JPH0411925A - Air cleaning apparatus for submarine boat - Google Patents

Air cleaning apparatus for submarine boat

Info

Publication number
JPH0411925A
JPH0411925A JP2111196A JP11119690A JPH0411925A JP H0411925 A JPH0411925 A JP H0411925A JP 2111196 A JP2111196 A JP 2111196A JP 11119690 A JP11119690 A JP 11119690A JP H0411925 A JPH0411925 A JP H0411925A
Authority
JP
Japan
Prior art keywords
air
cabin
seawater
sea water
separation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2111196A
Other languages
Japanese (ja)
Inventor
Masaaki Negoro
正明 根来
Masaki Minemoto
松本 ▲ひろ▼也
Hiroya Matsumoto
松本 曠世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2111196A priority Critical patent/JPH0411925A/en
Publication of JPH0411925A publication Critical patent/JPH0411925A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To stably and continuously treat the polluted air by providing a CO2 separation unit which dissolves CO2 in the CO contg. air in a cabin into sea water, an air circulation flow passage through which the cleaned air is returned to the cabin, and a sea water circulation flow passage. CONSTITUTION:The polluted air in the cabin is entered into a membrane separation unit 3 through a compressor 1 and a gas holder 2, and CO2 is removed here and the cleaned air is returned to the cabin. The sea water in the outside is introduced into the membrane separation unit 3 to dissolve CO2 and then is discharge to the outside of boat by a pump, while a compressor 1 is controlled according to the pressure of sea water in the outside to continuously keep the cleanliness in a set value. The membrane separation unit 3 consists of the modules in which hollow threads of hydrophobic porous membrane are made into a bundle, and the polluted air is flowed through the inside of the hollow threads and the sea water is allowed to flow around the outer peripheries to dissolve the CO2 in the polluted air into the sea water trough the hollow thread, and thus CO2 is separated. By this method, polluted air is stably and continuously treated with a comparatively simple apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は潜水船用空気浄化装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an air purification device for a submarine.

〔従来の技術〕[Conventional technology]

大気中のCO2濃度は約350ppmであるが、潜水船
では、搭乗員の呼吸等により、その濃度は約11000
0ppに達するのでCO2Mt分を除去してキャビン内
空気を浄化するために空気浄化装!か搭載されている。
The concentration of CO2 in the atmosphere is approximately 350 ppm, but on a submersible, the concentration increases to approximately 11,000 ppm due to the breathing of the crew.
Since it reaches 0pp, an air purification system is installed to remove CO2Mt and purify the cabin air! Is it installed?

すなわち、第3図系統図に示すように、基本機器は吸着
剤01を充填した反応塔02であるか、これを使用する
空気浄化工程は吸着工程、脱着再生工程に大別される。
That is, as shown in the system diagram of FIG. 3, the basic equipment is a reaction tower 02 filled with an adsorbent 01, and the air purification process using this is roughly divided into an adsorption process and a desorption/regeneration process.

吸着工程はキャビン内の汚染空気を送風機03を通して
反応塔02に導き、こ\で吸着剤01によってCO2を
吸着除去しCO2が除かれた浄化空気はガス排出管04
を通して再びキャビンに戻り、脱着再生工程は反応によ
って吸着されたCO2を脱着し吸着剤を再生する工程で
、加熱蒸気を蒸気導入管05を通して反応塔内に送り熱
によってCO2を吸着剤から分離し、脱着された高濃度
のCO2ガスはそのま\浮上時に排圧するか又は潅水時
に圧縮機07によって加圧して船外海中に排出する。
In the adsorption process, contaminated air in the cabin is guided through the blower 03 to the reaction tower 02, where CO2 is adsorbed and removed by the adsorbent 01, and the purified air from which CO2 has been removed is sent to the gas exhaust pipe 04.
The desorption and regeneration process is a process of desorbing CO2 adsorbed by reaction and regenerating the adsorbent.Heated steam is sent into the reaction tower through the steam introduction pipe 05, and the CO2 is separated from the adsorbent by heat. The desorbed high-concentration CO2 gas is either directly depressurized during surfacing, or is pressurized by the compressor 07 during irrigation and discharged into the sea outside the vessel.

