace temperature 600°C Treatment time 2 hours 13 Activation treatment Treatment aqueous solution...HF5%, HNo, 60% Room temperature, 3 seconds immersion 14 Water washing 15 Final composite plating Nickel/phosphorus/SiC double gold plating bath composition Nickel sulfamate 800g/Q Nickel chloride
15g/Q Boric acid 30g/fi Sodium hypophosphite 3g/Q SiC200g/Q Processing temperature 57°C Current density 15A/dll” Film thickness 20μ 16 Water washing 17 Hot air drying (approx. 80°C) Example 2 (1) Test Piece...Ti-6AΩ-4V (shape is the same as Example 1) (2) Surface treatment of test piece 1 Shot blasting treatment with alumina 2 Triclean steam cleaning Alkaline degreasing (same as Example 1) Water washing Hydrochloric acid Pickling (same as in Example 1) Washing with water Copper flash plating (replacement method) (Same as in Example 1 except that the film thickness was 0.2 μ-) 8 Washing with water 9 Nickel-phosphorous-SiC double gold plating treatment Bath composition Nickel sulfamate 800g/AI nickel chloride 15gIQ boric acid 30g/Q Sodium hypophosphite 3g/Q SiC20Gg/Q Processing temperature 57℃ Current density 15A/dwm'' Film thickness 20μ 10Washing 11Hot air drying (approx. 80℃) ) 12 Vacuum heat treatment Vacuum degree 10-” Torr Furnace temperature 450°C Treatment time 1.5 hours 13 Activation treatment (same as in Example 1) 14 Water washing 15 Final composite plating treatment Nickel/phosphorus/SiC double gold plating treatment (Same as Example 1) 16 Water washing 17 Hot air drying (approximately 80°C) Example 3 (1) Test piece...JIS Ti type 2 (shape is the same as Example 1) Test piece surface treatment alumina Shot blasting treatment with triclene steam cleaning Alkaline degreasing (same as in Example 1) Washing with water Pickling with hydrochloric acid (same as in Example 1) Washing with water Copper flash plating (W exchange method) (film thickness 1.2 μ- Other than that, the same as in Example 1) Water-washed nickel/phosphorus plating treatment (same as in Example 1, except that the film thickness was 10 μ-) Water-washed hot air drying (approximately 80°C) Vacuum heat treatment Vacuum degree: 10-' Torr furnace Internal temperature
850°C Treatment time 1 hour activation treatment (same as in Example 1 except for 2 seconds of immersion) Washing composite plating treatment Nickel/phosphorus/BN composite plating treatment Bath composition Nickel sulfamate 800g/Q Nickel chloride 15g/Q Hou Acid 30g/Q Sodium hypophosphite 3g/Q B N 200g/Q Treatment temperature 5
7℃ Current density 15A/dm” Film thickness 20μ Oil 16 Water washing 17 Hot air drying (about 80℃) Example 4 (1) Test piece... JIS Ti type 2 (shape is the same as Example 1) (2) Surface treatment of test piece 1 Shot blasting with alumina 2 Triclean steam cleaning 3 Alkaline degreasing (same as in Example 1) 4 Washing with water 5 Pickling with hydrochloric acid (same as in Example 1) 6 Washing with water 7 Nickel flash plating ( Replacement method) Bath composition Nickel chloride 30g/Q Sodium hypophosphite LOg/Q Sodium citrate 10gIQ Processing temperature 60℃ Film thickness 0.5μ Water-washed nickel/phosphorus/WCC alloy plating treatment Bath composition Nickel sulfamate 800g/Q Chloride Nickel 15g/Q Boric acid 30g/Q Sodium hypophosphite 3g/Q W C200g/Q Processing temperature 57℃ Current density 15A/da" Film thickness 20μ Grease washing Hot air drying (approx. 80℃) Vacuum heat treatment Vacuum degree 10- Torr furnace temperature: 550°C Treatment time: 3 hours activation treatment (same as Example 1 except for 5 seconds of immersion) Water washing Final composite plating treatment (same as Example 1) 16 Water washes 17 Hot air drying ( (about 80°C) Example 5 (1) Test piece...Ti-6A Q-4V (shape is the same as Example 1) (2) Surface treatment of test piece 1 Shot blasting treatment with alumina 2 Triclean steam cleaning 3 Alkaline degreasing (same as in Example 1) 4 Washing with water 5 Pickling with hydrochloric acid (same as in Example 1) 6 Washing with water 7 Nickel flash plating (replacement method) (film thickness 0.
(Same as in Example 4 except that 2μ was used) 8 Water washing 9 Nickel/phosphorous plating treatment (same as in Example 1) 1O water washing 11 Hot air drying (approximately 80°C) 12 Vacuum heat treatment Vacuum degree 10-' Torr Furnace temperature 800°C Treatment time 1 hour 13 Activation treatment (same as in Example 4) 14 Washing with water 15 Double gold plating treatment (same as in Example 3) 16 Washing with water 17 Hot air drying (approximately 80°C) Example 6 (1) Test piece...Ti-6AΩ-4V (shape is the same as Example 1) (2) Surface treatment of test piece 1 Shot blasting with alumina 2 Triclean steam cleaning 3 Alkaline degreasing (for Example 1) ) 4 Washing with water 5 Pickling with hydrochloric acid (same as in Example 1) 6 Washing with water 7 Nickel flash plating (substitution method) (film thickness 1.
