JPH04118856A - Manufacture of metal hydride electrode - Google Patents

Manufacture of metal hydride electrode

Info

Publication number
JPH04118856A
JPH04118856A JP2238518A JP23851890A JPH04118856A JP H04118856 A JPH04118856 A JP H04118856A JP 2238518 A JP2238518 A JP 2238518A JP 23851890 A JP23851890 A JP 23851890A JP H04118856 A JPH04118856 A JP H04118856A
Authority
JP
Japan
Prior art keywords
plate
hydrogen storage
electrode
absorbing alloy
hydrogen absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2238518A
Other languages
Japanese (ja)
Other versions
JP2969871B2 (en
Inventor
Toshio Murata
利雄 村田
Kiyoshi Egawa
江川 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2238518A priority Critical patent/JP2969871B2/en
Publication of JPH04118856A publication Critical patent/JPH04118856A/en
Application granted granted Critical
Publication of JP2969871B2 publication Critical patent/JP2969871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a thin electrodes and to prevent the reduction of the filling density of a hydrogen absorbing alloy effectively by combining powder of a hydrogen absorbing alloy and a conductive holder body with an alkaliproof high polymer to make into a plate form body, and press-it with rolls. CONSTITUTION:Component elements are solved in an argon ambiance to make MnNi3.55, Co0.75, Al0.4, Mn0.2 in the chemical formula, and this cast is crushed roughly and filtered to obtain rough powder with the particle diameter lass than 1mum. And this hydrogen absorbing alloy powder and a synthetic latex which consists of acryl- styrene copolymer to be a conductive assist agent and a binder are added to the water to produce a paste-form mixture. The paste-form mixture is dried to form a plate-form body (a). And a nickel plating which is softer than the hydrogen absorbing alloy powder is applied to one of two iron rolls, and a hard type chromium plating which is harder than the hydrogen absorbing alloy powder is applied to the other iron roll. And the plate-form body (a) is provided between the two rolls to manufacture a metal hydride electrode. In such a way, even the holding amount of the hydrogen absorbing alloy is little, the contraction of the plate-form body can be carried out effectively, and the filling density of the hydrogen absorbing alloy in the electrode is never reduced remarkably.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池などの負極に用いる水素吸蔵
合金からなる電極の製造方法に間するものである 従来の技術 アルカリ蓄電池などの負極に用いる水素吸蔵電極は、水
素吸蔵合金を備えている。この水素吸蔵合金には、La
Ni5やTiMn2などの金属間化合物があり、これら
の合金の成分元素の一部を、そのほかの元素で置換する
ことや、化学量論数を変化させることによって、これら
の合金の水素吸蔵量を変化させたり、これらの金属水素
化物の平衡水素圧を変化させたり、アルカリ電解液中に
おける合金の耐食性を向上させて、電極に用いられてい
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrode made of a hydrogen storage alloy used as a negative electrode of an alkaline storage battery. The electrode includes a hydrogen storage alloy. This hydrogen storage alloy contains La
There are intermetallic compounds such as Ni5 and TiMn2, and the hydrogen storage capacity of these alloys can be changed by replacing some of the constituent elements of these alloys with other elements or by changing the stoichiometric number. They are used in electrodes by changing the equilibrium hydrogen pressure of these metal hydrides, and by improving the corrosion resistance of alloys in alkaline electrolytes.

この電極の従来の製造方法の1つとして、上記の水素吸
蔵合金の粉末を、パンチングメタルや発泡ニッケルなど
の導電性支持体に保持させ、ポリビニルアルコール、フ
ッ素樹脂、アクリル−スチレン樹脂などの耐アルカリ性
高分子で結合するものがある。
One of the conventional manufacturing methods for this electrode is to hold the above-mentioned hydrogen storage alloy powder on a conductive support such as punched metal or foamed nickel, and then use an alkali-resistant material such as polyvinyl alcohol, fluororesin, acrylic-styrene resin, etc. Some are bonded with polymers.

この負極と、水酸化ニッケル電極などの正極と、水酸化
カリウムなどのアルカリ電解液とを用いて、アルカリ蓄
電池が構成される。
An alkaline storage battery is constructed using this negative electrode, a positive electrode such as a nickel hydroxide electrode, and an alkaline electrolyte such as potassium hydroxide.

