JPH0213452Y2 - - Google Patents

Info

Publication number
JPH0213452Y2
JPH0213452Y2 JP1986050345U JP5034586U JPH0213452Y2 JP H0213452 Y2 JPH0213452 Y2 JP H0213452Y2 JP 1986050345 U JP1986050345 U JP 1986050345U JP 5034586 U JP5034586 U JP 5034586U JP H0213452 Y2 JPH0213452 Y2 JP H0213452Y2
Authority
JP
Japan
Prior art keywords
oxygen
air
air supply
permeable membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986050345U
Other languages
Japanese (ja)
Other versions
JPS61164231U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986050345U priority Critical patent/JPH0213452Y2/ja
Publication of JPS61164231U publication Critical patent/JPS61164231U/ja
Application granted granted Critical
Publication of JPH0213452Y2 publication Critical patent/JPH0213452Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【考案の詳細な説明】 本考案は窒素より、酸素の方が透過し易い酸素
選択性透過膜を用い、この膜の両側に圧力差を発
生させ、空気より酸素を濃縮する酸素富化空気供
給装置において、この膜個有の酸素選択透過能を
最大限に発揮させ、空気よりの酸素の濃縮効率を
高めることを目的とする。
[Detailed description of the invention] This invention uses an oxygen-selective permeable membrane that allows oxygen to permeate more easily than nitrogen, and generates a pressure difference on both sides of this membrane to supply oxygen-enriched air that concentrates oxygen more than air. In the device, the purpose is to maximize the oxygen selective permeation ability unique to this membrane and increase the efficiency of concentrating oxygen from air.

近年、医療用、燃焼用などに比較的高濃度の酸
素、例えば25%〜40%の酸素富化空気を利用する
動きが活発となつている。かかる酸素富化空気を
供給する手段として、窒素より酸素の方が透過し
易い、酸素選択性透過膜を用い、空気中から酸素
を濃縮分離する試みが成されている。この膜分離
法は、膜の両側に圧力差を発生させ、その圧力勾
配によつて気体が膜を透過していく原理を利用す
るものであり、この圧力差を発生させるために通
常膜の原料気体側を加圧するか、もしくは透過気
体側を減圧にするかの二つの方法のいずれかが選
ばれる。両者いずれの場合も、原料気体側に原料
気体を供給する手段、および、透過気体側に透過
気体を移行させる手段が必要であることは当然で
ある。しかしながら本考案者らの実測によれば、
単に気体を供給、あるいは移行させるだけで無
く、これに一定の流れを発生させることによつ
て、酸素濃縮率をより向上させ得ることが判明し
た。特に重要である点は原料気体側の気体流れで
ある。
In recent years, there has been an active movement to utilize relatively high concentration oxygen, for example, 25% to 40% oxygen enriched air, for medical purposes, combustion purposes, and the like. As a means for supplying such oxygen-enriched air, attempts have been made to concentrate and separate oxygen from the air using an oxygen-selective permeable membrane through which oxygen permeates more easily than nitrogen. This membrane separation method uses the principle that a pressure difference is generated on both sides of the membrane, and gas permeates through the membrane due to the pressure gradient. One of two methods is selected: pressurizing the gas side or reducing the pressure on the permeate gas side. In both cases, it is obvious that means for supplying the raw material gas to the raw material gas side and means for transferring the permeated gas to the permeated gas side are required. However, according to actual measurements by the inventors,
It has been found that the oxygen enrichment rate can be further improved by not only simply supplying or transferring gas, but also by generating a constant flow of gas. A particularly important point is the gas flow on the raw material gas side.