(Same as Example 4 except for 5 μm binding) 8 Water-washed nickel-phosphorus-BNN alloy plating treatment bath composition Nickel sulfamate 800g/Q Nickel chloride 15t/Q Boric acid -30g/Q Sodium hypophosphite 3g/Q BN 200g/Q treatment temperature
57℃ Current density 15A/d■2 Film thickness 10μm Washing with water and drying with hot air (approximately 80℃) Vacuum heat treatment Degree of vacuum 10-'Torr Furnace temperature 700℃ Treatment time 1.5 hours Activation treatment (other than 2-second immersion) is the same as in Example 1) Washing composite plating treated nickel/phosphorus/AQ20. Composite plating bath composition Nickel sulfamate 800g/Q Nickel chloride
15g/Q Boric acid 30g/Q Sodium hypophosphite 3g/Q A Qz O-200g/Ω Treatment temperature 57℃ Current density 15A/d■2 Film thickness 20μm 16 Water washing 17 Hot air drying (approx. 80℃) Comparative example 1 (1) Test piece... JIS Ti type 2 (same shape as in Example 1) (2) Surface treatment of test piece 1 Shot blasting with alumina 2 Triclean steam cleaning 3 Alkaline degreasing (same as in Example 1) 4 Washing with water 5 Pickling with hydrochloric acid (same as in Example 1) 6 Washing with water 7 Copper flash plating (II substitution method (same as in Example 1) 8 Washing with water 9 Nickel/phosphorous plating treatment (Same as in Example 1) ) 10 Water washing 11 Hot air drying (approximately 80°C) 12 Vacuum heat treatment Vacuum degree 10-'Torr Furnace temperature 400°C Treatment time 40 minutes 13 Activation treatment (same as in Example 1) 14 Water washing 15 Double gold plating treatment (same as in Example 1) 16 Washing with water 17 Hot air drying (approximately 80°C) Comparative example 2 (1) Test piece... JIS Ti type 2 (shape is the same as Example 1) (2) Surface treatment of test piece 1 Shot blasting treatment with alumina 2 Triclean steam cleaning Alkaline degreasing (same as in Example 1) Washing with water Pickling with hydrochloric acid (same as in Example 1) Washing with water Copper strike plating bath Composition Sulfuric acid steel 60g/ Q Rossel salt
160g/Q Caustic soda 50g/Q Processing temperature Room temperature current density 0.5A/d irises 2 Film thickness 1μm Water-washed electroless nickel/phosphorus plating 160g/Q Processing conditions for using Nyco ME bath are 50g/Q Film thickness according to specifications 20μm Water-washing hot air drying (approx. 80℃) Heat treatment in an oxidizing atmosphere at 450℃ for 20 hours (using a manful furnace) Film removal HNO, aqueous solution immersion (approximately 33%, immersion for 15 minutes) Room temperature water washing Electrochromium plating treatment Bath composition Cry, 265g/QH, So,
1% by weight (based on Cry) Temperature: 45°C Current density: 40A/da” Film thickness: 20μm Washing with water and drying with hot air (approximately 80°C) Reference example 1 (1) Test piece: JIS Ti type 2 (the shape is Same as Example 1) Surface treatment of test piece (Patent Application No. 2-30494, Example 1)
Shot blasting with alumina Triclean steam cleaning Alkaline degreasing (same as in Example 1) Washing with water 5 Pickling with hydrochloric acid (same as in Example 1) 6 Washing with water 7 Copper strike plating (same as in Comparative Example 2) 8
Water washing 9 Nickel/phosphorous plating treatment (same as in Example 1) 10 Water washing 11 Hot air drying (approximately 80°C) 12 Vacuum heat treatment Vacuum degree 10-'Torr Treatment temperature 450°C Treatment time 3 hours 13 Activation treatment (Example (Same as in Example 1) 14 Washing with water 15 Final composite plating treatment (Same as in Example 1) 16
Washing with water 17 Hot air drying (approximately 80°C) Reference example 2 (1) Test piece...JIS Ti type 2 (shape is the same as Example 1) (2) Surface treatment of test piece (Japanese Patent Application No. 2-30494, Example 2) Shot blasting with alumina Triclean steam cleaning Alkaline degreasing (same as in Example 1) Washing with water Pickling with hydrochloric acid (same as in Example 1) Washing with water Nickel strike plating bath composition Nickel chloride 100g/Q hydrochloric acid
30g/Q Processing temperature 40°C Current density 3A/da” Film thickness 3μ (same as water-washed nickel-phosphorus-WCC alloy plating treatment Example 4) Water-washed hot air drying (approximately 80°C) Vacuum heat treatment (reference example 1) (same as in Example 1) Activation treatment (same as in Example 1) Washing with water 15 Final composite plating treatment Nickel/phosphorous/SiC composite plating treatment (same as in Example 1) 16 Washing with water 17 Hot air drying (approximately 80°C) The adhesion of the films formed on test pieces by the methods of Examples, Comparative Examples, and Reference Examples was evaluated by bending using a universal testing machine.

