JPH04117276A - Device for microbe culture medium - Google Patents

Device for microbe culture medium

Info

Publication number
JPH04117276A
JPH04117276A JP23755990A JP23755990A JPH04117276A JP H04117276 A JPH04117276 A JP H04117276A JP 23755990 A JP23755990 A JP 23755990A JP 23755990 A JP23755990 A JP 23755990A JP H04117276 A JPH04117276 A JP H04117276A
Authority
JP
Japan
Prior art keywords
medium
polymer layer
acrylate
meth
plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23755990A
Other languages
Japanese (ja)
Inventor
Shohachi Yoshioka
吉岡 正八
Masakazu Okumura
昌和 奥村
Shohei Yamamoto
昌平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Fine Chemical Co Ltd
Sekisui Chemical Co Ltd
Original Assignee
Nippon Fine Chemical Co Ltd
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Fine Chemical Co Ltd, Sekisui Chemical Co Ltd filed Critical Nippon Fine Chemical Co Ltd
Priority to JP23755990A priority Critical patent/JPH04117276A/en
Publication of JPH04117276A publication Critical patent/JPH04117276A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the title device capable of safely producing in simple facility and stably forming smooth and uniform slant culture medium and reduced in change of physical properties by providing a specific hydrophilic polymer layer on the surface of a device for microorganism culture medium made of a plastics. CONSTITUTION:The aimed device made of a plastics and providing a hydrophilic polymer layer consisting of a copolymer of glycosylethyl methacrylate and olefinic compound (preferably acrylic acid or styrene) thereon. The hydrophilic polymer layer is preferably formed by applying a solution of polymer consisting of the above-mentioned copolymer to the surface of plastics. Furthermore, the plastics constituting the device is preferably e.g. polycarbonate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物の検査または保存・輸送に用いられる
微生物発育培地用器具に関し、より特定的には、表面に
親水性高分子層が設けられたプラスチック製の微生物発
育培地用器具に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microorganism growth medium device used for testing, storing, and transporting microorganisms, and more specifically, the present invention relates to a microorganism growth medium device used for testing, storing, and transporting microorganisms, and more specifically, the present invention relates to a microorganism growth medium device used for testing, storing, and transporting microorganisms. The present invention relates to a plastic microbial growth medium device.

〔従来の技術〕[Conventional technology]

従来より、微生物の検査や保存もしくは輸送に際しては
、種々の成分を含む寒天で作製された斜面培地が広く用
いられている。斜面培地は、一般にはガラス製試験管等
のガラス器具内において形成されている。
Conventionally, slanted media made of agar containing various components have been widely used for testing, preserving, or transporting microorganisms. Slants are generally formed in glassware such as glass test tubes.

しかしながら、(a)ガラス製容器は輸送中に割れ易い
こと、(b)廃棄に際しガラス製試験管では寒天培地を
完全に取り除くことが難しく、産業廃棄物処理上の問題
があること、並びに(C)寒天からなる斜面培地が輸送
中にガラス面から剥がれ、微生物の接種が困難になりが
ちであること等の問題があった。
However, (a) glass containers are easily broken during transportation, (b) it is difficult to completely remove the agar medium from glass test tubes when disposing of them, which poses problems in industrial waste disposal, and (C ) There were problems such as the slant culture medium made of agar peeling off from the glass surface during transportation, making it difficult to inoculate microorganisms.

そこで、ガラス製の容器に代えて、プラスチック製の容
器を用いることが試みられている。しかしながら、−船
釣に、プラスチック製容器では表面が疎水性であるため
、斜面培地を作製するにあたり、平滑かつ均一な斜面を
形成することができない、その結果、細菌の発育が充分
でなく、正確な検査結果を得ることが難しかった。
Therefore, attempts have been made to use plastic containers instead of glass containers. However, when using a plastic container for boat fishing, the surface is hydrophobic, making it impossible to form a smooth and uniform slope when preparing a slope culture medium.As a result, bacterial growth is insufficient and accurate. It was difficult to obtain accurate test results.

他方、上記のようなプラスチック製容器の問題点を解消
するために、容器内表面を親水性化する方法が、特開平
1−179685号及び特開平l−165367号に開
示されている。すなわち、特開平1−179685号で
は、プラスチック製容器の内表面にコロナ放電処理を施
すことにより細胞の培養効率を高め得る旨が開示されて
おり、また特開平1−165367号では、容器内表面
をプラズマ処理することにより親水性化し、細胞の培養
効率を高め得る旨が開示されている。
On the other hand, in order to solve the above-mentioned problems with plastic containers, a method of making the inner surface of the container hydrophilic is disclosed in JP-A-1-179685 and JP-A-1-165367. That is, JP-A No. 1-179685 discloses that cell culture efficiency can be increased by applying corona discharge treatment to the inner surface of a plastic container, and JP-A No. 1-165367 discloses that the inner surface of a plastic container can be treated with corona discharge to improve cell culture efficiency. It has been disclosed that plasma treatment can be made hydrophilic and increase cell culture efficiency.