こ\で、吸着剤によるCO□の吸着及び脱看反応は一般
的に次のような変化を利用するのである。
Here, the adsorption and desorption reaction of CO□ by an adsorbent generally utilizes the following changes.

2(R−N13)(アミン吸着剤)+CO2+H20*
”j、Wr(R−NHs)zC(h (CO2が吸着さ
れたアミン)〔発明が解決しようとする課題〕 しかしながら、このような装置では、搭乗員がキャビン
内で排出するCO2による汚染空気を連続的操作で浄化
することができない。これは、反応塔を2基あるいは3
基配置し、一つの反応塔で吸着している間に他の吸着塔
(COzが飽和吸着したもの)を再生する回分式あるい
は半連続式方法であることによる。
2 (R-N13) (amine adsorbent) + CO2 + H20*
”j, Wr(R-NHs)zC(h (Amine with CO2 adsorbed) [Problem to be solved by the invention] However, with such a device, the air contaminated by CO2 emitted by the crew in the cabin is It is not possible to purify in continuous operation.This is because two or three reaction columns
This is because it is a batch or semi-continuous method in which COz is adsorbed in one reaction tower while another adsorption tower (in which COz is saturated) is regenerated.

吸着脱着操作を切換えながら使用することは、従来、技
術的には可能ではあるもの\、装置が複雑となり、さら
に再生時には蒸気を用いて加熱再生しなければならない
ので大きな熱源を要するから実際的ではない。
Although it has been technically possible to use the adsorption/desorption operation while switching between them, it is not practical because the equipment becomes complicated and the regeneration requires heating and regeneration using steam, which requires a large heat source. do not have.

本発明はこのような事情に鑑みて提案されたもので、比
較的簡単な装置で、汚染空気を安定的かつ連続的に処理
することができる実際的な潜水船用空気浄化装置を提供
することを目的とする。
The present invention has been proposed in view of the above circumstances, and aims to provide a practical air purification device for a submersible vessel that can stably and continuously treat contaminated air with a relatively simple device. purpose.

〔課題を解決するための手段〕 そのために、本発明は、複数の疎水性薄膜を介して仕切
られた容器の一側にCO2含有空気を導入すると\もに
他側に海水を導入し上記薄膜を透過するC O2を海水
に溶解するC 02分離装置と、潜水船キャビンのCO
2含有空気を加圧し、上記COz分離装置を経て清浄化
したのちこれを同キャビンへ戻す空気循環流路と、外部
海水をポンプを介して上記CO2分離装置を経て外部に
還流する海水循環流路とを具えたことを特徴とする。
[Means for Solving the Problems] To this end, the present invention provides that when CO2-containing air is introduced into one side of a container partitioned through a plurality of hydrophobic thin films, seawater is introduced into the other side, and the thin film A CO2 separator that dissolves the CO2 that passes through the seawater into seawater, and a CO2 separator that dissolves the CO2 that passes through
2. An air circulation channel that pressurizes the air containing air, cleans it through the COz separator, and returns it to the cabin; and a seawater circulation channel that returns external seawater to the outside via a pump, via the CO2 separator. It is characterized by having the following.

〔作用〕[Effect]

このような構成によれば、キャビンの汚染空気は圧縮機
、ガスホルダーを介して膜分離装置に入り、こ\で、汚
染空気中のCO2は除去され、清浄空気がキャビンへ戻
る。
According to such a configuration, contaminated air from the cabin enters the membrane separation device via the compressor and gas holder, where CO2 in the contaminated air is removed and clean air returns to the cabin.