窒素より酸素の方が透過し易い酸素選択性透過
膜を用いて、これに空気を透過させると、この膜
表面に残存窒素の濃縮された境界層が発生すると
考えられる。このため、透過気体流量を補充する
程度に新しい空気を供給していても残存窒素の境
界層が酸素透過をさえぎるので透過気体側の酸素
濃度は一定値以上に上らない。たとえば、6×
10-8(CCcm/cm2sec・cmHg)の酸素透過率を有
し、酸窒素の透過率の比(選択率))が2である
酸素選択性透過膜を用い、この膜の両側の圧力比
を5:1とすると、理論的には、酸素濃度が31%
の酸素富化気体が得られるはずであるが、この透
過膜を無限に新鮮空気が供給される開放空間に置
いて、この膜上に形成された窒素濃度境界層から
窒素を取り除く事を単なる開放空間への濃度拡散
に依存させておくと、得られる酸素富化空気の酸
素含有率は、27〜28%程度で飽和してしまう。従
つて、より理論値に近い、即ち濃縮効率の高い酸
素富化空気を得るには、前記窒素濃縮境界層を絶
えず取り除いておく必要がある。
It is thought that when an oxygen selective permeable membrane, in which oxygen permeates more easily than nitrogen, is used and air is allowed to permeate through the membrane, a boundary layer containing concentrated residual nitrogen is generated on the surface of the membrane. Therefore, even if fresh air is supplied to the extent that the flow rate of the permeated gas is supplied, the boundary layer of residual nitrogen blocks oxygen permeation, so that the oxygen concentration on the permeated gas side does not rise above a certain value. For example, 6×
An oxygen-selective permeable membrane with an oxygen permeability of 10 -8 (CCcm/cm 2 sec cmHg) and an oxynitrogen permeability ratio (selectivity) of 2 is used, and the pressure on both sides of the membrane is If the ratio is 5:1, the oxygen concentration is theoretically 31%.
However, by placing this permeable membrane in an open space with an unlimited supply of fresh air and removing nitrogen from the nitrogen concentration boundary layer formed on the membrane, it is possible to simply open the membrane. If it were to depend on concentration diffusion into space, the oxygen content of the oxygen-enriched air obtained would be saturated at about 27 to 28%. Therefore, in order to obtain oxygen-enriched air closer to the theoretical value, that is, with higher concentration efficiency, it is necessary to constantly remove the nitrogen-enriched boundary layer.

その具体的な方法のひとつとして既に逆浸透膜
による液体分離法などで実施されているような、
膜表面での乱流の発生がある。液体の場合にはこ
の乱流を発生させる手段として種々の方法が実施
されており、要は液体の流れる膜面に対して時間
的に種々の方向へ変るようにすることである。一
方気体の場合で考えると、液体に比して極端に密
度の低い流体である気体では、全体流れを乱すこ
とは難しいので、通常は膜面上に種々の邪魔板部
分を配置して実施しなければならない。しかし、
この方式では膜形状、あるいは膜面空間の構成が
複雑となり、コスト上昇にも結びつく。
One of the specific methods is the liquid separation method using reverse osmosis membranes.
Turbulent flow occurs on the membrane surface. In the case of liquids, various methods have been implemented to generate this turbulent flow, and the key is to make the flow change in various directions over time with respect to the membrane surface through which the liquid flows. On the other hand, considering the case of gases, it is difficult to disturb the overall flow in gases, which are fluids with extremely low density compared to liquids, so it is usually carried out by placing various baffle plates on the membrane surface. There must be. but,
In this method, the membrane shape or the configuration of the membrane surface space becomes complicated, leading to an increase in cost.

本考案はこのような邪魔板を使用せずに膜表面
部で新鮮空気を高速で送るようにし、膜表面に生
ずる窒素濃縮境界層をとり除くようにしたもので
ある。まず、本考案の基本原理を説明する。
The present invention does not use such a baffle plate, but instead sends fresh air at high speed to the membrane surface to remove the nitrogen-enriched boundary layer that forms on the membrane surface. First, the basic principle of the present invention will be explained.