アルカリ蓄電池の負極に用いる水素吸蔵電極とカドミウ
ム電極とは、その作動電位は近い値であるが、次のよう
な相違点がある。
Although the hydrogen storage electrode and the cadmium electrode used as the negative electrode of an alkaline storage battery have similar operating potentials, they have the following differences.

すなわち、カドミウム電極の放電反応では、金属カドミ
ウムが酸化されて、モル体積がその2倍以上に達する水
酸化カドミウムが生成する。しかも、充放電反応の過程
で、電解液中へのカドミウムの溶解種が生成してから固
体が生成するので、固体活物質の移動が起こる。したが
って、カドミウム電極では、放電容量を大きくしようと
して、カドミウムの充填密度を大きくすると、その多孔
度が小さくなり、放電の進行や充放電サイクルの進行に
ともなって、その電極の細孔が水酸化カドミウムによっ
て塞がれるので、金属カドミウムの利用率が著しく低下
する。従って、この方法では、カドミウム電極の放電容
量は、その活物質の増加量に比例して大きくなることが
ない。一方、このような金属カドミウムの利用率の低下
を緩和しようとして、活物質の充填率を小さくして、そ
の多孔度を大きくすると、カドミウム電極の活物質の量
が多くならないので、その放電容量を大きくすることが
できない。
That is, in the discharge reaction of the cadmium electrode, cadmium metal is oxidized to produce cadmium hydroxide whose molar volume is more than twice that of cadmium. Furthermore, during the charge/discharge reaction process, a solid is generated after the cadmium species dissolved in the electrolyte are generated, so that the solid active material moves. Therefore, in a cadmium electrode, when the packing density of cadmium is increased in an attempt to increase the discharge capacity, the porosity of the cadmium electrode decreases, and as the discharge progresses and the charge/discharge cycle progresses, the pores of the electrode become smaller than the cadmium hydroxide. As a result, the utilization rate of metallic cadmium decreases significantly. Therefore, in this method, the discharge capacity of the cadmium electrode does not increase in proportion to the amount of increase in the active material. On the other hand, in an attempt to alleviate this decrease in the utilization rate of metallic cadmium, if the filling rate of the active material is reduced and its porosity is increased, the amount of active material in the cadmium electrode will not increase, so the discharge capacity will decrease. Can't make it bigger.

一方、水素吸蔵電極は、水素吸蔵合金に吸蔵放出される
水素を活物質として、その電気化学的な酸化還元反応を
起電反応に利用する。そして、充放電の進行にともなう
合金の体積変化は、カドミウムの体積変化よりも著しく
小さい。従って、水素吸蔵電極では、水素吸蔵合金の充
填密度を大きくして、その多孔度を小さくしても、放電
反応の進行や充放電サイクルの進行にともなう細孔の閉
塞現象が起こることがない。そこで、水素吸蔵電極では
、電極中の水素吸蔵合金の充填密度を大きくして、同一
体積のカドミウム電極と比較して、体積当たりの放電容
量を著しく大きくすることができる。水素吸蔵合金の粉
末を導電性支持体とともに耐アルカリ性高分子で結合し
た電極では、水素吸蔵合金の充填密度本大きくするため
に、通常はこれをプレスしている。
On the other hand, a hydrogen storage electrode uses hydrogen stored and released in a hydrogen storage alloy as an active material, and utilizes its electrochemical redox reaction for an electromotive reaction. The volume change of the alloy as charging and discharging progresses is significantly smaller than the volume change of cadmium. Therefore, in the hydrogen storage electrode, even if the packing density of the hydrogen storage alloy is increased and the porosity thereof is decreased, pore clogging phenomenon does not occur as the discharge reaction progresses or the charge/discharge cycle progresses. Therefore, in a hydrogen storage electrode, by increasing the packing density of the hydrogen storage alloy in the electrode, the discharge capacity per volume can be significantly increased compared to a cadmium electrode of the same volume. In electrodes in which hydrogen storage alloy powder is bonded to a conductive support using an alkali-resistant polymer, the hydrogen storage alloy is usually pressed to increase its packing density.

