WO2023282273A1 - Cell culture method - Google Patents

Cell culture method Download PDF

Info

Publication number
WO2023282273A1
WO2023282273A1 PCT/JP2022/026773 JP2022026773W WO2023282273A1 WO 2023282273 A1 WO2023282273 A1 WO 2023282273A1 JP 2022026773 W JP2022026773 W JP 2022026773W WO 2023282273 A1 WO2023282273 A1 WO 2023282273A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
formula
producing
group
substrate
Prior art date
Application number
PCT/JP2022/026773
Other languages
French (fr)
Japanese (ja)
Inventor
周吾 遠山
恵一 福田
康平 鈴木
祐揮 上田
美耶 廣飯
佳臣 広井
さやか 金編
Original Assignee
慶應義塾
日産化学株式会社
Heartseed株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慶應義塾, 日産化学株式会社, Heartseed株式会社 filed Critical 慶應義塾
Priority to JP2023533156A priority Critical patent/JPWO2023282273A1/ja
Publication of WO2023282273A1 publication Critical patent/WO2023282273A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates.
  • Cardiac disease is the leading cause of death in humans worldwide, and heart failure due to contraction failure of the left ventricle is cited as the cause.
  • Transplanting a sufficient number of ventricular muscles could be a radical cure for heart failure with asystole failure (HFrEF).
  • HFrEF asystole failure
  • a method for efficiently producing a sufficient number of ventricular myocytes has not been known so far.
  • treatment with cell aggregates spheroids
  • establishment of an industrial technique capable of stably producing large amounts of spheroids is desired.
  • Various materials have been proposed so far as base film-forming agents for efficient cell culture.
  • Patent Document 1 discloses a method for producing a polymer used as a base film for cell culture and a cell culture vessel
  • Patent Document 2 discloses a method for producing a cell structure.
  • serum derived from living organisms for the base membrane of these cell cultures for uniform adhesion of cells to the base membrane.
  • There have been problems such as quality variations, including the ability, and safety risks such as allergies and virus contamination when using serum derived from animals other than humans.
  • the present invention provides a method for mass production of human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates, which can produce homogeneous and high-quality cardiomyocyte aggregates without using biological serum.
  • hiPS cell human induced pluripotent stem cell
  • the present inventors have found that by seeding and culturing hiPS cell-derived cardiomyocytes using a cell aggregate-producing substrate comprising a base film containing a specific polymer and a cell-adhesive substance, The present invention has been completed based on the finding that homogeneous and high-quality cardiomyocyte aggregates can be produced without using serum.
  • the present invention includes the following.
  • the following formula (I) is applied onto a substrate having the ability to suppress adhesion of cells:
  • U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms.
  • hiPS cells human induced pluripotent stem cells
  • the polymer further has the formula (II): [In the formula, R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms]. method for producing cardiomyocyte aggregates.
  • the method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention uniform adhesion of cardiomyocytes can be achieved even under animal-derived serum-free culture conditions, and cell aggregates can be produced subsequently. As a result, mass production of homogeneous and high-quality cardiomyocyte aggregates for use in the field of regenerative medicine can be achieved.
  • FIG. 1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 24 hours in the seeding/culturing step of Example 1.
  • FIG. 1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 48 hours in the seeding/culturing step of Example 1.
  • FIG. 1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 72 hours in the seeding/culturing step of Example 1.
  • FIG. FIG. 10 is a photograph of the entire surface of the well after seeding cardiomyocytes in each well of substrate 2 and culturing for 72 hours in the seeding/culturing step of Example 2.
  • FIG. 10 is a photograph of the entire surface of the well after seeding cardiomyocytes in each well of the substrate 3 and culturing for 72 hours in the seeding/culturing step of Example 2.
  • FIG. 10 is a graph showing the results of measuring the diameter of cardiomyocytes after seeding cardiomyocytes on substrate 2 and culturing them for 96 hours in the seeding/culturing step of Example 2.
  • FIG. 10 is a graph showing the results of measuring the diameter of cardiomyocytes after seeding cardiomyocytes on the substrate 3 and culturing them for 96 hours in the seeding/culturing step of Example 2.
  • FIG. 10 is a photograph of the entire surface of the well after seeding cardiomyocytes in each well of the substrate 3 and culturing for 72 hours in the seeding/culturing step of Example 2.
