JPH04120257A - Treatment for cu-su alloy for nb3sn superconducting wire - Google Patents

Treatment for cu-su alloy for nb3sn superconducting wire

Info

Publication number
JPH04120257A
JPH04120257A JP2237001A JP23700190A JPH04120257A JP H04120257 A JPH04120257 A JP H04120257A JP 2237001 A JP2237001 A JP 2237001A JP 23700190 A JP23700190 A JP 23700190A JP H04120257 A JPH04120257 A JP H04120257A
Authority
JP
Japan
Prior art keywords
alloy
superconducting wire
treatment
nb3sn
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237001A
Other languages
Japanese (ja)
Other versions
JP2871826B2 (en
Inventor
Minoru Ishikawa
石川 實
Kiyouta Suzai
須斎 京太
Kinya Ogawa
欽也 小川
Takuya Suzuki
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2237001A priority Critical patent/JP2871826B2/en
Publication of JPH04120257A publication Critical patent/JPH04120257A/en
Application granted granted Critical
Publication of JP2871826B2 publication Critical patent/JP2871826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a Cu-Sn alloy sufficiently homogeneous and free from defects by successively subjecting a Cu-Sn alloy for Nb3Sn superconducting wire to homogenizing heat treatment and hot isostatic pressing treatment under respectively specified conditions. CONSTITUTION:Homegenizing heat treatment is applied to a Cu-Sn alloy for Nb3Sn superconducting wire at a temp. in the region between 500 deg.C and the solidus temp. of the average composition of this alloy. Then, hot isostatic pressing treatment is performed at >=350 deg.C under a pressure of >=sigma0.2 of this alloy. By this method, the Cu-Sn alloy capable of producing an extra fine and multiconductor Nb3Sn superconducting wire having a filament diameter of several microns to submicron can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNb3Sn超電導線用Cu−Sn系合金の処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for processing a Cu-Sn alloy for Nb3Sn superconducting wire.

〔従来技術〕[Prior art]

NtlaSn超電導線は通常、ブロンズ法により製造さ
れている。この方法は、Cu−3n系合金(ブロンズ)
鋳塊に多数本の穴をあけ、各人にNb棒を挿入した後、
熱間押出、中間焼鈍を含む伸線加工を行って所望線径の
複合線材を得た後、この複合線材にNb3Sn生成のた
めの熱処理を施すというものである。
NtlaSn superconducting wires are usually manufactured by a bronze method. This method uses Cu-3n alloy (bronze).
After drilling many holes in the ingot and inserting Nb rods into each hole,
After a wire drawing process including hot extrusion and intermediate annealing is performed to obtain a composite wire rod of a desired wire diameter, this composite wire rod is subjected to heat treatment to generate Nb3Sn.

〔課題〕〔assignment〕

ところで最近、超電導線の特性に対する要求が厳しくな
ってきており、超電導線内のNtlsSnフィラメント
は極細化、多心化の傾向にある。しかしNb3Snフイ
ラメントを極細化、多心化すると、フィラメントの断線
が多くなり、所期の特性が得られない、長尺条長の超電
導線が製造できない、製品歩留りが低下する等の問題が
生じている。
Recently, however, requirements for the characteristics of superconducting wires have become stricter, and the NtlsSn filaments in superconducting wires are becoming increasingly thinner and more multi-core. However, when Nb3Sn filaments are made ultra-thin and multi-core, problems arise such as the filament becoming more likely to break, making it impossible to obtain the desired characteristics, making it impossible to manufacture long superconducting wires, and reducing product yield. There is.

本発明の目的は、Nb3Snフイラメントが極細化、多
心化された超電導線の製造を可能にするNb3Sn超電
導線用Cu−8n系合金の処理方法を提供することにあ
る。
An object of the present invention is to provide a method for processing a Cu-8n alloy for an Nb3Sn superconducting wire, which makes it possible to manufacture a superconducting wire in which the Nb3Sn filament is made extremely thin and multi-core.