しかしながら、コロナ放電処理やプラズマ処理に際し高
周波を利用しているため、作業者に対し有害な影響を及
ぼすおそれがあった。また、−度に多数のボトル状容器
を処理するには、ガス噴出孔を多数設ける必要があり、
設備が太き(なり過ぎるという問題もあった。さらに、
管空状の容器では、容器内表面にコロナ放電処理やプラ
ズマ処理を均一に行うことが難しかった。
However, since high frequencies are used in corona discharge treatment and plasma treatment, there is a risk that this may have a harmful effect on workers. In addition, in order to process a large number of bottle-shaped containers at the same time, it is necessary to provide a large number of gas ejection holes.
There was also the problem that the equipment was too thick.
With hollow tube-shaped containers, it is difficult to uniformly apply corona discharge treatment or plasma treatment to the inner surface of the container.

のみならず、プラズマ処理で付与された親水性は経時的
に低下してい(という問題もあった。
In addition, there was also the problem that the hydrophilicity imparted by plasma treatment decreased over time.

他方、プラスチック容器に親水性を付与する試みとして
は、特開昭59−168052号に開示されているよう
に、分子中に水酸基を有する成形体を樹脂に添加し、溶
融混練した後に成形する方法も提案されている。しかし
ながら、特開昭59−168052号に開示されている
方法は、脂肪族アミノ化合物とポリスチレン樹脂または
ポリプロピレン樹脂とを混練するものであり、親水性を
付与し得る樹脂がこれらに限定される。のみならず、混
練された脂肪族アミノ化合物は低分子であるため、プラ
スチック容器表面にブリード等を生じがちであり、成形
体の物性が経時的に低下するという問題もあった。
On the other hand, as an attempt to impart hydrophilicity to plastic containers, a method is disclosed in JP-A-59-168052 in which a molded product having a hydroxyl group in the molecule is added to a resin, melted and kneaded, and then molded. has also been proposed. However, the method disclosed in JP-A-59-168052 involves kneading an aliphatic amino compound and a polystyrene resin or a polypropylene resin, and the resins that can impart hydrophilicity are limited to these. In addition, since the kneaded aliphatic amino compound has a low molecular weight, it tends to cause bleeding on the surface of the plastic container, and there is also the problem that the physical properties of the molded product deteriorate over time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

よって、本発明の目的は、上述した先行技術の問題点に
鑑みてなされたものであり、その目的とするところは、
人体に有害な影響を及ぼす手段や大掛かりな設備を要す
ることなく製造することができ、かつ平滑かつ均一な斜
面培地を安定に形成することができ、さらに樹脂の種類
の制約及び経時的な物性の変化も少ないプラスチック製
の微生物発育培地用器具を提供することにある。
Therefore, the object of the present invention has been made in view of the problems of the prior art described above, and the object is to:
It can be manufactured without requiring means that have a harmful effect on the human body or large-scale equipment, and it is possible to stably form a smooth and uniform slope culture medium. It is an object of the present invention to provide a plastic microbial growth medium device that undergoes little change.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の微生物発育培地用器具は、プラスチックを用い
て構成されており、その表面にグルコシルエチルメタク
リレートと、グルコシルエチルメタクリレートと共重合
可能なオレフィン系化合物との共重合体からなる親水性
高分子層が設けられていることを特徴とする。この親水
性高分子層は、グルコシルエチルメタクリレートと、そ
れに共重合可能なオレフィン系化合物とを重合すること
により得られた高分子溶液をプラスチック表面に塗布・
乾燥することにより設けられる。
The microorganism growth medium device of the present invention is constructed using plastic, and has a hydrophilic polymer layer on the surface thereof made of a copolymer of glucosylethyl methacrylate and an olefin compound copolymerizable with glucosylethyl methacrylate. It is characterized by being provided with. This hydrophilic polymer layer is made by coating the plastic surface with a polymer solution obtained by polymerizing glucosylethyl methacrylate and an olefin compound that can be copolymerized with it.
Set by drying.

以下、本発明の各構成を詳細に説明する。Hereinafter, each configuration of the present invention will be explained in detail.