  • FIG. 10 is a graph showing the results of measuring the diameter of cardiomyocytes after seeding cardiomyocytes on substrate 2 and culturing them for 96 hours in the seeding/culturing
  • Example 3 cardiomyocytes (stocks: CM1, CM2 and CM3) were seeded in each well of substrate 2, and the entire surface of the wells was photographed after 48 hours and 72 hours of culture.
  • cardiomyocytes (stocks: CM1, CM2 and CM3) were seeded in each well of an Elplasia plate, and the entire surface of the wells was photographed after culturing for 48 hours and 7 days.
  • the degree of maturity of the cell clusters (cardiomyocyte spheres) cultured on the substrates 2 and 3 of the present invention and the cell clusters (cardiomyocyte spheres) cultured on the Elplasia plate was analyzed by quantitative PCR (comparative Ct method).
  • FIG. 2 is a graph showing the expression levels of the maturation markers (TNNI3/TNNI1) that were determined.
  • 4 is a photograph of the whole surface of the well after seeding 4 ⁇ 10 6 cells of cardiomyocytes in each well of the substrate 4 and culturing for 72 hours in the seeding/culturing step of Example 4.
  • FIG. 3 is a photograph of the entire surface of the well after seeding 3 ⁇ 10 6 cells of cardiomyocytes in each well of the substrate 4 and culturing for 72 hours in the seeding/culturing step of Example 4.
  • FIG. 4 is a photograph of the entire surface of the well after seeding 4 ⁇ 10 6 cells of cardiomyocytes in each well of substrate 5 and culturing for 72 hours in the seeding/culturing step of Example 4.
  • FIG. 3 is a photograph of the entire surface of the well after seeding 3 ⁇ 10 6 cells of cardiomyocytes in each well of substrate 5 and culturing for 72 hours in the seeding/culturing step of Example 4.
  • FIG. 4 is a graph showing the results of measuring the diameter of 4 ⁇ 10 6 cells of cardiomyocytes seeded on substrate 4 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter.
  • 10 is a graph showing the results of measuring the diameter of 3 ⁇ 10 6 cardiomyocytes seeded on substrate 4, collected after culturing for 96 hours, and measured in the seeding/culturing step of Example 4.
  • FIG. 4 is a graph showing the results of measuring the diameter of 4 ⁇ 10 6 cells of myocardial cells seeded on substrate 5 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter.
  • 3 is a graph showing the results of measuring the diameter of 3 ⁇ 10 6 cells of myocardial cells seeded on substrate 5 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter.
  • the method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention comprises the following formula (I): [In the formula, U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. Forming a basement membrane followed by seeding cardiomyocytes.
  • the base film for cardiomyocyte culture according to the production method of the present invention is formed using a base film-forming agent.
  • the base film former typically has the following formula (I): [In the formula, U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms].
  • the polymer contained in the base film-forming agent for cell culture of the present application is a polymer containing a repeating unit derived from the monomer represented by formula (I) above.
  • the polymer is represented by the following formula (II) together with the cationic monomer represented by the above formula (I): [In the formula, R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms].
  • the polymer containing repeating units derived from the monomer represented by the formula (I) has the following formula (Ia): [wherein U a1 , U a2 , R a1 and R a2 have the same meanings as in formula (I)].
  • the polymer obtained by polymerizing the anionic monomer represented by the formula (II) together with the cationic monomer represented by the formula (I) is the repeating unit represented by the formula (Ia) together with the following formula (IIa): It can also be expressed as a polymer containing a repeating unit represented by [wherein Rb has the same meaning as in formula (II)].
  • the production method of the present invention includes a polymer containing a repeating unit represented by the above formula (Ia), or a repeating unit represented by the above formula (IIa) together with a repeating unit represented by the above formula (Ia).
  • hiPS cells human induced pluripotent stem cells
  • the "linear or branched alkyl group having 1 to 5 carbon atoms” includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2 , 2-dimethylpropyl group or 1-ethylpropyl group.
  • R a1 and R b are each independently selected from a hydrogen atom and a methyl group.
  • U a1 and U a2 are preferably each independently selected from hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group, but are preferably methyl group or ethyl group. Preferred are methyl groups.
  • the "linear or branched alkylene group having 1 to 5 carbon atoms" includes, for example, methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, 1-methyl propylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1,1-dimethyl-trimethylene group, 1,2- dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl-trimethylene group and the like.
  • R a2 is preferably selected from an ethylene group and a propylene group.
  • cationic monomers represented by formula (I) above include 2-N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminomethyl methacrylate and the like, and 2-N,N-dimethylaminoethyl Methacrylates are preferred.