〔課題の解決手段〕[Means for solving problems]

Nb3Sn超電導線中のNb3Snフイラメントに断線
が発生するのは、Cu−Sn系合金中に存在するブロー
ホールやミクロな偏析のためである。その理由は、Cu
−3n系合金とNbとの複合材を減面加工するときに、
Cu−3n系合金中にブローホールや偏析があると、そ
の付近の応力場が不均一になり、細く引き延ばされたN
bフィラメントがさらに加工されるときに、くびれや断
線が発生しやすくなるからである。
Disconnection occurs in the Nb3Sn filament in the Nb3Sn superconducting wire because of blowholes and microscopic segregation that exist in the Cu-Sn alloy. The reason is that Cu
- When reducing the area of a composite material of 3n alloy and Nb,
If there is blowhole or segregation in the Cu-3n alloy, the stress field in the vicinity becomes non-uniform, and the N
This is because when the b filament is further processed, constrictions and wire breaks are likely to occur.

特にNbaSn超電導線用のCu−Sn系合金は固溶限
界ぎりぎりまでSnを固溶させているので、Snの偏析
が生じやすい。偏析やブローホールを完全に解消するこ
とは現在の溶解鋳造技術の改良では困難である。
In particular, in Cu-Sn alloys for NbaSn superconducting wires, Sn is dissolved in solid solution up to the very limit of solid solution, so Sn segregation tends to occur. It is difficult to completely eliminate segregation and blowholes by improving current melting and casting technology.

そこで本発明は、Nb3Sn超電導線用Cu−3n系合
金に、0500℃以上、その合金の平均組成の固相線以
下の温度での均質化熱処理と、0350℃以上の温度と
、その合金のσ。、2以上の圧力でのHIP(熱間静水
圧加圧)処理を施すこととしたものである。なおσ。、
、とは0.2%耐力、すなわち応力除去後に0.2%の
永久歪を生じる応力値である。
Therefore, the present invention applies homogenization heat treatment to a Cu-3n alloy for Nb3Sn superconducting wire at a temperature of 0500°C or higher and below the solidus line of the average composition of the alloy, a temperature of 0350°C or higher, and a σ of the alloy. . , HIP (hot isostatic pressing) treatment is performed at a pressure of 2 or more. Furthermore, σ. ,
, is 0.2% proof stress, that is, a stress value that causes 0.2% permanent strain after stress removal.

■の均質化熱処理はCu−3n系合金の偏析を解消する
ために、■のHIP処理はCu−3n系合金のブローホ
ールを解消するために行うものであり、この二つの処理
はどちらを先に行ってもよい。
The homogenization heat treatment (①) is performed to eliminate segregation of the Cu-3n alloy, and the HIP treatment (②) is performed to eliminate blowholes in the Cu-3n alloy. Which of these two treatments should be performed first? You can go to

均質化熱処理の温度を、500℃以上、Cu−Sn系合
金の平均組成の固相線以下としたのは、500℃未満で
は拡散速度が遅すぎ、均質化に時間がかかりすぎて工業
的でないからであり、また固相線を越える温度では被処
理材の形状が保持できなくなるからである。
The temperature of the homogenization heat treatment was set at 500°C or higher and below the solidus line of the average composition of the Cu-Sn alloy because if it was lower than 500°C, the diffusion rate would be too slow and homogenization would take too long, making it unsuitable for industrial use. This is because the shape of the material to be treated cannot be maintained at temperatures exceeding the solidus line.

またHIP処理の条件を、350℃以上の温度、その合
金のσ。、2以上の圧力としたのは、σ。、2未満の圧
力ではCu−3n系合金のブローホールが十分につぶれ
ないからであり、350℃未満ではブローホールがつぶ
れても金属学的に接合しないからである。
In addition, the conditions for HIP treatment were a temperature of 350°C or higher, and σ of the alloy. , the pressure of 2 or more is σ. This is because if the pressure is less than 2, the blowhole of the Cu-3n alloy will not be sufficiently crushed, and if the pressure is less than 350°C, even if the blowhole is crushed, metallurgical bonding will not occur.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例l Cu−14,3wt%Sn−0,2wt%Ti合金を溶
解鋳造した。この鋳塊からスライスを切り取って調査し
た結果では、配合組成に対して最大5wt%のSn偏析
部が認められた。またスライス全面に大きさ8〜15μ
mの円形状や多角形状のブローホールが無数に観察され
た。
Example 1 A Cu-14, 3wt% Sn-0, 2wt% Ti alloy was melted and cast. As a result of cutting a slice from this ingot and investigating it, a maximum of 5 wt % of Sn was segregated in the blended composition. In addition, the size of 8 to 15μ is spread over the whole slice.
Innumerable circular and polygonal blowholes were observed.