水素吸蔵電極を用いるアルカリ蓄電池では、水素吸蔵電
極の放電容量が、同じ体積のカドミウム電極の2倍程度
に達する。したがって、たとえば、水素吸蔵電極の容量
がカドミウム電極の容量の1.5倍程度になるように、
水素吸蔵電極の体積を減少させ、その体積の減少分だけ
正極の体積を増力口させて、正極の容量を1.5倍程度
に増加させることによって、ニッケル・金属水素化物電
池の場合りこは、その容量を、同じ体積の二・ンケル・
カドミウム電池の1−055倍程に増加させることがで
きる。
In an alkaline storage battery using a hydrogen storage electrode, the discharge capacity of the hydrogen storage electrode is approximately twice that of a cadmium electrode of the same volume. Therefore, for example, so that the capacity of the hydrogen storage electrode is about 1.5 times that of the cadmium electrode,
In the case of a nickel metal hydride battery, Riko can reduce the volume of the hydrogen storage electrode, increase the volume of the positive electrode by the amount of the volume reduction, and increase the capacity of the positive electrode by about 1.5 times. Let's define its capacity as 2 inches of the same volume.
It can be increased to about 1-055 times that of a cadmium battery.

発明が解決しようとする問題点 上述のように、水素吸蔵電極を負極に用(するアルカリ
蓄電池では、その放電容量を大きくするためには、水素
吸蔵電極の体積を小さくするのであるが、正極板および
負極板の面積は同程度心こしておく必要があるので、通
常は負極板を薄くしてその体積を小さくする。そして、
水素吸蔵合金の粉末を導電性支持体とともに耐アルカリ
性高分子で結合した板状体をプレスして製造する電極で
るよ、負極板の単位面積当たりの水素吸蔵合金粉末の担
持量を少なくするほど、負極板が薄くなることカイ朋待
てきる。
Problems to be Solved by the Invention As mentioned above, in alkaline storage batteries that use a hydrogen storage electrode as the negative electrode, in order to increase the discharge capacity, the volume of the hydrogen storage electrode is reduced, but the volume of the hydrogen storage electrode is reduced. Since it is necessary to keep the area of the negative electrode plate and the negative electrode plate to the same extent, the negative electrode plate is usually made thinner to reduce its volume.
The electrode is manufactured by pressing a plate-like body in which hydrogen storage alloy powder is bonded with a conductive support using an alkali-resistant polymer.The smaller the amount of hydrogen storage alloy powder supported per unit area of the negative electrode plate, the more I'm waiting for the negative electrode plate to become thinner.

この板状体をプレスする主な方法には、平板プレスおよ
びロールプレスの2つの方法がある。そして、ロールプ
レスは、極板を連続的にプレスすることができるので、
水素吸蔵電極を製造する場合の量産性に優れているが、
平板プレスは、プレス機の往復運動が不可欠であるので
、プレスが間欠的になり、量産性に劣る。そこで、この
板状体をこれらの2つの方法でプレスして、その厚さを
比較したところ、次の現象が見出された。
There are two main methods for pressing this plate-shaped body: flat press and roll press. And since the roll press can press the electrode plates continuously,
Although it has excellent mass productivity when manufacturing hydrogen storage electrodes,
Since the flat plate press requires reciprocating motion of the press, the press is intermittent, and mass productivity is poor. When this plate-shaped body was pressed using these two methods and the thicknesses were compared, the following phenomenon was discovered.

すなわち、負極板の単位体積当たりの水素吸蔵合金粉末
の担持量が多い場合には、ロールプレスを用いて製造し
た負極板の厚さは、平板プレスを用いて製造した負極板
の厚さとほぼ同じである。
In other words, when the amount of hydrogen storage alloy powder supported per unit volume of the negative electrode plate is large, the thickness of the negative electrode plate manufactured using a roll press is approximately the same as the thickness of the negative electrode plate manufactured using a flat plate press. It is.

しかし、負極板の単位体積当たりの水素吸蔵合金粉末の
担持量が少ない場合には、ロールプレスを用いて製造し
た負極板の厚さは、平板プレスを用いて製造した負極板
の厚さよりも大きくなる。したがって、特に薄型の電池
などのように、薄い負極板を必要とする場合にロールプ
レスを用いると、所望のような薄い負極板が得られない
という不都合が生ずる。
However, when the amount of hydrogen storage alloy powder supported per unit volume of the negative electrode plate is small, the thickness of the negative electrode plate manufactured using a roll press will be larger than the thickness of the negative electrode plate manufactured using a flat plate press. Become. Therefore, when a roll press is used especially when a thin negative electrode plate is required, such as in the case of a thin battery, the disadvantage arises that a desired thin negative electrode plate cannot be obtained.