凰木立1分王1 本発明の微生物発育培地用器具では、プラスチック表面
に上記のような親水性高分子層が設けられているが、こ
の親水性高分子層は、グルコシルエチルメタクリレート
とオレフィン系化合物の共重合体により構成されている
In the microorganism growth medium device of the present invention, a hydrophilic polymer layer as described above is provided on the plastic surface, and this hydrophilic polymer layer is made of glucosylethyl methacrylate and an olefin compound. It is composed of a copolymer of

i)グルコシルエチルメタクリレート 本発明において親水性高分子層を設けるために用いられ
るグルコシルエチルメタクリレートとは、下記の構造式
で示される配糖体であり、アクリル酸、メタクリル酸、
メタクリル酸メチル、スチレン、アクリロニトリル等の
一般的なモノマーと容易に共重合し、各種の溶解性を有
する共重合体を形成し得るものである。
i) Glucosylethyl methacrylate The glucosylethyl methacrylate used to provide the hydrophilic polymer layer in the present invention is a glycoside represented by the following structural formula, and includes acrylic acid, methacrylic acid,
It can be easily copolymerized with common monomers such as methyl methacrylate, styrene, and acrylonitrile to form copolymers with various solubility.

グルコシルエチルメタクリレートとしては、例えば商品
名rsucraph−GEMAJの下に日本精化株式会
社により市販されているものを用いることができる。
As glucosylethyl methacrylate, it is possible to use, for example, those marketed by Nippon Fine Chemical Co., Ltd. under the trade name rsucraph-GEMAJ.

ii )オレフィン系化合物 本発明においては、親水性高分子層は、上記グルコシル
エチルメタクリレートにオレフィン系化合物を共重合さ
せることにより構成される。使用し得る共重合可能なオ
レフィン系化合物としては、以下のものが例示される。
ii) Olefin Compound In the present invention, the hydrophilic polymer layer is constructed by copolymerizing the glucosylethyl methacrylate with an olefin compound. Examples of copolymerizable olefin compounds that can be used include the following.

(a)メチル(メタ)アクリレート、エチル(メタ)ア
クリレート、ブチル(メタ)アクリレート、アミル(メ
タ)アクリレート、ヘキシル(メタ)アクリレート、オ
クチル(メタ)アクリレート、2−エチルヘキシル(メ
タ)アクリレート、デシル(メタ)アクリレート、ウン
デシル(メタ)アクリレート、ラウリル(メタ)アクリ
レート、ステアリル(メタ)アクリレート等のメタクリ
ル酸もしくはアクリル酸のアルキルエステル類;シクロ
ヘキシル(メタ)アクリレート等のメタクリル酸もしく
はアクリル酸のシクロアルキルエステル頻;スチレン、
酢酸ビニルもしくはプロピオン酸ビニル等のビニル類;
アクリロニトリル等のニトリル類等の疎水性オレフィン
系化合物。
(a) Methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, decyl (meth)acrylate ) Acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, and other alkyl esters of methacrylic acid or acrylic acid; cycloalkyl esters of methacrylic acid or acrylic acid, such as cyclohexyl (meth)acrylate; styrene,
Vinyls such as vinyl acetate or vinyl propionate;
Hydrophobic olefin compounds such as nitriles such as acrylonitrile.

(b)2−ヒドロキシエチル(メタ)アクリレート、2
−ヒドロキシプロピル(メタ)アクリレート、2−(ジ
メチルアミノ)エチル(メタ)アクリレート、2−(ジ
エチルアミノ)エチル(メタ)アクリレート、3−(ジ
メチルアミノ)プロピル(メタ)アクリレート、3−(
ジエチルアミノ)プロピル(メタ)アクリレート、ポリ
エチレングリコールモノメタクリレート、ポリエチレン
グリコールモノアクリレート、アクリルアミド、メタク
リルアミド、ジメチルアクリルアミド、ジメチルメタク
リルアミド、アクリル酸、メタクリル酸、N−ビニルピ
ロリドンまたはビニルカルバゾール等の親水性オレフィ
ン系化合物。
(b) 2-hydroxyethyl (meth)acrylate, 2
-Hydroxypropyl (meth)acrylate, 2-(dimethylamino)ethyl (meth)acrylate, 2-(diethylamino)ethyl (meth)acrylate, 3-(dimethylamino)propyl (meth)acrylate, 3-(
Hydrophilic olefinic compounds such as diethylamino)propyl(meth)acrylate, polyethylene glycol monomethacrylate, polyethylene glycol monoacrylate, acrylamide, methacrylamide, dimethylacrylamide, dimethylmethacrylamide, acrylic acid, methacrylic acid, N-vinylpyrrolidone or vinylcarbazole .

(C)エチレングリコールジ(メタ)アクリレート、ジ
エチレングリコールジ(メタ)アクリレート、トリエチ
レングリコールジ(メタ)アクリレート、ビニル(メタ
)アクリレート、アリル(メタ)アクリレート、ジビニ
ルベンゼン、ジアリルフタレートまたはトリメチルプロ
パントリ(メタ)アクリレート等の多官能オレフィン系
化合物等。
(C) Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, vinyl(meth)acrylate, allyl(meth)acrylate, divinylbenzene, diallyl phthalate or trimethylpropane tri(meth)acrylate ) Polyfunctional olefin compounds such as acrylates, etc.