本考案者らは、膜面での気体流れ(層流)の速
度を制御することによる効果を調べた結果、透過
量に対して単に新鮮空気を供給する程度の流速よ
り大きい領域におけるある一定流速以上では、前
記窒素濃縮層が取り払われ、酸素富化空気中の酸
素濃度を理論値に近づけ得ることを見出した。流
速と流量で対比することは実質的に好ましくな
い。実験結果からは流速で述べる方が正しいが本
装置については流量比率で記述してもほぼ同様の
結果を与えたので、以下流量比(m3/sec÷m3
sec)で示す。結果を第1図に示す。図で縦軸は
得られた酸素富化空気中の含有酸素%、横軸は透
過気体の流量と原料気体の流量の比である。この
例は酸素の窒素に対する選択率が2.3の酸素選択
性透過膜を用い、圧力比が5:1の場合である。
この結果から流量比率が45以上であれば理論値と
大体同じ程度の酸素濃度が得られることがわか
る。厳密には100程度で、45では0.2〜0.5%低下
する。ところで、この気体流れを作るための投入
動力はより小さい方が好ましい。流量比率を大き
くするには投入動力も大きくする必要があり、設
備も大きくなる。従つて経済的効果も考慮すれ
ば、流量比が20〜50倍程度が実用的に好ましい値
である。この流量比に対する酸素濃度変化は、選
択率が変化し、また圧力比が変化しても、本装置
においては大体同傾向で変化し、従つて上記流量
比の20〜50倍という値はすべての場合にわたつて
適用される好ましい値であり、この場合には膜表
面の空気流速は1〜5m/secになつている。た
だ装置の形状、例えば膜モジユールの空間充填
率、モジユールを格納している空間の容積や、空
気の流し方等により実質的に流速が変化すること
が考えられるため、本願考案の場合、透過膜に供
給する空気量を透過膜を透過する空気量の20〜50
倍の流量にすることと膜表面の空気流速を1〜5
m/secにすることとを同時に満足することが好
ましく、そのため空気供給手段と気体透過膜モジ
ユールと空気を取り入れるフイルタとをこの順に
配置するとともに、空気供給手段を、気体透過膜
モジユールを格納する格納室の端部に、気体透過
膜モジユールに近接して取り付け、空気供給手段
により生じる空気流れに対し、気体透過膜モジユ
ールの表面が平行になるように配置した構造とし
ている。
As a result of investigating the effect of controlling the speed of gas flow (laminar flow) at the membrane surface, the present inventors found that a certain flow rate in a region that is greater than the flow rate that simply supplies fresh air relative to the amount of permeation. In the above, it has been found that the nitrogen-enriched layer is removed and the oxygen concentration in the oxygen-enriched air can be brought close to the theoretical value. It is substantially undesirable to compare flow rate and flow rate. Based on the experimental results, it is more correct to describe the flow rate in terms of flow rate, but for this device, almost the same results were obtained even when described in terms of flow rate ratio, so below we will use the flow rate ratio (m 3 /sec ÷ m 3 /
sec). The results are shown in Figure 1. In the figure, the vertical axis is the percentage of oxygen contained in the obtained oxygen-enriched air, and the horizontal axis is the ratio of the flow rate of the permeate gas to the flow rate of the raw material gas. In this example, an oxygen selective permeable membrane with a selectivity of oxygen to nitrogen of 2.3 is used, and the pressure ratio is 5:1.
This result shows that if the flow rate ratio is 45 or more, an oxygen concentration approximately the same as the theoretical value can be obtained. Strictly speaking, it's around 100, and at 45 it drops by 0.2 to 0.5%. Incidentally, it is preferable that the input power for creating this gas flow be smaller. In order to increase the flow rate ratio, it is necessary to increase the input power, and the equipment also becomes larger. Therefore, if economic effects are also considered, a practically preferable flow rate ratio is about 20 to 50 times. Even if the selectivity changes or the pressure ratio changes, the change in oxygen concentration with respect to this flow rate ratio changes in roughly the same manner in this device, so the value of 20 to 50 times the flow rate ratio above is Preferred values apply in many cases, in which case the air flow velocity over the membrane surface is between 1 and 5 m/sec. However, since the flow rate may substantially change depending on the shape of the device, such as the space filling rate of the membrane module, the volume of the space in which the module is stored, and the way the air flows, in the case of the present invention, the permeable membrane The amount of air supplied to the membrane is 20 to 50 times the amount of air that permeates through the membrane.
Double the flow rate and increase the air flow rate on the membrane surface by 1 to 5
m/sec, and for this reason, the air supply means, the gas permeable membrane module, and the air intake filter are arranged in this order, and the air supply means is placed in a storage space in which the gas permeable membrane module is stored. The gas permeable membrane module is attached to the end of the chamber in close proximity to the gas permeable membrane module, and is arranged so that the surface of the gas permeable membrane module is parallel to the air flow generated by the air supply means.

以上の気体流れを発生する最も簡易な方法は圧
力扇を用いて空気を送気または吸気することによ
つて空気流れを発生させることである。
The simplest method for generating the above gas flow is to generate the air flow by supplying or sucking air using a pressure fan.