そこで、水素吸蔵合金の粉末を導電性支持体とともに耐
アルカリ性高分子で結合した板状体をプレスして電極を
製造する場合に、量産性に優れるロールプレスを用いて
、平板プレスと同様の薄型の負極板を製造できる方法が
望まれていた。
Therefore, when manufacturing electrodes by pressing a plate-like body made of hydrogen-absorbing alloy powder bonded with a conductive support and an alkali-resistant polymer, we use a roll press, which is excellent in mass production, to produce a thin plate similar to a flat plate press. There has been a desire for a method that can produce negative electrode plates.

課題を解決するための手段 本発明では、上述の課題を解決するために、次の水素吸
蔵電極の製造方法を提供する。すなわち、その1つは、
水素吸蔵合金の粉末を導電性支持体とともに耐アルカリ
性高分子で結合した板状体を、表面がその板状体よりも
軟らかい金属からなるロールでプレスする水素吸蔵電極
の製造方法である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides the following method for manufacturing a hydrogen storage electrode. That is, one of them is
This is a method for manufacturing a hydrogen storage electrode in which a plate-like body made of hydrogen-absorbing alloy powder bonded to a conductive support using an alkali-resistant polymer is pressed with a roll whose surface is made of a metal softer than the plate-like body.

もう1つは、水素吸蔵合金の粉末を導電性支持体ととも
に耐アルカリ性高分子で結合した板状体を、その板状体
と接触する表面がその板状体よりも軟らかい金属からな
る板と重ねてロールでプレスする製造方法である。
The other method is to stack a plate made of hydrogen-absorbing alloy powder bonded with a conductive support using an alkali-resistant polymer over a plate whose surface in contact with the plate is made of a metal softer than that of the plate. This manufacturing method involves pressing with rolls.

作用 水素吸蔵合金の粉末を導電性支持体とともに耐アルカリ
性高分子で結合した板状体をロールでプレスする際に、
硬質のクロムメツキなどを施していて、表面が硬い従来
のロールを用いて、板状体を直接プレスすると、負極板
の単位体積当たりの水素吸蔵合金粉末の担持量が少なり
場合に、負極板の厚さは、平板プレスを用いて製造した
負極板の厚さよりも大きくなる。この原因は定かでない
が、このような表面が硬いロールで、この板状体をプレ
スする場合には、特に板状体が薄い場合に、板状体とプ
レスとの間に滑りが生じて、板状体の圧縮が効果的に行
われないことが推察される。
When pressing with rolls a plate made of hydrogen storage alloy powder bonded with a conductive support and an alkali-resistant polymer,
If the plate is directly pressed using a conventional roll with a hard surface such as hard chrome plating, the amount of hydrogen-absorbing alloy powder carried per unit volume of the negative plate will be small. The thickness is greater than that of a negative electrode plate manufactured using a flat plate press. The cause of this is not clear, but when pressing this plate with such a hard surface roll, especially when the plate is thin, slipping occurs between the plate and the press. It is inferred that the plate-shaped body is not compressed effectively.

しかし、本発明では、板状体をロールでプレスする際に
、板状体の少なくとも1つの表面が、その水素吸蔵合金
の粉末よりも軟らかい金属と接触している。したがって
、ロールの表面、もしくはロールと板状体との間に介在
する板材の板状体と接する表面に、板状体の水素吸蔵合
金粉末が食い込んで、ロールと板状体との滑りが防止さ
れるので、薄い板状体をプレスする場合にも、板状体が
効果的に圧縮される。
However, in the present invention, when the plate-like body is pressed with rolls, at least one surface of the plate-like body is in contact with a metal that is softer than the hydrogen storage alloy powder. Therefore, the hydrogen-absorbing alloy powder of the plate bites into the surface of the roll or the surface of the plate interposed between the roll and the plate that comes into contact with the plate, preventing the roll and the plate from slipping. Therefore, even when pressing a thin plate-like body, the plate-like body can be effectively compressed.