この鋳塊スライスを520±5℃で40時間、真空中ま
たは不活性ガス雰囲気中で熱処理した。その後のスライ
スを調査したところ、ブローホールはそのまま残存して
いたが、偏析部の特にSnリッチ側はきれいに偏析が解
消していた。
This ingot slice was heat treated at 520±5° C. for 40 hours in a vacuum or an inert gas atmosphere. When the subsequent slices were examined, the blowholes remained as they were, but the segregation had been clearly resolved, especially in the Sn-rich side of the segregation areas.

次いで上記合金鋳塊300na+φX 700mm1に
、上記と同じ条件で均質化熱処理を施し、その後、鋳塊
全体をHIP処理設備のアルゴンガス内に投入して、1
00℃/hrの昇温条件で400℃まで到達させ、20
00Kgf/cm’の圧力でHIP処理を1時間行った
。400℃でのσ。、、は14Kgf/mm”である。
Next, the alloy ingot 300na + φ
The temperature was raised to 400°C under the temperature increase condition of 00°C/hr, and
HIP treatment was performed at a pressure of 0.00 kgf/cm' for 1 hour. σ at 400℃. , , is 14Kgf/mm".

その後、鋳塊の両端部および中央部からスライスを切り
出して調査したところ、Sn偏析は解消されており、ま
たブローホールの存在も認められず、ブローホールは完
全につぶれて金属学的に接合していた。
Afterwards, slices were cut from both ends and the center of the ingot and examined, and it was found that the Sn segregation had been eliminated, and no blowholes were found; the blowholes were completely crushed and metallurgically bonded. was.

そこで以上の処理を施した鋳塊を用いて超電導線を製造
した。まず鋳塊を鍛造加工し、200mmφに外削後、
19本の穴をあけてNb棒を挿入した。この複合材を熱
間押出し、次いで冷間加工と焼鈍を繰り返して所定の線
径の複合線材を得た後、それを定尺切断した。
Therefore, a superconducting wire was manufactured using the ingot subjected to the above treatment. First, the ingot was forged, and after external cutting to 200mmφ,
Nineteen holes were made and Nb rods were inserted. This composite material was hot-extruded, then cold-worked and annealed repeatedly to obtain a composite wire with a predetermined wire diameter, which was then cut to a regular length.

次に均質化熱処理、HIP処理を施した上記と同じ鋳塊
に、上記と同じ鍛造加工、外削を行った後、前の工程で
定尺切断された複合線材を挿入した。この複合材を熱間
押出し、次いで冷間加工と焼鈍を繰り返して所定の線径
の複合線材を得た後、それを定尺切断した。
Next, the same ingot as above which had been subjected to homogenization heat treatment and HIP treatment was subjected to the same forging processing and external cutting as above, and then the composite wire material cut to length in the previous step was inserted. This composite material was hot-extruded, then cold-worked and annealed repeatedly to obtain a composite wire with a predetermined wire diameter, which was then cut to a regular length.

次に定尺切断された複合線材を多数本束ねてTaのバリ
アを巻き、Cu管中に挿入し、これを熱間押出した後、
冷間加工と焼鈍を繰り返して外径3.0alfflまで
加工した。
Next, a large number of composite wire rods cut to a fixed length are bundled together, wrapped around a Ta barrier, inserted into a Cu tube, and hot extruded.
Cold working and annealing were repeated until the outer diameter was 3.0 alffl.

このようして得られた線材にNb、Sn生成のための熱
処理を施し、3.0mll1φ、ブロンズ比3.2、フ
ィラメント数120.000本のNb3Sn超電導線を
製造した。この超電導線を調査した結果、フィラメント
の断線は認められず、Jc(at 16T)は248^
/mm”であった。
The thus obtained wire was heat-treated to generate Nb and Sn to produce a Nb3Sn superconducting wire with a size of 3.0 ml 1φ, a bronze ratio of 3.2, and a number of filaments of 120,000. As a result of investigating this superconducting wire, no filament breakage was found, and Jc (at 16T) was 248^
/mm”.