以下本考案の一実施例について図面を用いて詳
細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本考案による酸素富化空気供給装置の
一実施例における全体構成を示す。図において、
1は酸素選択性気体透過膜モジユールで、第3図
に示すように、内部が中空の枠体11の上下両面
に酸素選択性透過膜12が設置されて構成され
る。酸素選択性透過膜12の外面に導入された空
気の一部は酸素選択性透過膜12を通つてモジユ
ール1内に入り、モジユール1内に貯えられた酸
素富化空気は導出口13よりとり出される。2は
モジユール1に導入する空気中に含まれる塵埃を
除去するフイルター、3はモジユール1を透過し
て来た酸素富化気体を収集する配管で、第3図の
導出口13に連結される。4は減圧ポンプで、配
管3を通つてきた酸素富化空気を集め、排出口5
より所定の系に酸素富化気体を供給する。
FIG. 2 shows the overall configuration of an embodiment of the oxygen-enriched air supply device according to the present invention. In the figure,
Reference numeral 1 denotes an oxygen-selective gas-permeable membrane module, which, as shown in FIG. 3, is constructed by installing oxygen-selective gas-permeable membranes 12 on both upper and lower surfaces of a frame 11 having a hollow interior. A part of the air introduced to the outer surface of the oxygen-selective permeable membrane 12 passes through the oxygen-selective permeable membrane 12 and enters the module 1, and the oxygen-enriched air stored in the module 1 is taken out from the outlet 13. It can be done. 2 is a filter for removing dust contained in the air introduced into the module 1, and 3 is a pipe for collecting the oxygen-enriched gas that has passed through the module 1, which is connected to the outlet 13 in FIG. 3. 4 is a pressure reducing pump that collects the oxygen-enriched air that has passed through the pipe 3 and sends it to the outlet 5.
The oxygen-enriched gas is supplied to a predetermined system.

6は圧力扇、7は圧力室である。この実施例で
は、圧力扇6は吸気型で、圧力扇6を回転させる
と圧力室7内は減圧され、モジユール1間を通過
する空気を引き寄せ、圧力扇6より室外に放出さ
れる。
6 is a pressure fan, and 7 is a pressure chamber. In this embodiment, the pressure fan 6 is of an intake type, and when the pressure fan 6 is rotated, the pressure inside the pressure chamber 7 is reduced, the air passing between the modules 1 is drawn in, and the air is discharged from the pressure fan 6 to the outside.

今、モジユール1を通過し配管3へ達する酸素
富化空気の通過流量が50m3/時間、膜面での減圧
度が160mmHgとなるように、モジユール1の枚数
およびポンプ4の能力を設定し、圧力扇6の吸気
能力を種々変えて、得られる酸素富化空気の酸素
濃度を実測した。
Now, set the number of modules 1 and the capacity of pump 4 so that the flow rate of oxygen-enriched air passing through module 1 and reaching piping 3 is 50 m 3 / hour, and the degree of pressure reduction at the membrane surface is 160 mmHg. The oxygen concentration of the obtained oxygen-enriched air was actually measured by varying the suction capacity of the pressure fan 6.

圧力扇6が動作していない場合、すなわちモジ
ユール1の膜表面部の窒素濃縮層を圧力扇6で除
去しない場合は、酸素富化空気中の酸素濃度は
26.5%であつた。次いで、圧力扇6を駆動し、圧
力扇6による風速を500m3/時間(モジユール1
の透過流量に対する流量比10倍)、1000m3/時間
(流量比20倍)、1500m3/時間(流量比30倍)、
2500m3/時間(流量比50倍)、3000m3/時間(流
量比60倍)および4000m3/時間(流量比80倍)と
変化させた結果、得られる酸素富化気体の酸素濃
度は、それぞれ31.8%,32.7%,33.9%,33.2%,
33.3%,33.4%を示した。
When the pressure fan 6 is not operating, that is, when the nitrogen enriched layer on the membrane surface of the module 1 is not removed by the pressure fan 6, the oxygen concentration in the oxygen-enriched air is
It was 26.5%. Next, the pressure fan 6 is driven, and the wind speed by the pressure fan 6 is set to 500 m 3 /hour (module 1
1000 m 3 /hour (20 times the flow rate), 1500 m 3 /hour (30 times the flow rate),
As a result of changing the flow rate to 2500 m 3 /hour (50 times the flow rate), 3000 m 3 /hour (60 times the flow rate), and 4000 m 3 /hour (80 times the flow rate), the oxygen concentration of the oxygen-enriched gas obtained is as follows. 31.8%, 32.7%, 33.9%, 33.2%,
It showed 33.3% and 33.4%.