好ましくは、アクリル酸、メタクリル酸、メタクリル酸
メチル、スチレン、アクリロニトリル等が用いられる。
Preferably, acrylic acid, methacrylic acid, methyl methacrylate, styrene, acrylonitrile, etc. are used.

山)!!水性高分子層の形成 親水性高分子層は、上述したグルコシルエチルメタクリ
レートとオレフィン系化合物とを重合することにより製
造された高分子溶液をプラスチック表面に塗布し乾燥す
ることにより形成される。
Mountain)! ! Formation of aqueous polymer layer The hydrophilic polymer layer is formed by applying a polymer solution produced by polymerizing the above-mentioned glucosylethyl methacrylate and an olefin compound onto the plastic surface and drying it.

二の高分子溶液は、例えば溶液重合法、塊状重合法、乳
化重合法、懸濁重合法または放射線重合法等の通常の重
合方法に従って製造され得る。
The second polymer solution can be produced according to conventional polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, or radiation polymerization.

−例を挙げると、溶液重合は、過酸化ベンゾイル、アゾ
ビスイソブチロニトリルまたは過硫酸アンモニウム等の
重合開始剤の存在下、または不存在下において溶媒中で
行われる。使用される溶媒は、生成する共重合体の溶解
性に応じて適宜選択され得る。例えば、含水量が共重合
体の溶解性に応じて調製された、イソプロパツール、メ
タノール、アセトン、またはエチルセルロース等のよう
な含水極性溶媒やジメチルスルホキシド等が用いられる
。好ましくは、アルコール系の含水極性溶媒が用いられ
る。
- By way of example, solution polymerization is carried out in a solvent in the presence or absence of a polymerization initiator such as benzoyl peroxide, azobisisobutyronitrile or ammonium persulfate. The solvent used can be appropriately selected depending on the solubility of the copolymer to be produced. For example, a water-containing polar solvent such as isopropanol, methanol, acetone, or ethyl cellulose, or dimethyl sulfoxide, whose water content is adjusted depending on the solubility of the copolymer, is used. Preferably, an alcoholic water-containing polar solvent is used.

上記のようにして得られた高分子溶液は、予めアルコー
ル系の含水極性溶媒等で通常0.5〜20重量%程度に
希釈された状態でプラスチック表面に塗布される。塗布
量は特に制限されないが、乾燥後の高分子層の厚みが0
.1〜500μm程度、好ましくは0. 3〜100μ
mとなるように塗布すればよい、また、乾燥は通常50
〜60℃の温度で行われるが、通風下の自然乾燥で行っ
てもよい。
The polymer solution obtained as described above is diluted in advance with an alcohol-based water-containing polar solvent or the like to usually about 0.5 to 20% by weight, and then applied to the plastic surface. The coating amount is not particularly limited, but the thickness of the polymer layer after drying is 0.
.. About 1 to 500 μm, preferably 0. 3~100μ
You just need to apply it so that it becomes 50 m, and drying is usually 50 m
Although it is carried out at a temperature of ~60°C, it may also be carried out by natural drying under ventilation.

ブースチ・り 本発明において、上記のように親水性高分子層を表面に
設けることにより親水性を付与されるプラスチックとし
ては、特に限定されないが、微生物の発育状況を観察す
ることがあるため、透明性に優れたポリスチレン、ポリ
プロピレン、アクリル樹脂、塩化ビニル樹脂、ポリエチ
レンテレフタレートまたはポリカーボネート等が好適に
用いられる。
In the present invention, plastics that are rendered hydrophilic by providing a hydrophilic polymer layer on the surface as described above are not particularly limited, but transparent plastics may be used to observe the growth of microorganisms. Polystyrene, polypropylene, acrylic resin, vinyl chloride resin, polyethylene terephthalate, polycarbonate, etc., which have excellent properties, are preferably used.

また、プラスチック基材の形状は特に限定されず、筒状
、箱状、ボトル状、シート状またはフィルム状の何れで
あってもよい、具体的には、プラスチック製の試験管、
シャーレ、多穴プレート、フラスコ、ボトル、ゲル担持
用プレートまたは顕微鏡用スライドプレート等が例示さ
れる。
Further, the shape of the plastic base material is not particularly limited, and may be cylindrical, box-shaped, bottle-shaped, sheet-shaped, or film-shaped. Specifically, plastic test tubes,
Examples include petri dishes, multi-hole plates, flasks, bottles, gel-supporting plates, and microscope slide plates.