  • anionic monomer represented by formula (II) include acrylic acid and methacrylic acid, with methacrylic acid being preferred.
  • the molar ratio of units derived from the monomer represented by formula (I)/units derived from the monomer represented by formula (II) in the polymer is 100/0 to 50/50. It is preferably 98/2 to 50/50. More preferably 98/2 to 60/40, particularly preferably 98/2 to 70/30. When the molar ratio of the formula (II) is 50 or less, it is possible to suppress a decrease in cell adhesive force due to the anionicity of the polymer.
  • the polymer is not particularly limited as long as it contains units derived from the monomer represented by formula (I) and optionally units derived from the monomer represented by formula (II), which impairs the object of the present invention. It may contain repeating units other than the units derived from the monomers represented by formula (I)/formula (II), within the range of not included.
  • the polymer contains, as repeating units, 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, more preferably 80 mol% or more, and more preferably It may be 90 mol % or more.
  • it may be a polymer obtained by polymerizing a monomer represented by Formula (I)/Formula (II) and a monomer having two or more carbon-carbon unsaturated bonds.
  • a monomer having two or more carbon-carbon unsaturated bonds is specifically a monomer having two or more carbon-carbon double bonds, such as polyfunctional acrylate compounds, polyfunctional acrylamide compounds, polyfunctional A polyester or an isoprene compound may be used.
  • Preferred specific examples include monomers represented by the following formulas (III) to (V).
  • R c and R d each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R e is a linear or branched alkylene group having 1 to 5 carbon atoms. group
  • n represents a number from 1 to 50.
  • the monomer represented by formula (III) is preferred.
  • the molar ratio of the monomers represented by formulas (III)-(V) to the total polymer is preferably 0-50%, more preferably 2-25%.
  • the molar ratio of the formulas (III) to (V) is 50% or less, gelation of the solid content during production due to high molecular weight due to excessive cross-linking can be suppressed, and production can be facilitated.
  • R c and R d are each independently selected from a hydrogen atom and a methyl group.
  • R e is preferably selected from a methylene group, an ethylene group and a propylene group, most preferably an ethylene group.
  • n is a number from 1 to 50, n is preferably a number from 1 to 30, and n is preferably a number from 1 to 10.
  • Difference between the mol% value of the monomer represented by the formula (II) with respect to the entire polymer and the mol% value of the monomer represented by the formula (II) with respect to the total amount of monomer charged during the preparation step is 0 to 10 mol %.
  • the polymer of the present application has a small difference between the charged ratio of the monomer and the measured value of the polymer produced by the production method described later, and is 0 to 10 mol %, more preferably 0 to 8 mol %.
  • the number average molecular weight (Mn) of the polymer is 20,000 to 1,000,000, more preferably 50,000 to 800,000.
  • the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer is 1.01 to 10.00, preferably 1.2 to 8.0, It is preferably 1.4 to 6.0, preferably 1.5 to 5.0, preferably 1.6 to 4.5.
  • the number average molecular weight (Mn) and the number average molecular weight (Mn) can be determined, for example, by Gel Filtration Chromatography described in Examples.
  • cell aggregate refers to a structure formed as a result of aggregation of cells, and its shape is not limited to a spherical shape, a ring shape, or the like.
  • the size adjustment of cell aggregates by defining the adhesion area can be produced.
  • the base film-forming agent for cell culture of the present invention contains a cell adhesive substance.
  • a cell adhesive substance By containing a cell adhesive substance, cell adhesion, spreading, proliferation and differentiation can be promoted.
  • known substances such as biological substances such as extracellular matrix (ECM) proteins, glycoproteins, and peptides, and synthetic compounds (low molecular weight, high molecular weight) can be used. It is preferably a non-substance compound, such as a synthetic compound (low molecular weight, high molecular weight).
  • a low molecular weight compound is, for example, a compound having a weight average molecular weight of 2,000 or less, and a high molecular weight compound is, for example, a weight average molecular weight of 2,000 or more, and the upper limit is, for example, 1,000,000.
  • extracellular matrix (ECM) proteins examples include collagen (e.g. Merck type I collagen (product numbers C9791, C7661, C1809, C2249, C2124), type II collagen (product number C9301), type IV collagen (product numbers C0543, C5533). ), elastin (e.g. Merck product numbers: E1625, E6527), fibronectin (e.g. Merck product numbers F1141, F0635, F2518, F0895, F4759, F2006), laminin (e.g.