一方、外部海水は膜分離装置に導入され、CO2を溶解
したのち、ポンプで船外へ排出され、その間、外部海水
の水圧に連動して圧縮機が制御され、キャビン内空気の
清浄度を連続的に設定値に保持する。
On the other hand, external seawater is introduced into a membrane separation device, dissolves CO2, and then is pumped out of the ship. During this time, the compressor is controlled in conjunction with the water pressure of the external seawater, continuously maintaining the cleanliness of the cabin air. to the set value.

200μm、内径約180μmの中空糸を束状にしたモ
ジュールよりなり、中空糸の中空孔に汚染空気を流すと
\もに、その外周に海水を流し、汚染空気中のCOzを
中空糸を透過して海水中に溶解することで分離する。
It consists of a module made up of a bundle of hollow fibers with a diameter of 200 μm and an inner diameter of approximately 180 μm. When contaminated air flows through the hollow fiber holes, seawater flows around the outer periphery of the module, and COz in the contaminated air passes through the hollow fibers. It is separated by dissolving it in seawater.

〔実施例〕〔Example〕

本発明の一実施例を図面について説明すると、第1図は
その全体系統図、第2図は第1図の膜分離装置の原理説
明図である。
An embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is an overall system diagram thereof, and FIG. 2 is a diagram illustrating the principle of the membrane separation apparatus of FIG. 1.

まず、第1図において、キャビン内の汚染空気は圧縮機
で加圧してガスホルダー2に一旦貯蔵し、これを膜分離
装置3に導入しCO2を除去したのち再びキャビン内に
戻す。
First, in FIG. 1, contaminated air in the cabin is pressurized by a compressor and temporarily stored in a gas holder 2, introduced into a membrane separator 3 to remove CO2, and then returned to the cabin.

膜分離装置3はその中に中空糸111f4を多数充填し
これを両端で止めケースの内に納めたちのであり、汚染
空気は中空糸膜の内側、外側いずれを通してもよいが、
本実施例では内側を流す構造を採っている。一方、船外
より海水導入管5を通して膜分離装置3に海水を導入し
、中空糸膜4を透過して後記する要頌で、CO2を吸収
した海水はポンプ6で外殻9から船外へ排出する。
The membrane separation device 3 has a large number of hollow fibers 111f4 filled therein, which are fixed at both ends and housed in a case, and contaminated air may be passed either inside or outside the hollow fiber membranes.
In this embodiment, a structure is adopted in which the inside is allowed to flow. On the other hand, seawater is introduced into the membrane separator 3 from outside the ship through the seawater inlet pipe 5, passes through the hollow fiber membrane 4, and the seawater that has absorbed CO2 is pumped through the outer shell 9 to the outside of the ship using the pump 6. Discharge.

ところで、海水の圧力は潜水船の潜水深度によって変わ
るので、圧力検出器7によって海水圧力を検出し、圧縮
機1の圧縮圧力を調節し、圧力調整器8と連動すること
で汚染空気の膜分離装置への入口圧力を制御して中空糸
膜が圧力差によって破損しないようにする。潜水深度か
小さい場合は圧縮機10代わりに低圧送風機を使用して
もよい。
By the way, the pressure of seawater changes depending on the diving depth of the submersible, so the pressure detector 7 detects the seawater pressure, adjusts the compression pressure of the compressor 1, and works in conjunction with the pressure regulator 8 to perform membrane separation of contaminated air. The inlet pressure to the device is controlled to ensure that the hollow fiber membranes are not damaged by pressure differentials. If the diving depth is small, a low pressure blower may be used instead of the compressor 10.

こ\で、膜分離装置の原理を説明すると、第2図モデル
図に示すように、ポリプロピレン。
Now, to explain the principle of membrane separation equipment, as shown in the model diagram in Figure 2, polypropylene is used.