板状体をロールでプレスする際に、板状体の少なくとも
1つの表面が、その水素吸蔵合金の粉末よりも軟らかい
金属と接触している状態は、少なくとも1つのロールの
表面が、水素吸蔵合金の粉末よりも軟らかい金属からな
るロールプレスを用いたり、あるいは、少なくとも板状
体と接触する側の表面が水素吸蔵合金粉末よりも軟らか
い金属からなる板材が、板状体の少なくとも一方の面と
ロールとの間に介在することによって、得られる実施例 本発明を、実施例によって、さらに詳しく説明する。
When pressing a plate with rolls, a state in which at least one surface of the plate is in contact with a metal softer than the hydrogen storage alloy powder means that the surface of at least one roll is in contact with a metal that is softer than the hydrogen storage alloy powder. using a roll press made of a metal softer than the powder, or at least one surface of the plate material made of a metal softer than the hydrogen-absorbing alloy powder, at least on the surface that contacts the plate material, is pressed between at least one surface of the plate material and the roll. EXAMPLES The present invention will be explained in more detail by way of examples.

[水素吸蔵電極A]  (本発明実施例)水素吸蔵合金
は、LaNi5のLaをミツシュメタル(原料はバスト
ネサイト)Mmで置換し、N1をニッケル、コバルト、
アルミニウムおよびマンガンの混合物で置換して、その
成分元素が化学式   相Ni3.5ScOt!、75
Al15.41’lns、3になるように、アルゴン雰
囲気にした高周波誘導炉中て溶解し、これを鉄製のモー
ルドに流し込んで鋳込み、この鋳造物をショークラッシ
ャーで粗粉砕し、ふるい分けて、粒径が1mm以下の粗
粉末を得た。
[Hydrogen storage electrode A] (Embodiment of the present invention) In the hydrogen storage alloy, La of LaNi5 is replaced with Mitshu metal (raw material is bastnaesite) Mm, and N1 is replaced with nickel, cobalt,
Replaced with a mixture of aluminum and manganese, its component elements have the chemical formula Phase Ni3.5ScOt! , 75
It is melted in a high-frequency induction furnace with an argon atmosphere to give Al15.41'lns, 3, poured into an iron mold, and then coarsely crushed in a show crusher and sieved to determine the particle size. A coarse powder having a diameter of 1 mm or less was obtained.

次に、この粗粉末をエタノールで湿潤させて、アルミナ
製のポットおよびボールを用いてボールミル粉砕をおこ
なった。そして、この粉末を真空乾燥してから分級し、
330メツシユの篩いを通過した水素吸蔵合金の微粉末
を得た。
Next, this coarse powder was moistened with ethanol and ground in a ball mill using an alumina pot and balls. This powder is then vacuum dried and classified.
A fine powder of a hydrogen storage alloy that passed through a 330 mesh sieve was obtained.

そして、この水素吸蔵合金粉末100重量部、導電助剤
たるファーネスブラック2重量部および結着剤たるアク
リル−スチレン共重合体からなる合成ラテックス2重量
部(固形分)に水を加えてペースト状混合物を調製し、
このペースト状混合物を、導電性支持体たる厚さが0−
09mmで開口率が約0.5のニッケルメッキした鉄製
パンチングメタルの両面に塗布し、乾燥して板状体(a
)を作った。板状体(a)に担持させる水素吸蔵合金の
量は、板状体1cIT12当たり0.005−0.3g
の範囲で変化させた。
Then, water was added to 100 parts by weight of this hydrogen storage alloy powder, 2 parts by weight of furnace black as a conductive aid, and 2 parts by weight (solid content) of a synthetic latex consisting of acrylic-styrene copolymer as a binder to form a paste-like mixture. Prepare
This paste-like mixture is used as a conductive support with a thickness of 0-
It is applied to both sides of nickel-plated iron punching metal with a diameter of 0.09 mm and an aperture ratio of approximately 0.5, and is dried to form a plate-shaped body (a
)made. The amount of hydrogen storage alloy supported on the plate-shaped body (a) is 0.005-0.3 g per 1 cIT12 of the plate-shaped body
It was varied within the range of.