羞生 本発明の微生物発育培地用器具に掲載される培地として
は、小川培地、チョコレート寒天培地、サブロー培地、
TSI培地、ポテトデキストロース培地、MALT培地
またはCZAPEC培地のような寒天を主成分とした半
固形培地が例示されるが、麦芽エキス、酵母エキスまた
は微生物が要求する栄養素等を配合した液体培地にも適
用することができる。
The media listed in the microorganism growth medium device of the present invention include Ogawa medium, chocolate agar medium, Sabouraud medium,
Semi-solid media mainly composed of agar such as TSI medium, potato dextrose medium, MALT medium, or CZAPEC medium are exemplified, but liquid media containing malt extract, yeast extract, or nutrients required by microorganisms are also applicable. can do.

本発明の微生初発 培 用  の   法本発明の微生
物発育培地用器具は、例えば以下のように使用される。
Method for initial culture of microorganisms of the present invention The microorganism growth medium device of the present invention is used, for example, as follows.

プラスチック製試験管の場合、上記高分子溶液を塗布・
乾燥した後、滅菌し、滅菌後60℃に保温した寒天培地
を一定量入れ、直ちに試験管を傾けて斜面培地を作製す
る。放冷後、該試験管内の斜面培地に白金耳により微生
物を植菌して用いられる。
In the case of plastic test tubes, apply the above polymer solution.
After drying, a certain amount of sterilized agar medium kept at 60° C. is added, and the test tube is immediately tilted to prepare a slant medium. After cooling, the slant culture medium in the test tube is inoculated with microorganisms using a platinum loop.

〔作用及び発明の効果〕[Action and effect of invention]

本発明の微生物発育培地用器具では、高分子層に存在す
るグルコシル基によりプラスチック製試験管の内表面が
親水化されており、従って微生物検査に汎用される斜面
培地をガラス試験管なみに平滑かつ均一に作製すること
ができ、検査結果の信転性を保つことができる。また、
プラスチック製器具の内表面が親水性化されているため
、微生物の保存あるいは輸送中の衝撃により寒天培地が
器具内表面から剥がれたり、器具が割れるといった事故
も防止される。
In the microorganism growth medium device of the present invention, the inner surface of the plastic test tube is made hydrophilic by the glucosyl groups present in the polymer layer. It can be manufactured uniformly and the reliability of test results can be maintained. Also,
Since the inner surface of the plastic utensil is made hydrophilic, accidents such as the agar medium being peeled off from the inner surface of the utensil or the utensil breaking due to impact during storage or transportation of microorganisms are prevented.

さらに、上記親水性高分子層がプラスチック表面に設け
られているため、保存期間中の内容物のpHが経時的に
変化し難く、放射線、紫外線またはエチレンオキサイド
ガスによる滅菌も可能であり、さらに滅菌処理後も表面
の親木性は確実に保持される。
Furthermore, since the above-mentioned hydrophilic polymer layer is provided on the plastic surface, the pH of the contents during storage is difficult to change over time, and sterilization with radiation, ultraviolet rays, or ethylene oxide gas is possible; The wood-loving nature of the surface is reliably maintained even after treatment.

本発明の微生物発育培地用器具では、使用後に寒天培地
を取り出して、分別廃棄する必要がない。
With the microorganism growth medium device of the present invention, there is no need to take out the agar medium after use and dispose of it separately.

すなわち、寒天培地を入れたまま滅菌・焼却することが
できる。従って、検査終了後の廃棄物処理も極めて簡単
に行い得る。
That is, it can be sterilized and incinerated with the agar medium still in it. Therefore, waste disposal after the inspection can be carried out very easily.

〔実施例の説明〕[Explanation of Examples]

以下、本発明の非限定的な実施例を説明することにより
、本発明を明らかにする。
The present invention will now be elucidated by describing non-limiting examples thereof.

叉隻五上 グルコシルエチルメタクリレートの50重量%水溶液3
20g、メチルメタクリレ−)40g。
50% by weight aqueous solution of glucosylethyl methacrylate 3
20g, methyl methacrylate) 40g.

イソプロピルアルコール320g、及び蒸留水350g
をコンデンサー付きセパラブルフラスコに仕込み、窒素
ガスを吹き込みなから65°Cに昇温した。
320g of isopropyl alcohol and 350g of distilled water
was placed in a separable flask equipped with a condenser, and the temperature was raised to 65°C after blowing in nitrogen gas.

2.2′−アゾビス(2,4−ジメチルバレロニトリル
)50■をイソプロピルアルコール20gに溶解した後
添加し、窒素雰囲気中、撹拌下において65〜68℃で
8時間反応させた。それによって、粘度が1080cp
s (回転粘度針、6Qrpm、25℃)であり、かつ
透明の溶液を得た0重合率は97%であり、ゲルパーミ
エイションクロマトグラフィーで求めた平均分子量(M
W)は9.3X10’であった。
2.2'-Azobis(2,4-dimethylvaleronitrile) (50 μm) was dissolved in 20 g of isopropyl alcohol and added thereto, followed by reaction at 65-68° C. for 8 hours under stirring in a nitrogen atmosphere. As a result, the viscosity is 1080 cp
s (rotational viscosity needle, 6 Q rpm, 25°C), and the polymerization rate at which a transparent solution was obtained was 97%, and the average molecular weight (M
W) was 9.3×10'.