このように、透過膜表面での空気の流れは、生
成される酸素富化気体の酸素濃度に大きな影響を
与え、特に膜表面での流量比が透過流量の20〜50
倍の範囲で大きな効果が認められた。流量比が50
倍を超えても酸素濃度は上昇しつづけるが、20〜
50倍の範囲に比して極立つた効果はなく、むしろ
大きな流量比を得るために圧力扇6に大きなエネ
ルギーを投入する必要があり、実用的ではなくな
る。したがつて、実用的には20〜50倍の流量比と
することが望ましい。膜表面の空気流れは、流速
で示すことが正しく、流量で定義すれば膜室の膜
充填率、構造によつて流速は変化してくる。一方
膜透過流量と比較するためには流量で対比するこ
とが望ましい。本考案の上記20〜50倍の流量比は
実質的に膜表面の空気流としては1〜5m/sec
の値に対応し、従つて本考案では透過膜に供給す
る空気量を透過膜を透過する空気量の20〜50倍の
流量にするとともに、膜表面の空気流速を1〜5
m/secにすることが好ましい。これを達成する
ために本考案は空気供給手段を気体透過膜モジユ
ールに近接して設置し、その全体を囲うように筐
体を設け、空気供給手段からの空気流れに対して
気体透過膜モジユールの表面が平行になるような
構造としている。
In this way, the air flow on the permeable membrane surface has a large effect on the oxygen concentration of the oxygen-enriched gas produced, and in particular, the flow rate ratio at the membrane surface is 20 to 50% of the permeated flow rate.
A large effect was observed in the twice the range. Flow ratio is 50
Oxygen concentration continues to rise even if the concentration exceeds 20~
There is no significant effect compared to a range of 50 times, and rather it is necessary to input a large amount of energy to the pressure fan 6 in order to obtain a large flow rate ratio, making it impractical. Therefore, it is practically desirable to set the flow rate ratio to 20 to 50 times. It is correct to express the air flow on the membrane surface in terms of flow velocity, and if defined in terms of flow rate, the flow velocity will change depending on the membrane filling rate and structure of the membrane chamber. On the other hand, in order to compare the membrane permeation flow rate, it is desirable to compare the flow rate. The above flow rate ratio of 20 to 50 times in this invention is substantially 1 to 5 m/sec as the air flow on the membrane surface.
Therefore, in this invention, the amount of air supplied to the permeable membrane is set to be 20 to 50 times the amount of air passing through the permeable membrane, and the air flow rate on the membrane surface is set to 1 to 5.
It is preferable to set it to m/sec. In order to achieve this, the present invention installs the air supply means close to the gas permeable membrane module, and provides a housing to surround the entirety of the air supply means. The structure is such that the surfaces are parallel.

圧力扇6および圧力室7は、以上の説明から理
解されるように、モジユール1の膜面により近く
設置することが必要で、モジユール1群に隣接し
て配されることが望ましい。膜面近くの空気流れ
を他の用途にも使用したい場合もあるが、このよ
うなときには特にこの近接配置に注意する必要が
ある。たとえば、空気流れをポンプの冷却用など
に使うことがあるが、この冷却機構を圧力扇6と
モジユール1との中間位置に設置すると、圧力損
失が多大となり、空気流速を大きくするよりも単
に新鮮空気を供給するにとどまつてしまうおそれ
がある。したがつて、このような場合には、圧力
扇6とモジユール1部とが作る系外に設置するこ
とが必要である。
As understood from the above description, the pressure fan 6 and the pressure chamber 7 need to be installed closer to the membrane surface of the module 1, and are preferably placed adjacent to the module 1 group. There may be cases where it is desired to use the air flow near the membrane surface for other purposes, but in such cases it is necessary to pay special attention to this close arrangement. For example, the air flow is sometimes used to cool a pump, but if this cooling mechanism is installed in a position intermediate between the pressure fan 6 and the module 1, the pressure loss will be large, and it is better to simply use fresh air than to increase the air flow rate. There is a risk that it will end up just supplying air. Therefore, in such a case, it is necessary to install the pressure fan 6 and the module 1 outside the system.