その結果を表1に耐熱性、耐摩耗性の評価結果と併せて
示す。
The results are shown in Table 1 together with the evaluation results of heat resistance and abrasion resistance.

皮膜密着性評価方法:万能試験機を用いた折り曲げによ
る方法 試験機 YONEKURA CATY−20025(2
’ Ton用)Cross Head 5peed  
10mm/winCross Head  降下量 1
0waw+O試験片破断まで皮膜剥離なし、その他の皮
膜異常もなし 0 試験片変形量10m■までに皮膜剥離なし、その他
の皮膜異常もなし △ 試験片変形量110ll1までに一部分皮膜剥離を
生じた × 広範囲に皮膜剥離を生じた 表1密着性、耐熱性、耐摩耗性評価試験結果耐熱性評価
方法 0 約350℃まで十分な硬度を有する× 約200℃
まで十分な硬度を有する耐摩耗性評価方法:ファレック
ス摩耗試験摩耗速度 0.39m/s 潤滑   8石ギアオイルEP90(浸漬100cc)
荷重   1分毎に50kgづつステップアップ080
0kgで焼付き発生 X  200kgで焼付き発生 表1に示すように、本発明法により形成させた皮膜は変
形量(Cross Headの落下距離)が10−朧に
おいても皮膜割れ及び皮膜剥離などの皮膜異常は認めら
れず、密着性に優れた耐熱耐摩耗性皮膜をチタンまたは
チタン合金上に形成させることができた。
Film adhesion evaluation method: Method by bending using a universal testing machine Testing machine YONEKURA CATY-20025 (2
'Ton)Cross Head 5peed
10mm/winCross Head drop amount 1
0waw+O No film peeling until test piece fracture, no other film abnormalities 0 No film peeling, no other film abnormalities up to test piece deformation of 10 m △ Partial film peeling occurred up to test piece deformation of 110 l1× Wide range Table 1 Adhesion, heat resistance, and abrasion resistance evaluation test results Heat resistance evaluation method 0 Sufficient hardness up to approximately 350°C × Approximately 200°C
Wear resistance evaluation method: Falex wear test Wear speed: 0.39 m/s Lubrication: 8-stone gear oil EP90 (immersion 100cc)
Load step up by 50kg every minute 080
Seizure occurs at 0 kg Seizure occurs at 200 kg As shown in Table 1, the film formed by the method of the present invention shows no problems such as film cracking and film peeling even when the amount of deformation (falling distance of the cross head) is 10 - Oboro. No abnormalities were observed, and a heat-resistant and wear-resistant film with excellent adhesion could be formed on titanium or titanium alloy.