上記のようにして得られた溶液を、50重量%イソプロ
ピルアルコール水溶液で約10倍に希釈し、ポリスチレ
ン製の試験管(容量15m)5本に満たし、約2分径全
量をあけた後、強制循環式乾燥器内で60℃の温度にて
20分間乾燥し、次に、放冷した。
The solution obtained as above was diluted approximately 10 times with a 50% by weight aqueous isopropyl alcohol solution, filled into 5 polystyrene test tubes (capacity 15 m), and after opening the entire volume by approximately 2 minutes, forced It was dried in a circulating dryer at a temperature of 60° C. for 20 minutes and then allowed to cool.

また、比較のために上記の処理を施していないポリスチ
レン製試験管3本を用意した。
In addition, for comparison, three polystyrene test tubes that were not subjected to the above treatment were prepared.

別途調製し、60℃に保温しておいたTSI寒天培地(
日本製薬株式会社製)4ydを上記処理を施した試験管
及び比較用試験管に注ぎ、ポリエチレン製のキャップを
軽く取り付け、直ちに試験管を傾けた。
TSI agar medium prepared separately and kept at 60°C (
4yd (manufactured by Nippon Pharmaceutical Co., Ltd.) was poured into the above-treated test tubes and a comparison test tube, a polyethylene cap was lightly attached, and the test tubes were immediately tilted.

親水化処理を施こした試験管では、フラットな斜面培地
が形成された。他方、比較用の未処理のポリスチレン製
試験管では凹凸のある斜面が形成された。
In the test tubes treated with hydrophilic treatment, a flat slanted medium was formed. On the other hand, an uneven slope was formed in an untreated polystyrene test tube for comparison.

両試験管を室温下で20日間保存したところ、未処理の
試験管では2日目には培地色が橙色から深赤色に変化し
たが、親水化処理した試験管では培地色の変化は認めら
れなかった。保存期間終了時にpH測定用の電極を培地
と直接接触させて培地のpHを測定したところ、第1表
に示す結果が得られた。なお、斜面形成時の培地のpH
は7゜3であった。
When both test tubes were stored at room temperature for 20 days, the color of the medium in the untreated test tube changed from orange to deep red on the second day, but no change in the color of the medium was observed in the hydrophilized test tube. There wasn't. At the end of the storage period, the pH of the medium was measured by bringing a pH measuring electrode into direct contact with the medium, and the results shown in Table 1 were obtained. In addition, the pH of the medium at the time of slope formation
was 7°3.

また、ポリスチレン製シャーレ(60■径)を同じよう
に親水処理して処理面の後退接触角、すなわち水滴を吸
い取っていく際の接触角を測定した。その結果を第2表
に示す。
In addition, a polystyrene petri dish (60 mm diameter) was treated with hydrophilic treatment in the same manner, and the receding contact angle of the treated surface, that is, the contact angle when water droplets were sucked up, was measured. The results are shown in Table 2.

第1表 第2表;後退接触角(度) 実施班I グルコシルエチルメタクリレートの50重量%水溶液2
80g、メチ1フ60g1ジオキサン300g1イソプ
ロピルアルコール170g、i留水200gをコンデン
サー付きセパラブルフラスコに仕込み、窒素ガスを吹き
込みなから65°Cに昇温した。
Table 1 Table 2; Receding contact angle (degrees) Working group I 50% by weight aqueous solution of glucosylethyl methacrylate 2
80 g of dioxane, 170 g of dioxane, 170 g of isopropyl alcohol, and 200 g of distilled water were placed in a separable flask equipped with a condenser, and the temperature was raised to 65° C. without blowing in nitrogen gas.

2.2′−アゾビス(2,4−ジメチルバレロニトリル
)50gをイソプロピルアルコール20gに溶解した後
、上記フラスコ内の溶液に添加し、窒素雰囲気中、撹拌
下において65〜70’Cで10時間反応させた。得ら
れた重合液は粘度が760cps (回転粘度計、60
rpm、25℃)の透明溶液であった。重合率は95.
2%、平均分子量は8.9X10’であった。
2. After dissolving 50 g of 2'-azobis(2,4-dimethylvaleronitrile) in 20 g of isopropyl alcohol, it was added to the solution in the above flask and reacted for 10 hours at 65 to 70'C under stirring in a nitrogen atmosphere. I let it happen. The obtained polymerization liquid had a viscosity of 760 cps (rotational viscometer, 60 cps).
rpm, 25°C). The polymerization rate was 95.
2%, average molecular weight was 8.9X10'.