実施例2 実施例1と同じCu−14,3wt%Sn−0,2wt
%Ti合金鋳塊を用いた。この鋳塊は実施例1で説明し
たように配合組成に対して最大5wt%のSn偏析部が
認められ、また大きさ8〜15μ0の円形状や多角形状
のブローホールが無数に存在するものである。
Example 2 Same as Example 1 Cu-14,3wt%Sn-0,2wt
%Ti alloy ingot was used. As explained in Example 1, in this ingot, a maximum of 5 wt% of Sn segregation was observed based on the composition, and there were countless circular and polygonal blowholes with a size of 8 to 15μ0. be.

この鋳塊160mmφX 500mm lをHIP処理
設備のアルゴンガス内に投入し、100℃/hrの昇温
条件で350℃まで到達させ、2000Kgf/c+n
2の圧力でHIP処理を1時間行った。その後、鋳塊の
両端部および中央部からスライスを切り出して調査した
ところ、ブローホールは完全につぶれていて、ブローホ
ールの存在は認められなかった。しかしSn偏析部はそ
のまま存在していた。
This ingot 160 mmφ
HIP treatment was performed at a pressure of 2 for 1 hour. Thereafter, when slices were cut out from both ends and the center of the ingot and examined, the blowhole was completely crushed, and no blowhole was observed. However, the Sn segregation area remained as it was.

次にHIP処理後の鋳塊を520±5℃で40時間、真
空中または不活性ガス雰囲気中で熱処理した。
Next, the ingot after the HIP treatment was heat treated at 520±5° C. for 40 hours in a vacuum or an inert gas atmosphere.

その後、この鋳塊からスライスを切り出して調査したと
ころ、実施例1と同様、特にSnlJツチ側の偏析はき
れいに解消していた。
Thereafter, a slice was cut out from this ingot and examined, and as in Example 1, segregation, especially on the SnlJ side, was clearly eliminated.

この鋳塊を用いて実施例1と同じ工程でNb、Sn超電
導線を製造した。この超電導線のJc(at 16T)
は245^/mm ”であり、フィラメントの断線は認
められなかった。
Using this ingot, a Nb, Sn superconducting wire was manufactured in the same process as in Example 1. Jc (at 16T) of this superconducting wire
was 245^/mm'', and no filament breakage was observed.

比較例1 ブロンズ鋳塊の均質化熱処理の温度を470℃としたこ
と以外は実施例1と同じ方法でNb、Sn超電導線を製
造した。
Comparative Example 1 A Nb, Sn superconducting wire was manufactured in the same manner as in Example 1, except that the temperature of the homogenization heat treatment of the bronze ingot was 470°C.

比較例2 ブロンズ鋳塊のHIP処理の温度を330℃としたこと
以外は実施例1と同じ方法でNb、Sn超電導線を製造
した。330℃でのσ。、、は14Kgf/市2である
Comparative Example 2 A Nb, Sn superconducting wire was produced in the same manner as in Example 1 except that the temperature of the HIP treatment of the bronze ingot was 330°C. σ at 330°C. , is 14Kgf/city2.

比較例3 ブロンズ鋳塊に均質化熱処理およびHIP処理を施さな
いこと以外は実施例1と同じ方法でNb3Sn超電導線
を製造した。
Comparative Example 3 A Nb3Sn superconducting wire was manufactured in the same manner as in Example 1 except that the bronze ingot was not subjected to homogenization heat treatment or HIP treatment.

比較例1〜3で製造した超電導線のJc測定結果を実施
例1.2と比較して示すと表−1のとおりである。
Table 1 shows the Jc measurement results of the superconducting wires manufactured in Comparative Examples 1 to 3 in comparison with Example 1.2.

表−1 〔発明の効果〕 以上説明したように本発明によれば、充分に均質で、無
欠陥のCu−Sn系合金を得ることができるため、フィ
ラメント径が数ミクロン−サブミクロンの極細、多心N
b、Sn超電導線をフィラメントの断線を生じさせるこ
となく製造することが可能となる。したがってNb3S
n超電導線の臨界電流密度が向上するだけでなく、製品
歩留りが向上し、超電導線の条長を長尺化できる等、そ
の工業上の効果はきわめて顕著である。
Table 1 [Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a sufficiently homogeneous and defect-free Cu-Sn alloy. Multi-centered N
b. It becomes possible to manufacture Sn superconducting wire without causing filament breakage. Therefore, Nb3S
It not only improves the critical current density of the n-superconducting wire, but also improves the product yield and makes it possible to lengthen the length of the superconducting wire, which is an extremely significant industrial effect.