  • the cell adhesive substance is preferably a glycoprotein. Specifically, it is preferably selected from vitronectin, integrin, cadherin, fibronectin, laminin, tenascin, osthiopontin and bone sialoprotein. Also, a protein having an RGD sequence as an amino acid sequence is preferred.
  • peptides examples include ECM peptide (MAPTrix (registered trademark) from Kollodis Bio Sciences) and RGD peptide (manufactured by Fujifilm Wako Pure Chemical Industries: 180-01531).
  • ECM peptide MAPTrix (registered trademark) from Kollodis Bio Sciences
  • RGD peptide manufactured by Fujifilm Wako Pure Chemical Industries: 180-01531.
  • Examples of synthetic compounds include polylysine (eg Merck products: P4707, P4832, P7280, P9155, P6407, P6282, P7405, P5899) and polyornithine (eg Merck product number P4975).
  • Examples of synthetic compounds low molecular weight include adhesamine (eg AD-00000-0201 manufactured by Nagase & Co., Ltd.) and synthetic cyclic RGD peptide (eg LS-3920.0010 manufactured by IRIS BIOTECH).
  • the ratio (mass basis) of the polymer and the cell adhesive substance in the base film-forming agent for cell culture of the present invention is not limited as long as the base-forming agent capable of cell culture can be formed, but is 100:0.1. ⁇ 100:100, preferably 100:10 to 100:30.
  • the cell adhesion substance is 0.1 or more, the cell adhesiveness is sufficiently exhibited, and when the cell adhesion substance is 100 or less, cell aggregation after cell adhesion (formation of cell aggregates) is facilitated. can.
  • the base film-forming agent for cell culture of the present invention contains a solvent.
  • the solvent is not limited as long as it can dissolve the polymer, but it is preferably a water-containing solution.
  • the aqueous solution includes water, a salt-containing aqueous solution such as physiological saline or a phosphate buffer solution, or a mixed solvent in which water or a salt-containing aqueous solution and alcohol are combined.
  • Alcohols include alcohols having 2 to 6 carbon atoms, such as ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol.
  • the base film-forming agent may optionally contain other substances within the range that does not impair the performance of the obtained base film.
  • Other substances include pH adjusters, cross-linking agents, preservatives, surfactants, primers to improve adhesion to containers or substrates, antifungal agents and sugars.
  • the production method of the present invention comprises a substrate for producing cardiomyocyte aggregates, which is provided with spots of the basement membrane for cardiomyocyte culture formed with the above-mentioned basement membrane-forming agent on a substrate having the ability to suppress adhesion of cells.
  • the substrate for producing cardiomyocyte aggregates of the present invention is produced using a substrate having the ability to suppress adhesion of cells. Prior to the formation of the spots (underlying film), the substrate may be treated to inhibit adhesion of cells.
  • the substrate having the ability to suppress cell adhesion may be a commercially available cell culture dish treated with low cell adhesion, a cell culture vessel having the ability to inhibit cell adhesion, or the like.
  • the cell culture vessel described above can be used, it is not limited to this.
  • a substrate manufactured through a step of applying a coating film-forming composition having a known ability to suppress adhesion of cells may be used.
  • the coating film-forming composition for example, the coating film-forming composition described in International Publication No. 2014/196650 can be used.
  • U a11 , U a12 , U b11 , U b12 and U b13 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • An ⁇ is a halide ion
  • an inorganic acid Represents an anion selected from the group consisting of ion, hydroxide ion and isothiocyanate ion] and a solvent, and a step of applying the composition for forming a coating film onto the surface of the container or the substrate and drying the composition.
  • the coating film may be included on at least a part of the substrate surface, but it is applied over the entire surface where cell aggregates are produced (i.e., the surface where the spots of the present application exist) or over the entire substrate surface. is preferred.
  • the entire disclosures of WO2014/196650 and WO2016/093293 are hereby incorporated by reference.
  • the relative absorbance WST O.D. 450 nm (%) ((Absorbance of Example (WST O.D. 450 nm)) / (Absorbance of Comparative Example (WST O.D. 450 nm)) is 50% or less, preferably 30% Hereinafter, more preferably, it means 20% or less.
  • copolymers of ethylenically unsaturated monomers or polysaccharides or derivatives thereof may be used.
  • ethylenically unsaturated monomers include one or two selected from the group consisting of (meth)acrylic acid and its esters; vinyl acetate; vinylpyrrolidone; ethylene; vinyl alcohol; and hydrophilic functional derivatives thereof. More than one species of ethylenically unsaturated monomers may be mentioned.