上記のようにして得られた溶液を、33重量%イソプロ
ピルアルコール水溶液で約10倍に希釈し、ポリカーボ
ネート製の試験管(容量15d)3本に満たし、約1背
後全量をあけた後、試験管を逆さまにして一夜自然乾燥
した。
The solution obtained as above was diluted about 10 times with a 33% by weight aqueous isopropyl alcohol solution, filled into 3 polycarbonate test tubes (capacity 15 d), and after about 1 hour, the entire volume was emptied. I turned it upside down and let it air dry overnight.

他方、比較用として上記の処理が施されていないポリカ
ーボネート製試験管3本を別途用意しておいた。
On the other hand, three polycarbonate test tubes that were not subjected to the above treatment were separately prepared for comparison.

翌日、別途調製し、60℃に保温しておいた確TSI″
N天培地(日本製薬株式会社製)4H1を、上記処理が
施されたポリカーボネート製試験管及び比較用試験管に
注ぎ、ポリエチレン製のキャップを軽くし、直ちに試験
管を傾けた。
The next day, prepare TSI separately and keep it warm at 60℃.
N-temperature medium (manufactured by Nippon Pharmaceutical Co., Ltd.) 4H1 was poured into polycarbonate test tubes treated as described above and comparison test tubes, the polyethylene caps were loosened, and the test tubes were immediately tilted.

親水化処理した試験管ではフラットな斜面培地が形成さ
れた。比較対照として使用し未処理のポリカーボネート
製試験管では、凹凸のある斜面が形成された。なお、培
地調製時のpHは7.2であった。
A flat slanted medium was formed in the hydrophilized test tube. In the untreated polycarbonate test tube used as a control, an uneven slope was formed. Note that the pH at the time of medium preparation was 7.2.

両試験管を室温にて10日間保存したところ、未処理の
試験管では3日目には培地色が橙色から深赤色に変化し
たが、親水化処理した試験管では培地色の変化は認めら
れなかった。保存期間終了時に培地のPHを測定したと
ころ、第3表の結果が得られた。
When both test tubes were stored at room temperature for 10 days, the color of the medium in the untreated test tube changed from orange to deep red on the third day, but no change in the color of the medium was observed in the hydrophilized test tube. There wasn't. When the pH of the culture medium was measured at the end of the storage period, the results shown in Table 3 were obtained.

(以下、余白) 第3表 実施例1の重合溶液を50%イソプロピルアルコール水
溶液で約10倍に希釈し、ポリエチレンテレフタレート
製試験管5本に満たし、約2背後全量をあけた後、50
℃の乾燥器内で15分間乾燥し、放冷した。また、比較
用として、上記処理を施していないポリエチレンテレフ
タレート製試験管3本を用意した。
(Hereinafter, blank space) Table 3 The polymerization solution of Example 1 was diluted about 10 times with 50% isopropyl alcohol aqueous solution, filled into 5 test tubes made of polyethylene terephthalate, and after emptying the entire volume after about 2 hours,
It was dried for 15 minutes in a dryer at ℃ and allowed to cool. In addition, for comparison, three test tubes made of polyethylene terephthalate that had not been subjected to the above treatment were prepared.

別途調製し、60°Cに保温しておいたTSI寒天培地
(日本製薬株式会社製)4mを上記各試験管に注ぎ、ポ
リエチレン製のキャップを軽(し、直ちに試験管を傾け
た。
4 m of TSI agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.) prepared separately and kept at 60°C was poured into each of the above test tubes, the polyethylene cap was removed, and the test tubes were immediately tilted.

親水化処理が施されたポリエチレンテレフタレート試験
管ではフラットな斜面培地が形成された。
A flat slanted medium was formed in a polyethylene terephthalate test tube that had been subjected to hydrophilic treatment.

比較対照として使用した未処理のポリエチレンテレフタ
レート製試験管では、凹凸のある斜面が形成された。
In the untreated polyethylene terephthalate test tube used as a comparison, an uneven slope was formed.

両試験管を室温に10日間保存したところ、未処理の試
験管では5日目には培地色が橙色から橙赤色に変化した
が、親水化処理を施した試験管では培地色の変化は認め
られなかった。保存6日目に培地のPHを測定したとこ
ろ、第4表の結果が得られた。なお、斜面形成時の培地
のPHは7゜3であった。
When both test tubes were stored at room temperature for 10 days, the medium color changed from orange to orange-red in the untreated test tube on the 5th day, but no change in the medium color was observed in the hydrophilic test tube. I couldn't. When the pH of the medium was measured on the 6th day of storage, the results shown in Table 4 were obtained. Note that the pH of the medium at the time of slope formation was 7°3.