なお、第2図の実施例には圧力扇として吸気型
圧力扇を利用した場合について説明したが、送気
型圧力扇を使用し、これを空気導入口側に配して
空気を高速で送気するようにしてもよい。その他
各種の送風機が使用し得る。
In addition, in the embodiment shown in Fig. 2, a case has been described in which an intake type pressure fan is used as the pressure fan, but it is also possible to use an air supply type pressure fan and place it on the air inlet side to send air at high speed. You can be concerned about it. Various other blowers may be used.

以上のように本考案は、酸素選択性透過膜を利
用し、減圧ポンプを用いてこの膜の両面に圧力差
を発生させ、空気より、酸素を濃縮分離する酸素
富化空気供給装置において、膜表面に新鮮空気を
筒過流量の20〜50倍の流量でかつ膜表面の流速が
1〜5m/secになるように空気を供給するため
の送風機からなる空気供給手段と、空気を取り入
れるフイルタとを備え、空気供給手段を、気体透
過膜モジユールを格納する格納室の端部に、気体
透過膜モジユールに近接して取り付け、空気供給
手段と気体透過膜モジユールと空気を取り入れる
フイルタとをこの順に配置するとともに、空気供
給手段により生じる空気流れに対し、気体透過膜
モジユールの表面が平行になるように配置した構
造とすることにより、酸素富化空気中の含有酸素
濃度を効率よく濃縮し高められる酸素富化空気供
給装置を実現するものである。
As described above, the present invention utilizes an oxygen-selective permeable membrane and uses a vacuum pump to generate a pressure difference on both sides of the membrane to concentrate and separate oxygen from air. An air supply means consisting of a blower for supplying fresh air to the surface at a flow rate of 20 to 50 times the flow rate through the tube and a flow velocity of 1 to 5 m/sec on the membrane surface, and a filter for taking in the air. The air supply means is installed at the end of the storage chamber in which the gas permeable membrane module is stored, close to the gas permeable membrane module, and the air supply means, the gas permeable membrane module, and the filter for taking in the air are arranged in this order. In addition, by arranging the surface of the gas permeable membrane module parallel to the air flow generated by the air supply means, the oxygen concentration in the oxygen-enriched air can be efficiently concentrated and increased. This realizes an enriched air supply device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素選択性透過膜を利用したモジユー
ルの膜表面における空気流速比率と得られる酸素
富化空気中の酸素濃度との関係を示す図、第2図
は本考案による酸素富化空気供給装置の実施例を
示す構成図、第3図は第2図の一部拡大斜視図で
ある。 1……モジユール、2……フイルター、3……
配管、4……減圧ポンプ、5……排気口、6……
圧力扇、7……圧力室、11……枠体、12……
透過膜、13……導出口。
Figure 1 shows the relationship between the air flow rate ratio at the membrane surface of a module using an oxygen-selective permeable membrane and the oxygen concentration in the resulting oxygen-enriched air, and Figure 2 shows the oxygen-enriched air supply according to the present invention. A configuration diagram showing an embodiment of the apparatus, FIG. 3 is a partially enlarged perspective view of FIG. 2. 1...Module, 2...Filter, 3...
Piping, 4...Reducing pump, 5...Exhaust port, 6...
Pressure fan, 7...pressure chamber, 11...frame, 12...
Permeable membrane, 13...outlet.

Claims (1)