ポリエチレン、四弗化エチレン、シリコンゴム等の透過
性薄膜の一側に汚染空気を流すと\もに、他側に海水を
流し、空気側のCO2分圧をPl、海水側のCO,分圧
をPlとすると、Plは大気(1atl)と平衡するC
 O2の溶解分圧を示しておりこの値は小さい。また海
水を高流速で流せば海水中のCO2分圧は高くならず、
実際にはP1〜P2の分圧を推進力として空気中のCO
2がどんどん海水に溶解してゆくこと\なる。
When contaminated air is flowed on one side of a permeable thin film made of polyethylene, tetrafluoroethylene, silicone rubber, etc., seawater is flowed on the other side, and the partial pressure of CO2 on the air side is Pl, and the partial pressure of CO2 on the seawater side is Let Pl be Pl, then Pl is C in equilibrium with the atmosphere (1atl)
It indicates the dissolution partial pressure of O2, and this value is small. Also, if seawater flows at a high velocity, the partial pressure of CO2 in seawater will not increase.
In reality, CO in the air is generated using the partial pressure of P1 to P2 as a driving force.
2 will gradually dissolve into seawater.

これは、上記透過性薄膜は孔径0.01〜0.1μmの
疎水性多孔質の高分子膜であり、分子状ガスは透過膜を
透過するが、水は透過しない特性を有し、CO2は汚染
空気中のN2.0□に比べて透過推進力を大きくとれる
ので、これを利用してCO2を選択的に分離することが
できる。
This is because the above-mentioned permeable thin membrane is a hydrophobic porous polymer membrane with a pore size of 0.01 to 0.1 μm, and has the characteristic that molecular gases permeate through the permeable membrane, but water does not. Since the permeation driving force can be larger than that of N2.0□ in contaminated air, CO2 can be selectively separated using this.

溶解するC 02量をQとすると Q=K −A(P1
〜P2)で表わされ、こ\でKはCO2の透過係数、A
は膜の面積を示し、膜分離装置全体としてはAは膜の総
面積、P、−Plは膜の入口、出口の平均分圧差となる
If the amount of C02 to be dissolved is Q, then Q=K −A(P1
~P2), where K is the permeability coefficient of CO2 and A
represents the area of the membrane, and for the membrane separation device as a whole, A is the total area of the membrane, and P and -Pl are the average partial pressure differences between the inlet and outlet of the membrane.

一方、N2.02のキャビン内の濃度は増加する要因が
ないので1気圧の状態では外界と同じく一定である。海
水中のN2.02は大気1 at+nの平衡分圧分だけ
溶解しているので、キャビン排出空気のN2.02は海
水中に溶解させるための分圧差がない。従ってキャビン
内で濃度が高くなったCO2のみか透過膜を介して海水
中に溶解し選択的に分離できること\なる。
On the other hand, the concentration of N2.02 in the cabin remains constant at 1 atm, just like in the outside world, since there is no factor to increase it. Since the N2.02 in the seawater is dissolved by the equilibrium partial pressure of the atmosphere 1 at+n, there is no partial pressure difference for the N2.02 in the cabin exhaust air to be dissolved in the seawater. Therefore, only the CO2 that has increased in concentration inside the cabin can be dissolved in seawater through the permeable membrane and selectively separated.

本実施例では、透過膜として外径的200μm。In this example, the outer diameter of the permeable membrane is 200 μm.

内径的180μmの中空糸を束状にしたモジュールを採
用し、中空糸の内側に汚染空気を流すとともに外側に海
水を流すことで、モジュールから出る空気はCO2が除
去された清浄な空気(N2と02が含まれる)を再びキ
ャビンに戻すようにする。一方船外から−取り入れた外
部海水はモジュールを透過したCo2を溶解して船外に
排出される。
A module with a bundle of hollow fibers with an inner diameter of 180 μm is used, and by flowing contaminated air inside the hollow fibers and flowing seawater outside, the air coming out of the module is clean air from which CO2 has been removed (N2 and 02) to return to the cabin again. On the other hand, external seawater taken in from outside the ship dissolves the Co2 that has passed through the module and is discharged outside the ship.