[発明の効果] 以上説明したように、本発明法によりチタンまたはチタ
ン合金に密着性に優れた耐熱耐摩耗性皮膜を形成させる
ことができ、例えば自動車や自動二軸車用エンジンバル
ブ、バルブリテーナ、コネクティングロッド、ロッカー
アーム等の耐熱性と耐摩耗性を同時に要求する部品に適
用して特に利点がある。さらに、従来鉄系材料が使用さ
れている広範囲な各種摺動部材に対して、チタンまたは
チタン合金部材を本発明の方法で処理したものに代える
ことにより耐久性の向上や軽量化が図られるのでより一
層の耐久性と軽量化に伴なう省エネルギーに寄与するも
のである。
[Effects of the Invention] As explained above, by the method of the present invention, a heat-resistant and wear-resistant film with excellent adhesion can be formed on titanium or titanium alloy, and can be used, for example, in engine valves and valve retainers for automobiles and two-axle motor vehicles. It is particularly advantageous when applied to parts that require both heat resistance and wear resistance, such as connecting rods and rocker arms. Furthermore, by replacing a wide variety of sliding parts for which iron-based materials have traditionally been used with titanium or titanium alloy parts treated by the method of the present invention, durability and weight reduction can be achieved. This contributes to greater durability and energy savings due to lighter weight.

Claims (4)

【特許請求の範囲】[Claims] (1)チタンまたはチタン合金の表面に置換法による銅
またはニッケルのフラッシュメッキを施した後ニッケル
メッキ、ニッケル・リン合金メッキあるいはニッケル・
リン複合メッキを施し、その後真空圧10^−^1〜1
0^−^5Torr、炉内温度450℃以上で1時間以
上真空加熱処理してチタンまたはチタン合金と前記メッ
キ金属の合金層を形成させ、次いで表面を活性化処理し
、更に最終複合メッキを施すことを特徴とするチタンま
たはチタン合金に皮膜を形成させる方法。
(1) After flash plating copper or nickel by substitution method on the surface of titanium or titanium alloy, nickel plating, nickel-phosphorus alloy plating or nickel-plating
Apply phosphorus composite plating, then vacuum pressure 10^-^1~1
Vacuum heat treatment is performed at 0^-^5 Torr and a furnace temperature of 450°C or more for 1 hour or more to form an alloy layer of titanium or titanium alloy and the plated metal, followed by surface activation treatment and final composite plating. A method for forming a film on titanium or a titanium alloy, characterized by:
(2)銅またはニッケルのフラッシュメッキの厚さが0
.1〜2μmである請求項(1)に記載のチタンまたは
チタン合金に皮膜を形成させる方法。
(2) Thickness of copper or nickel flash plating is 0
.. A method for forming a film on titanium or a titanium alloy according to claim 1, wherein the film has a thickness of 1 to 2 μm.
(3)活性化処理が、フッ化物またはフッ酸を含む酸性
水溶液で行うものである、請求項(1)に記載のチタン
またはチタン合金に皮膜を形成させる方法。
(3) The method for forming a film on titanium or a titanium alloy according to claim (1), wherein the activation treatment is performed with an acidic aqueous solution containing fluoride or hydrofluoric acid.
(4)最終複合メッキが、ニッケル・リンあるいはコバ
ルトのマトリックスにファインセラミックスを分散共析
させたものである、請求項(1)に記載のチタンまたは
チタン合金に皮膜を形成させる方法。
(4) The method for forming a film on titanium or a titanium alloy according to claim (1), wherein the final composite plating is obtained by dispersing and co-depositing fine ceramics in a nickel-phosphorus or cobalt matrix.
JP23899890A 1990-02-09 1990-09-11 Method of forming a film on titanium or titanium alloy Expired - Lifetime JP2690611B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23899890A JP2690611B2 (en) 1990-09-11 1990-09-11 Method of forming a film on titanium or titanium alloy
CA002035970A CA2035970C (en) 1990-02-09 1991-02-07 Process for surface treating titanium-containing metallic material
EP91301020A EP0441636B1 (en) 1990-02-09 1991-02-07 Process for surface treating titanium-containing metallic material
DE69102553T DE69102553T2 (en) 1990-02-09 1991-02-07 Process for the surface treatment of titanium-containing metal objects.
US07/653,087 US5116430A (en) 1990-02-09 1991-02-08 Process for surface treatment titanium-containing metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23899890A JP2690611B2 (en) 1990-09-11 1990-09-11 Method of forming a film on titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JPH04120293A true JPH04120293A (en) 1992-04-21
JP2690611B2 JP2690611B2 (en) 1997-12-10