そして、鉄製の直径30cmの2本のロールの1本には
、水素吸蔵合金粉末よりも軟らかい厚さ70μのニッケ
ルメッキを施し、他の1本のロールには、水素吸蔵合金
粉末よりも硬い厚さ70μの硬質クロムメツキを施して
、これらの2本のロールの間に、この板状体(a)1枚
を通過させてプレスし、水素吸蔵電極Aを製作した。
One of the two iron rolls with a diameter of 30cm is plated with nickel to a thickness of 70μ, which is softer than the hydrogen storage alloy powder, and the other roll is plated with a thickness of 70μ, which is harder than the hydrogen storage alloy powder. Hard chrome plating with a thickness of 70 μm was applied, and one sheet of this plate (a) was passed between these two rolls and pressed to produce a hydrogen storage electrode A.

[水素吸蔵電極Bl  (本発明実施例)水素吸蔵合金
粉末よりも硬い厚さ70μの硬質クロムメツキを施した
鉄製の直径30cmの2本のロールの間に、水素吸蔵電
極Aにおける板状体(a)と同じ板状体1枚と、水素吸
蔵合金よりも軟らかい厚さO,1mmのニッケル板1枚
とを重ねて通過させてプレスし、水素吸蔵電極Bを製作
した。
[Hydrogen storage electrode Bl (Embodiment of the present invention) The plate-shaped body (a ) and one nickel plate with a thickness of 0.1 mm, which is softer than the hydrogen storage alloy, were stacked and pressed together to produce a hydrogen storage electrode B.

[水素吸蔵電極Cコ (比較例) 水素吸蔵合金よりも硬い厚さ70μの硬質クロムメツキ
を施した鉄製の直径30cmの2本のロールの間に、水
素吸蔵電極Aにおける板状体(a)と同じ板状体1枚の
みを通過させてプレスし、水素吸蔵電極Cを製作した。
[Hydrogen storage electrode C (comparative example) The plate-shaped body (a) of hydrogen storage electrode A and A hydrogen storage electrode C was manufactured by passing only one same plate-like body and pressing it.

なお、以上の3つの水素吸蔵電極をロールでプレスする
際は、水素吸蔵合金の担持量が小さいほどロールの間隔
を小さくした。また、水素吸蔵合金粉末の担持量が同じ
板状体(a)をプレスする場合には、水素吸蔵電極Aお
よびCでは、ロールの間隔を同じにし、水素吸蔵電極B
では、ニッケル板が余分に挿入されるので、ロールの間
隔を、電極AおよびBの場合よりも0.1mrn大きく
した。
In addition, when pressing the above three hydrogen storage electrodes with rolls, the interval between the rolls was made smaller as the amount of hydrogen storage alloy supported was smaller. In addition, when pressing the plate-like bodies (a) having the same amount of hydrogen storage alloy powder supported, hydrogen storage electrodes A and C should have the same roll spacing, and hydrogen storage electrode B
In this case, since an extra nickel plate was inserted, the interval between the rolls was made 0.1 mrn larger than in the case of electrodes A and B.

以上の3つの水素吸蔵電極のプレス後の厚さと、水素吸
蔵電極のICF112当たりの水素吸蔵合金担持量との
関係を、第1図に示す。
The relationship between the thickness of the above three hydrogen storage electrodes after pressing and the amount of hydrogen storage alloy supported per ICF 112 of the hydrogen storage electrode is shown in FIG.

第1図から次のことがわかる。The following can be seen from Figure 1.

すなわち、比較例の方法で製造した水素吸蔵電極Cの場
合には、l cm2あたりの水素吸蔵合金担持量が約帆
20gよりも小さい範囲では、水素吸蔵合金担持量が小
さくなっても電極の厚さは直線的に減少することがなく
なり、電極の厚さの減少が抑制されている。このことは
、比較例の製造方法によれば、水素吸蔵合金の担持量が
小さくなると、板状体の圧縮が困難になり、電極中の水
素吸蔵合金充填密度が著しく小さくなることを意味して
いる・。
In other words, in the case of hydrogen storage electrode C manufactured by the method of the comparative example, in the range where the amount of hydrogen storage alloy supported per 1 cm2 is smaller than about 20 g, the electrode thickness does not change even if the amount of hydrogen storage alloy supported is small. The thickness no longer decreases linearly, and the decrease in electrode thickness is suppressed. This means that according to the manufacturing method of the comparative example, when the amount of hydrogen storage alloy supported becomes smaller, it becomes difficult to compress the plate-like body, and the hydrogen storage alloy packing density in the electrode becomes significantly smaller. There is.