  • polysaccharides or derivatives thereof include cellulosic polymers such as hydroxyalkylcellulose (eg, hydroxyethylcellulose or hydroxypropylcellulose), starch, dextran, and curdlan.
  • hydrophilic functional derivative refers to an ethylenically unsaturated monomer having a hydrophilic functional group or structure.
  • hydrophilic functional groups or structures include betaine structures; amide structures; alkylene glycol residues; amino groups;
  • a betaine structure means a monovalent or divalent group of compounds having an amphoteric center with a quaternary ammonium type cationic structure and an acidic anionic structure, such as the phosphorylcholine group: can be mentioned.
  • ethylenically unsaturated monomers having such a structure include 2-methacryloyloxyethylphosphorylcholine (MPC).
  • the amide structure has the formula: [Here, R 16 , R 17 and R 18 are each independently a hydrogen atom or an organic group (e.g., a methyl group, a hydroxymethyl group, a hydroxyethyl group, etc.)] means a group represented by Examples of ethylenically unsaturated monomers having such structures include (meth)acrylamide, N-(hydroxymethyl)(meth)acrylamide, N-isopropyl(meth)acrylamide and the like. Furthermore, monomers or polymers having such a structure are disclosed in, for example, JP-A-2010-169604.
  • An alkylene glycol residue is an alkylene glycol (HO-Alk-OH; where Alk is an alkylene group having 1 to 10 carbon atoms).
  • the hydroxyl groups at one or both terminals of the alkylene glycol remain after the condensation reaction with other compounds. It means an alkyleneoxy group (--Alk--O--) and also includes a poly(alkyleneoxy) group in which the alkyleneoxy unit is repeated.
  • Examples of ethylenically unsaturated monomers having such structures include 2-hydroxyethyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and the like. Further, monomers or polymers having such structures are disclosed in, for example, JP-A-2008-533489.
  • An amino group has the formula: —NH 2 , —NHR 19 or —NR 20 R 21 [wherein R 19 , R 20 and R 21 are each independently an organic group (for example, linear or branched alkyl group, etc.)].
  • Amino groups in the present invention include quaternary or salified amino groups. Examples of ethylenically unsaturated monomers having such a structure include dimethylaminoethyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, methacryloylcholine chloride, and the like.
  • a sulfinyl group has the formula: [Here, R 22 is an organic group (eg, an organic group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms and having one or more hydroxy groups, etc.)] means a group represented by Examples of polymers having such a structure include copolymers disclosed in Japanese Unexamined Patent Application Publication No. 2014-48278.
  • a water-insoluble copolymer that is difficult to dissolve in phosphate-buffered saline can be used as a coating film that has the ability to suppress cell adhesion.
  • Water-soluble as used herein means that 1.0 g or more can be dissolved in 100 g of water at 25°C.
  • Water-insoluble means that it does not correspond to “water-soluble”, that is, the solubility in 100 g of water at 25°C is less than 1.0 g.
  • water-insoluble copolymer means a copolymer having a solubility of less than 1.0 g in 100 g of water at 25°C, particularly a solubility in 100 g of phosphate buffered saline at 25°C It means a copolymer that is less than 1.0 g.
  • water-insoluble copolymers examples include copolymers containing repeating units (A) represented by the following formula (A) and repeating units (B) represented by the following formula (B).
  • R 1 to R 3 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • X 1 and X 2 each independently represent a single bond, an ester It represents a bond, an ether bond, an amide bond, or a linear or branched alkylene group having 1 to 5 carbon atoms which may be interrupted by an oxygen atom.
  • the water-insoluble copolymer may contain two or more types of repeating units (A), and may contain two or more types of repeating units (B), but one type of repeating unit (A ) and one type of repeating unit (B).
  • R 1 to R 3 are each independently preferably a hydrogen atom, a methyl group, or an ethyl group.
  • ether bond means -O-
  • linear or branched alkylene group having 1 to 5 carbon atoms optionally interrupted by an oxygen atom means a linear or branched alkylene group having 1 to 5 carbon atoms. It means an alkylene group or a group in which one or more carbon-carbon bonds of a linear or branched alkylene group having 1 to 5 carbon atoms are linked through an ether bond.
  • X 1 and X 2 are each independently preferably a methylene group, an ethylene group, or a propylene group.
  • R 1 and R 2 are hydrogen atoms
  • R 3 is a methyl group
  • X 1 and X 2 are single bonds.
  • the molar ratio (A:B) of the repeating unit (A) and the repeating unit (B) in the water-insoluble copolymer is from 89:11 to 50:50.