【実用新案登録請求の範囲】 (1) 酸素選択性透過膜で内外を仕切られた気体透
過膜モジユールと、これを格納する格納室と、
前記気体透過膜モジユールの酸素選択性透過膜
を透過した空気を収集する手段と、前記酸素選
択性透過膜の表面に、前記酸素選択性透過膜を
透過する空気量の20〜50倍の流量でかつ膜表面
の空気流速が1〜5m/secで移動する空気を
供給するための送風機からなる空気供給手段
と、空気を取り入れるフイルタとを備え、前記
空気供給手段は、前記気体透過膜モジユールを
格納する格納室の端部に、前記気体透過膜モジ
ユールに対し近接して取付けられており、前期
空気供給手段と気体透過膜モジユールと空気を
取り入れるフイルタとをこの順に配置するとと
もに、空気供給手段により生じる空気流れに対
し、気体透過膜モジユールの表面が平行になる
ように設置されていることを特徴とする酸素富
化空気供給装置。 (2) 空気供給手段が吸気型送風機で構成された実
用新案登録請求の範囲第1項記載の酸素富化空
気供給装置。 (3) 空気供給手段がモジユールに隣接して配置さ
れた実用新案登録請求の範囲第1項乃至第2項
のいずれかに記載の酸素富化空気供給装置。 (4) 収集手段が減圧ポンプを備えた実用新案登録
請求の範囲第1項記載の酸素富化空気供給装
置。 (5) 空気供給手段の排風により減圧ポンプを冷却
する実用新案登録請求の範囲第4項記載の酸素
富化空気供給装置。
[Scope of Claim for Utility Model Registration] (1) A gas permeable membrane module whose inside and outside are separated by an oxygen-selective permeable membrane, and a storage chamber for storing it;
means for collecting the air that has permeated through the oxygen-selective permeable membrane of the gas-permeable membrane module; and an air supply means consisting of a blower for supplying air moving at an air velocity of 1 to 5 m/sec on the membrane surface, and a filter for taking in the air, the air supply means housing the gas permeable membrane module. The first air supply means, the gas permeation membrane module, and the filter for taking in air are arranged in this order, and the air supply means generates a An oxygen-enriched air supply device characterized in that the surface of the gas permeable membrane module is installed so as to be parallel to the air flow. (2) The oxygen-enriched air supply device according to claim 1, wherein the air supply means is an intake type blower. (3) The oxygen-enriched air supply device according to any one of claims 1 to 2, wherein the air supply means is arranged adjacent to the module. (4) The oxygen-enriched air supply device according to claim 1, wherein the collecting means includes a vacuum pump. (5) The oxygen-enriched air supply device according to claim 4, which cools a pressure reducing pump by exhaust air from the air supply means.
JP1986050345U 1986-04-03 1986-04-03 Expired JPH0213452Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986050345U JPH0213452Y2 (en) 1986-04-03 1986-04-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986050345U JPH0213452Y2 (en) 1986-04-03 1986-04-03

Publications (2)

Publication Number Publication Date
JPS61164231U JPS61164231U (en) 1986-10-11
JPH0213452Y2 true JPH0213452Y2 (en) 1990-04-13

Family

ID=30568389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986050345U Expired JPH0213452Y2 (en) 1986-04-03 1986-04-03

Country Status (1)

Country Link
JP (1) JPH0213452Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677629B2 (en) * 1987-10-23 1997-11-17 帝人株式会社 Oxygen enrichment module and oxygen enricher
US6478852B1 (en) * 2000-02-18 2002-11-12 Cms Technology Holdings, Inc. Method of producing nitrogen enriched air
JP5154043B2 (en) * 2006-09-11 2013-02-27 ダイハツ工業株式会社 Fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782105A (en) * 1980-11-06 1982-05-22 Teijin Ltd Device for oxygen enrichment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782105A (en) * 1980-11-06 1982-05-22 Teijin Ltd Device for oxygen enrichment

Also Published As

Publication number Publication date
JPS61164231U (en) 1986-10-11

Similar Documents

Publication Publication Date Title
EP0312910B1 (en) Oxygen enriching module and oxygen enriching apparatus using same
JP4564218B2 (en) Nitrogen-enriched air production method
JPS5841891B2 (en) A device that supplies oxygen-rich air
IL43107A (en) Artificial lung
JP2007021472A (en) Method for producing oxygen water and apparatus therefor
JPH03101807A (en) Membrane type gas separator
JPH0213452Y2 (en)
JPH0299113A (en) Gas separation method according to pressure variation type adsorption method
JPH0824815B2 (en) Gas separation method
JPH06234505A (en) Production of oxygen-rich gas
US20040000232A1 (en) Device and method for exchanging oxygen and carbon dioxide between a gas and an aqueous liquid
CN114099996A (en) Portable oxygen supply method in high-altitude tourism
EP0108426A1 (en) Module for concentrating a specified gas in a gaseous mixture
JP2006087683A (en) Oxygen concentrator
JPH0475841B2 (en)
JPH0691929B2 (en) Gas separation method
KR200313178Y1 (en) Oxygen generator
JPS61200808A (en) Apparatus for filtering solution
KR100827026B1 (en) Potable Oxygen Generator
JP2677629B2 (en) Oxygen enrichment module and oxygen enricher
JP2004255287A (en) Apparatus and method for preparing oxygen-enriched air
JP3596292B2 (en) Nitrogen enrichment equipment
JPH03245812A (en) Separation of gas
JP2537800B2 (en) Oxygen enriched membrane unit
JPH0242764B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term