一方、本発明の方法で製造した水素吸蔵電極AおよびB
の場合には、単位面積当たりの水素吸蔵担持量が減少す
ると、電極の厚さが直線的に減少していて、電極Cより
も電極の厚さが小さい。このことは、本発明の方法によ
れば、水素吸蔵合金の担持量が少ない場合にも、板状体
の圧縮が効果的に行われていて、電極中の水素吸蔵合金
の充填密度が著しく減少することがないことを意味して
いる。
On the other hand, hydrogen storage electrodes A and B manufactured by the method of the present invention
In the case of , when the amount of hydrogen stored and supported per unit area decreases, the thickness of the electrode decreases linearly, and the thickness of the electrode is smaller than that of electrode C. This means that according to the method of the present invention, even when the amount of hydrogen storage alloy supported is small, the compression of the plate-like body is performed effectively, and the packing density of the hydrogen storage alloy in the electrode is significantly reduced. It means there is nothing to do.

なお、上述の実施例では、水素吸蔵合金として、化学式
MmNi5,55Cog、75A1g、、、Mn6.3
のものを用いる場合を説明したが、そのほかに置換元素
の種類や量を変えたもの、たとえばMmの代わりにラン
タンリッチミツシュメタル(Laの含有率が相よりも高
いもの)をもちいる稀土類系合金、N1の置換にMnを
用いない稀土類系合金、あるいはZrV、、、6Ni+
、4な゛どの組成の1aves相合金でも、上述の実施
例と同様の効果が得られる。
In addition, in the above-mentioned example, the chemical formula MmNi5,55Cog, 75A1g, , Mn6.3 is used as the hydrogen storage alloy.
In addition, we have explained the case of using a lanthanum-rich Mitsushmetal (with a higher content of La than the phase) instead of Mm. 6Ni+
, 4, etc., the same effects as in the above embodiments can be obtained.

また、上述の実施例では、導電性支持体として、パンチ
ングメタルを用いているが、そのほかに、金属網、エク
スパンデッドメタル、発泡ニッケルやニッケル繊維焼結
体などの導電性金属多孔体を用いる場合にも同様の効果
が得られる。
In addition, in the above embodiments, punched metal is used as the conductive support, but in addition, conductive metal porous bodies such as metal mesh, expanded metal, foamed nickel, and sintered nickel fibers may be used. A similar effect can be obtained in this case.

さらに、上述の実施例では、耐アルカリ性結着剤として
、アクリル−スチレン共重合体からなる合成ラテックス
を用いる場合を説明したが、そのほかに、フッ素樹脂、
メチルセルロース、ヒドロキシプロピルメチルセルロー
ス、ポリビニルアルコールを用いる場合にも、同様の効
果が得られる。
Furthermore, in the above example, a synthetic latex made of acrylic-styrene copolymer was used as the alkali-resistant binder, but in addition, fluororesin,
Similar effects can be obtained when using methylcellulose, hydroxypropylmethylcellulose, or polyvinyl alcohol.

また、上述の実施例の電極Aでは、ロールの1本のみに
ニッケルメッキをほどこしてプレスし、電FixBでは
、板状体の片面にのみニッケル板を介在させてプレスし
たが、両方のロールにニッケルメッキした場合や、板状
体の両面にニッケル板を介在させた場合、あるいはニッ
ケルの代わりに、水素吸蔵合金よりも軟らかい金属であ
る銅などのメツキもしくは板材を用いても同様の効果が
得られる。ただし、水素吸蔵合金よりも軟らかい金属で
も、アルカリ金属のように、空気中で容易に酸化されて
劣化するものは、製造上の別の問題を引き起こすので好
ましくない。
In addition, in the electrode A of the above-mentioned example, only one of the rolls was plated with nickel and pressed, and in the electrode Fix B, a nickel plate was interposed only on one side of the plate-shaped body and pressed, but both rolls were plated with nickel and pressed. The same effect can be obtained by nickel plating, by interposing nickel plates on both sides of the plate, or by using plating or plate material such as copper, which is a softer metal than hydrogen storage alloy, instead of nickel. It will be done. However, even if the metal is softer than the hydrogen storage alloy, metals such as alkali metals that are easily oxidized and deteriorated in the air are not preferable because they cause other manufacturing problems.