Claims (1)

【特許請求の範囲】 1、Nb、Sn超電導線用Cu−Sn系合金に、500
℃以上、その合金の平均組成の固相線以下の温度で均質
化熱処理を施した後、350℃以上の温度と、その合金
のσ_0_._2以上の圧力でHIP(熱間静水圧加圧
)処理を施すことを特徴とするNb_3Sn超電導線用
Cu−Sn系合金の処理方法。 2、Nb、Sn超電導線用Cu−Sn系合金に、350
℃以上の温度と、その合金のσ_0_._2以上の圧力
でHIP処理を施した後、500℃以上、その合金の平
均組成の固相線以下の温度で均質化熱処理を施すことを
特徴とするNb_3Sn超電導線用Cu−Sn系合金の
処理方法。
[Claims] 1. 500% Cu-Sn based alloy for Nb, Sn superconducting wire
After homogenization heat treatment at a temperature of 350°C or higher and below the solidus of the average composition of the alloy, the alloy is heated to a temperature of 350°C or higher and σ_0_. A method for processing a Cu-Sn alloy for Nb_3Sn superconducting wire, characterized by performing HIP (hot isostatic pressing) treatment at a pressure of _2 or more. 2. 350 for Cu-Sn alloy for Nb, Sn superconducting wire
℃ or higher and the alloy's σ_0_. Processing of a Cu-Sn alloy for Nb_3Sn superconducting wire, which is characterized by performing HIP treatment at a pressure of _2 or higher, followed by homogenization heat treatment at a temperature of 500°C or higher and below the solidus line of the average composition of the alloy. Method.
JP2237001A 1990-09-10 1990-09-10 Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire Expired - Lifetime JP2871826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237001A JP2871826B2 (en) 1990-09-10 1990-09-10 Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237001A JP2871826B2 (en) 1990-09-10 1990-09-10 Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire

Publications (2)

Publication Number Publication Date
JPH04120257A true JPH04120257A (en) 1992-04-21
JP2871826B2 JP2871826B2 (en) 1999-03-17

Family

ID=17008918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237001A Expired - Lifetime JP2871826B2 (en) 1990-09-10 1990-09-10 Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP2871826B2 (en)

Also Published As

Publication number Publication date
JP2871826B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JPH09316572A (en) Heat treatment for titanium alloy casting
US3019102A (en) Copper-zirconium-hafnium alloys
EP0589609B1 (en) Method of producing Cu - Ag alloy based conductive material
JPH04120257A (en) Treatment for cu-su alloy for nb3sn superconducting wire
JP3433937B2 (en) Method of manufacturing superconducting alloy
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JP5065582B2 (en) Superconducting device and manufacturing method thereof
JPH06103809A (en) Manufacture of cu-ag alloy wire
JP3108496B2 (en) Superconducting wire manufacturing method
JPH03281759A (en) Manufacture of nb-ti series alloy for superconducting wire
JP2846434B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP3320455B2 (en) Method for producing Cu-Ag alloy conductor
JPH03197630A (en) Method for hot-working intermetallic compound ti-al base alloy
JP2001181811A (en) Method of manufacturing chromium-zirconium-type copper alloy wire
US4036642A (en) Copper base alloy containing titanium, antimony and chromium
JP4019892B2 (en) Manufacturing method of electrode wire for wire electric discharge machining and electrode wire for wire electric discharge machining manufactured using the manufacturing method
JP4434576B2 (en) Method for producing Nb3 (Al, Ge) or Nb3 (Al, Si) compound-based superconducting multi-core wire
JP3106278B2 (en) Method for producing Nb3 Sn-based superconducting wire
JP3080500B2 (en) Method for producing compound superconducting wire
JPH09324247A (en) Method for heat-treating titanium alloy casting
JPS6079612A (en) Method of producing nb3sn superconductive wire
JPS62218537A (en) Aluminum fine wire
JPH0528860A (en) Manufacture of superconductive wire of nb3sn type
JPH0896633A (en) Manufacture of nb3sn superconducting wire