〔発明の効果〕〔Effect of the invention〕

このような装置によれば、キャビン汚染空気のCO2分
圧が高く、外部海水のCO□平衡分圧との間に圧力差が
あること、また他のガス(N2.O□)は圧力差がない
ことに着眼して圧力差によってCO’tが選択的に分離
でき、潅水を多量に利用することで大きなCO2分圧差
を維持することができるので膜分離機能を十分に発揮で
きる。
According to such a device, the CO2 partial pressure of the cabin contaminated air is high and there is a pressure difference between it and the CO□ equilibrium partial pressure of the external seawater, and the pressure difference of other gases (N2.O□) is high. CO't can be selectively separated by the pressure difference, and by using a large amount of irrigation water, a large CO2 partial pressure difference can be maintained, so the membrane separation function can be fully demonstrated.

このような手段によれば装置の複雑さと熱源の必要性及
び連続運転上の諸問題かすべて解決できる。
Such measures overcome the complexity of the equipment, the need for a heat source, and the problems associated with continuous operation.

要するに本発明によれば、複数の疎水性薄膜を介して仕
切られた容器の一例にCO□含有空気を導入すると\も
に他側に潅水を導入し上記薄膜を透過するC O2を渇
水に溶解するCO2分離装置と、潜水船キャビンのCO
2含有空気を加圧し、上記COZ分a装置を経て清浄化
したのちこれを同キャビンへ戻す空気循環流路と、外部
海水をポンプを介して上記CO2分離装置を経て外部に
還流する海水循環流路とを具えたことにより、比較的簡
単な装置で、汚染空気を安定的かつ連続的に処理するこ
とができる実際的な潜水船用空気浄化装置を得るから、
本発明は産業上極めて有益なものである。
In short, according to the present invention, when CO□-containing air is introduced into one example of a container partitioned through a plurality of hydrophobic thin films, irrigation water is also introduced into the other side, and the CO2 that permeates through the thin films is dissolved in the dry water. CO2 separator and CO2 in the submarine cabin
An air circulation flow path that pressurizes the air containing 2 and returns it to the cabin after being purified through the COZ separator, and a seawater circulation flow that returns external seawater to the outside via a pump via the CO2 separation device. By providing a practical air purifying device for a submersible vessel that can stably and continuously treat contaminated air with a relatively simple device,
The present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体系統図、第2図は
第1図の膜分離装置の原理説明図である。 第3図は公知の潜水船用空気浄化装置を示す系統図であ
る。 1・・・圧縮機、2・・・ガスホルダー 3・・・膜分
離装置、4・・・中空糸膜、5・・・海水導入管、6・
・・ポンプ、7・・・圧力検出器、8・・・圧力調整器
、9・・・外殻、11・・・吸着剤、12・・・反応塔
、13・・・送風機、14・・・ガス排出管、15・・
・蒸気導入管、16・・・炭酸ガス排出管、17・−・
圧縮機、代理人 弁理士 塚 本 正 文 第 図 第 図 プ!沿7人 浴水 第 図 啄看工I7 H兇看4’f−1社
FIG. 1 is an overall system diagram showing one embodiment of the present invention, and FIG. 2 is a diagram explaining the principle of the membrane separation apparatus shown in FIG. FIG. 3 is a system diagram showing a known air purifying device for a submarine. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Gas holder 3... Membrane separation device, 4... Hollow fiber membrane, 5... Seawater introduction pipe, 6...
... Pump, 7... Pressure detector, 8... Pressure regulator, 9... Outer shell, 11... Adsorbent, 12... Reaction tower, 13... Blower, 14...・Gas exhaust pipe, 15...
・Steam introduction pipe, 16... Carbon dioxide gas discharge pipe, 17...
Compressor, agent, patent attorney Masaru Tsukamoto 7 people's bathing water diagram Takukan I7 H Kankan 4'f-1 company

Claims (1)