また、ポリエチレンテレフタレート製のシート(市販の
OHP用シートを使用)に上記重合溶液の10希釈溶液
を刷毛で均一に塗布し、50″Cの乾燥器内で20分間
乾燥した。このシートの後退接触角を測定した結果を下
記の第5表に示す。
In addition, a 10-diluted solution of the above polymerization solution was uniformly applied to a polyethylene terephthalate sheet (a commercially available OHP sheet was used) using a brush, and the sheet was dried for 20 minutes in a drying oven at 50''C. The results of the angle measurements are shown in Table 5 below.

(以下、余白)(Hereafter, margin)

Claims (1)

【特許請求の範囲】[Claims] (1)プラスチック製の微生物発育培地用器具であって
、その表面にグルコシルエチルメタクリレートとオレフ
ィン系化合物との共重合体からなる親水性高分子層が設
けられていることを特徴とする、微生物発育培地用器具
(1) A microorganism growth medium device made of plastic, characterized in that a hydrophilic polymer layer made of a copolymer of glucosylethyl methacrylate and an olefin compound is provided on the surface thereof. Culture medium equipment.
JP23755990A 1990-09-06 1990-09-06 Device for microbe culture medium Pending JPH04117276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23755990A JPH04117276A (en) 1990-09-06 1990-09-06 Device for microbe culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23755990A JPH04117276A (en) 1990-09-06 1990-09-06 Device for microbe culture medium

Publications (1)

Publication Number Publication Date
JPH04117276A true JPH04117276A (en) 1992-04-17

Family

ID=17017115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23755990A Pending JPH04117276A (en) 1990-09-06 1990-09-06 Device for microbe culture medium

Country Status (1)

Country Link
JP (1) JPH04117276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233671A (en) * 1993-02-08 1994-08-23 Sumitomo Bakelite Co Ltd Culture container
WO2014196652A1 (en) * 2013-06-07 2014-12-11 日産化学工業株式会社 Cell cultivator
JP2015129310A (en) * 2013-11-26 2015-07-16 泉工業株式会社 Inner wall processing method and device for container
US11470841B2 (en) 2016-06-15 2022-10-18 Nissan Chemical Corporation Cryopreservation vessel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233671A (en) * 1993-02-08 1994-08-23 Sumitomo Bakelite Co Ltd Culture container
JP2740611B2 (en) * 1993-02-08 1998-04-15 住友ベークライト株式会社 Culture vessel
WO2014196652A1 (en) * 2013-06-07 2014-12-11 日産化学工業株式会社 Cell cultivator
CN105308169A (en) * 2013-06-07 2016-02-03 日产化学工业株式会社 Cell cultivator
JPWO2014196652A1 (en) * 2013-06-07 2017-02-23 日産化学工業株式会社 Cell incubator
CN105308169B (en) * 2013-06-07 2020-03-10 日产化学工业株式会社 Cell culture device
US10774234B2 (en) 2013-06-07 2020-09-15 Nissan Chemical Industries, Ltd. Cell culture vessel
JP2015129310A (en) * 2013-11-26 2015-07-16 泉工業株式会社 Inner wall processing method and device for container
US11470841B2 (en) 2016-06-15 2022-10-18 Nissan Chemical Corporation Cryopreservation vessel

Similar Documents

Publication Publication Date Title
US4424311A (en) Antithrombogenic biomedical material
US5480953A (en) Hydrophilic material and semipermeable membrane made therefrom
CN103814125A (en) Adherent cell culture method
JP2008061609A (en) Method for producing cell-culturing container and cell culturing container
JP7358030B2 (en) Hydrophilic base material
JP6052432B2 (en) Temperature-responsive cell culture substrate and method for producing the same
EP2692854A1 (en) Culture vessel for forming embryoid body
WO2020036206A1 (en) Cell culture substrate
JPH04117276A (en) Device for microbe culture medium
JP2008173018A (en) Method for culturing cell and substrate for cell culture
JP6447787B2 (en) Cell culture substrate
JP3414444B2 (en) Immobilization device, method for immobilizing and culturing biological tissue using the same
JP5887272B2 (en) Method for producing cell culture substrate
JP5151892B2 (en) Multiwell plate
US20200299625A1 (en) Biocompatible surface coating with high surface wettability properties
CN211112043U (en) Hydrogel sheet culture and transfer dish
JP2023153774A (en) Copolymer for inhibiting adhesion of protein, method for producing copolymer, resin modifier, molding material, copolymer-containing composition, coating film and article
JPH05308953A (en) Cell culture membrane
WO2022205820A1 (en) Culture device and culture method
JP7183612B2 (en) Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells
JPS5857186B2 (en) The basics of the future
JP6314458B2 (en) Temperature-responsive cell culture substrate and method for producing the same
WO2022259998A1 (en) Composition for forming coating film, coating film and cell culture container
WO2023282273A1 (en) Cell culture method
EP0534015A1 (en) Thermally reversible graft-copolymer