Family

ID=17038386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23899890A Expired - Lifetime JP2690611B2 (en) 1990-02-09 1990-09-11 Method of forming a film on titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JP2690611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826641A (en) * 2020-06-29 2020-10-27 沈阳富创精密设备有限公司 Process for chemically plating Ni-P alloy on pure titanium plate TA2
CN114540892A (en) * 2022-03-28 2022-05-27 西部金属材料股份有限公司 Surface treatment method of titanium alloy ingot blank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106906433B (en) * 2017-04-25 2019-02-19 湖南理工学院 A kind of Cu50Zr40Ti10/ Cu/Ni-P amorphous alloy composite powder and its preparation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826641A (en) * 2020-06-29 2020-10-27 沈阳富创精密设备有限公司 Process for chemically plating Ni-P alloy on pure titanium plate TA2
CN114540892A (en) * 2022-03-28 2022-05-27 西部金属材料股份有限公司 Surface treatment method of titanium alloy ingot blank
CN114540892B (en) * 2022-03-28 2023-09-15 西部金属材料股份有限公司 Surface treatment method for titanium alloy ingot blank

Also Published As

Publication number Publication date
JP2690611B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
US5116430A (en) Process for surface treatment titanium-containing metallic material
CN104995339B (en) Method for producing a chromium coating on a metal substrate
JP4762077B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
JP6774135B2 (en) How to make a chrome coating and the coated object
US5897965A (en) Electrolessly plated nickel/phosphorus/boron system coatings and machine parts utilizing the coatings
RU2746863C1 (en) Method for producing composite metal-dispersed coating, dispersed system for precipitation of composite metal-dispersed coating and method for its production
JP2007197831A (en) Coating for improving wear performance of article and coating method for article
JP2690598B2 (en) Method of forming a film with excellent heat and wear resistance and sliding resistance on titanium or titanium alloy
JPH04333575A (en) Formation of composite coating film on metallic material containing titanium
JPH04120293A (en) Method for coating titanium or titanium alloy
US4236940A (en) Wear resistant titanium alloy coating
JPS6363288B2 (en)
RU2357002C1 (en) Method of receiving of nickel-adamantine chemical coatings
JPH04246181A (en) Surface treatment of metal material containing titanium
JP2686668B2 (en) Method for forming heat resistant and abrasion resistant film on titanium or titanium alloy
JPH0665751A (en) Electroless composite plating bath and plating method
KR20240093444A (en) Movable component with surface coating
EP3426821A1 (en) Chain having an electroless nickel coating containing hard particles
CN110295383A (en) A kind of Cr modified aluminide coating and preparation method thereof
JPS62205275A (en) Abrasion resistant article having tungsten carbide layer and its production
JPH0544048A (en) Method for plating magnesium-base alloy
JP7016223B2 (en) Laminated material
JPS5825534B2 (en) Steel continuous casting mold
CN117627993A (en) Conveying cylinder, manufacturing method of conveying cylinder and pumping equipment
JPH06146824A (en) Titanium engine valve