【特許請求の範囲】[Claims] 複数の疎水性薄膜を介して仕切られた容器の一側にCO
_2含有空気を導入するとゝもに他側に海水を導入し上
記薄膜を透過するCO_2を海水に溶解するCO_2分
離装置と、潜水船キヤビンのCO_2含有空気を加圧し
、上記CO_2分離装置を経て清浄化したのちこれを同
キヤビンへ戻す空気循環流路と、外部海水をポンプを介
して上記CO_2分離装置を経て外部に還流する海水循
環流路とを具えたことを特徴とする潜水船用空気浄化装
置。
CO on one side of the container separated by multiple hydrophobic thin films.
When the _2-containing air is introduced, seawater is introduced to the other side, and the CO_2 separation device that dissolves the CO_2 that permeates through the thin membrane into seawater, and the CO_2-containing air in the submarine cabin is pressurized and purified through the above-mentioned CO_2 separation device. An air purification device for a submersible vessel, comprising: an air circulation channel that returns the CO_2 to the cabin after CO_2 separation, and a seawater circulation channel that returns external seawater to the outside via a pump and the CO_2 separator. .
JP2111196A 1990-04-26 1990-04-26 Air cleaning apparatus for submarine boat Pending JPH0411925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2111196A JPH0411925A (en) 1990-04-26 1990-04-26 Air cleaning apparatus for submarine boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2111196A JPH0411925A (en) 1990-04-26 1990-04-26 Air cleaning apparatus for submarine boat

Publications (1)

Publication Number Publication Date
JPH0411925A true JPH0411925A (en) 1992-01-16

Family

ID=14554935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2111196A Pending JPH0411925A (en) 1990-04-26 1990-04-26 Air cleaning apparatus for submarine boat

Country Status (1)

Country Link
JP (1) JPH0411925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762062A2 (en) * 1995-09-09 1997-03-12 DORNIER GmbH Process and device for the separation of carbon dioxide
JP2015047563A (en) * 2013-09-02 2015-03-16 三菱重工業株式会社 Power generating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762062A2 (en) * 1995-09-09 1997-03-12 DORNIER GmbH Process and device for the separation of carbon dioxide
EP0762062A3 (en) * 1995-09-09 2000-09-20 DORNIER GmbH Process and device for the separation of carbon dioxide
JP2015047563A (en) * 2013-09-02 2015-03-16 三菱重工業株式会社 Power generating system

Similar Documents

Publication Publication Date Title
US5876486A (en) Method and apparatus for removing carbon dioxide
JP2872521B2 (en) Two-stage membrane separation drying method and apparatus
Scholes et al. Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine
KR970005368A (en) Method and system for separating and recovering perfluoro compound gas
JPH01148324A (en) Synthetic pressure swing adsorbing/membrane separation method
JP3999423B2 (en) Carbon dioxide separation and dehumidification method and apparatus using liquid membrane
JP2001524875A (en) Apparatus and method for performing gas / liquid absorption of membranes at high pressure
EP0607387A1 (en) Method and device for regulating the humidity of a gas flow and at the same time purifyng it of undesired acid or alkaline gasses
JPH04176303A (en) Method for removing gas dissolved in liquid
JPH0411925A (en) Air cleaning apparatus for submarine boat
CA2867332C (en) Process and apparatus for removing contaminants from a gas stream
Scholes et al. Regenerating membrane contactors for solvent absorption
JP2765671B2 (en) Method for producing oxygen-enriched gas
JPH0768103A (en) Membrane deaerating method
WO2003042432A9 (en) Device and method for exchanging oxygen and carbon dioxide between a gas and an aqueous liquid
JPS6143088B2 (en)
Al-Saffar et al. USING A GAS/LIQUID HOLLOW FIBRE MODULE
JPH0412002A (en) Oxygen-supplying device into closed space in water
JP2002363114A (en) Apparatus for separating and recovering perfluoro compound gas
EP2708278A1 (en) Multiple membranes for removing VOCs from liquids
JPH0422490A (en) Apparatus for making pure water
JPH0699018A (en) Membrane type polar gas separation device
JPH0330889A (en) Water purifier and water purifying method
JPH0213452Y2 (en)
JP2005329348A (en) Immersion type co2 separation apparatus