発明の効果 本発明の方法によれば、単位面積当たりの水素西W会全
悟椿量+f ibかい恒仝27 tx−量彦社17傳h
るロールプレスを用いて、薄い電極が得られ、電極中の
水素吸蔵合金充填密度の著しい減少を招くことを効果的
に防止できる効果が得られる。
Effects of the Invention According to the method of the present invention, the amount of hydrogen per unit area + f ib Kaikou 27 tx-Ryuhikosha 17 Denh
By using a roll press, a thin electrode can be obtained, and a significant decrease in the packing density of the hydrogen storage alloy in the electrode can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水素吸蔵電極の厚さと、単位面積当たりの水
素吸蔵合金担持量との関係に及ぼす水素吸蔵電極の製造
方法の影響を比較した図である。 A、 B・・・本発明の方法で製造した電極C・・・・
・比較例の方法で製造した電極第1図 水IA吸藏合金朋寺1(g/cめ
FIG. 1 is a diagram comparing the influence of the manufacturing method of the hydrogen storage electrode on the relationship between the thickness of the hydrogen storage electrode and the amount of hydrogen storage alloy supported per unit area. A, B... Electrode C manufactured by the method of the present invention...
・Electrode manufactured by the method of comparative example

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金の粉末を導電性支持体とともに耐ア
ルカリ性高分子で結合した板状体を、表面がその板状体
よりも軟らかい金属からなるロールでプレスすることを
特徴とする水素吸蔵電極の製造方法。
(1) A hydrogen storage electrode characterized by pressing a plate-shaped body made of hydrogen-absorbing alloy powder bonded with a conductive support using an alkali-resistant polymer using a roll whose surface is made of a metal softer than that of the plate-shaped body. manufacturing method.
(2)水素吸蔵合金の粉末を導電性支持体とともに耐ア
ルカリ性高分子で結合した板状体を、その板状体と接触
する表面がその板状体よりも軟らかい金属からなる板と
重ねてロールでプレスすることを特徴とする水素吸蔵電
極の製造方法。
(2) A plate made of hydrogen storage alloy powder bonded with a conductive support using an alkali-resistant polymer is layered with a plate whose surface in contact with the plate is made of a metal softer than that of the plate and rolled. 1. A method for producing a hydrogen storage electrode, the method comprising: pressing the hydrogen storage electrode.
JP2238518A 1990-09-07 1990-09-07 Method for producing hydrogen storage electrode Expired - Lifetime JP2969871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238518A JP2969871B2 (en) 1990-09-07 1990-09-07 Method for producing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238518A JP2969871B2 (en) 1990-09-07 1990-09-07 Method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH04118856A true JPH04118856A (en) 1992-04-20
JP2969871B2 JP2969871B2 (en) 1999-11-02

Family

ID=17031449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238518A Expired - Lifetime JP2969871B2 (en) 1990-09-07 1990-09-07 Method for producing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2969871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733355A1 (en) * 1995-04-24 1996-10-25 Accumulateurs Fixes NEGATIVE ELECTRODE OF ALKALINE BATTERY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733355A1 (en) * 1995-04-24 1996-10-25 Accumulateurs Fixes NEGATIVE ELECTRODE OF ALKALINE BATTERY
EP0740355A1 (en) * 1995-04-24 1996-10-30 Saft Negative electrode for Ni-metal hydride accumulator

Also Published As

Publication number Publication date
JP2969871B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2004079500A (en) Electrode for electrochemical element, and battery using this
US5387478A (en) Hydrogen storage electrode and process for producing the same
US3986892A (en) Porous cobalt electrodes for alkaline accumulators and hybrid cell therewith and air electrode
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP2969871B2 (en) Method for producing hydrogen storage electrode
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
US7582382B2 (en) Non-sintered electrode of nickel hydroxide in a binder of cellulose compound and styrene-acrylate co-polymer for an electrochemical generator
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JP2004234909A (en) Electrode for electrochemical element and battery using same
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH087896A (en) Alkaline secondary battery
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP3462563B2 (en) Hydrogen storage alloy electrode
JPH08236107A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH103928A (en) Nickel-hydrogen secondary battery
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JPS63124370A (en) Nonsintered nickel electrode for alkaline storage battery
JPH11111280A (en) Hydride secondary battery
JPH1021904A (en) Alkaline storage battery