  • the molar ratio of the repeating unit (A) and the repeating unit (B) (A: B) can be expressed as (100 ⁇ m):m.
  • the range of m is 11-50. and the lower limit of m may be 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30.
  • An upper limit for m may be 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, or 35.
  • the range of m is, for example, 12-49, 12-48, 15-48, 20-49, 20-45, 22-49, or 22-45.
  • the total mol% of the repeating unit (A) and the repeating unit (B) in all repeating units in the water-insoluble copolymer is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more. Preferably, 99.5 mol % or more is more preferable, and 100% is particularly preferable.
  • the copolymer By setting the molar ratio of the repeating unit (A) and the repeating unit (B) in the water-insoluble copolymer to a specific range, the copolymer can be dissolved in phosphate buffered saline without cross-linking. A hard-to-remove coating film is obtained. Therefore, the water-insoluble copolymer need not have photosensitive groups for cross-linking the copolymer. That is, it is preferable that the water-insoluble copolymer does not have a photosensitive group. Photosensitive groups include, for example, an azide group.
  • the water-insoluble copolymer does not need to have a photosensitive group for cross-linking the copolymer, it is necessary to perform light irradiation for cross-linking the copolymer when forming the coating film. There is no Therefore, the use of the water-insoluble copolymer simplifies the process of forming a coating film having the ability to inhibit cell adhesion.
  • the viscosity-average degree of polymerization of the water-insoluble copolymer (hereinafter sometimes simply referred to as "degree of polymerization") is not particularly limited, but from the viewpoint of suitably obtaining the cell adhesion inhibitory ability, 200 to 3,000. Preferably, 200 to 2,500 is more preferable, and 200 to 2,000 is particularly preferable.
  • the viscosity-average degree of polymerization is measured in a completely saponified state of the water-insoluble copolymer.
  • the "viscosity average degree of polymerization" of polyvinyl alcohol obtained by complete saponification is determined by the following formula from the intrinsic viscosity [ ⁇ ] (g / dL) when measured at 30 ° C. with an Ostwald viscometer using ion-exchanged water as a solvent. It is a calculated value.
  • P indicates the viscosity average degree of polymerization.
  • the viscosity average degree of polymerization can be determined according to JIS K6726.
  • the method for producing the water-insoluble copolymer is not particularly limited. A method of partially hydrolyzing by reaction to obtain a copolymer can be mentioned.
  • R 1 , R 3 and X 1 are defined as above.
  • a compound represented by the following formula (C) and a compound represented by the following formula (D) are copolymerized to obtain a copolymer. method to obtain.
  • R 1 to R 3 , X 1 and X 2 have the same meanings as above.
  • the water-insoluble copolymer may be a random copolymer or a block copolymer.
  • a commercially available product may be used as the water-insoluble copolymer.
  • Specific examples of commercially available copolymers include polyvinyl acetate (manufactured by Nippon Acetate & Poval Co., Ltd., trade name JMR-150L (registered trademark)).
  • the content of the copolymer in the film-forming component in the coating film-forming composition used in the production of the substrate capable of inhibiting adhesion of cells according to the present invention is not particularly limited, but is preferably 80% by mass or more. , more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the film-forming component refers to a component excluding the solvent component from all components of the composition.
  • the content of the copolymer in the coating film-forming composition used in the production of the substrate having the ability to suppress cell adhesion according to the present invention is not particularly limited, but from the viewpoint of facilitating the formation of a coating film having a desired thickness. Therefore, 0.1 to 10% by mass is preferable, 0.3 to 8% by mass is more preferable, and 0.5 to 5% by mass is particularly preferable.
  • the content of the copolymer in the coating film-forming composition may be 0.02 to 2% by mass, or may be 0.05 to 1% by mass.
  • the ratio of the total area of the spots, preferably a plurality of spots (underlying membrane), the diameter of each spot, and the distance between the centers of the spots, provided on the substrate for producing cardiomyocyte aggregates of the present invention, is determined by the type of cells and substrate used, the type of cells, and the Depending on the desired size of the agglomerate, etc., it can be appropriately selected from a predetermined range. preferably 99% or less, the diameter of each spot is 50 to 5000 ⁇ m, preferably 300 to 3000 ⁇ m, more preferably 300 to 1000 ⁇ m, most preferably 300 to 600 ⁇ m, the distance between the center of the spot , 30 to 1000 ⁇ m, preferably 50 to 800 ⁇ m, more preferably 400 to 600 ⁇ m.
  • the present invention by arranging independent micro-sized regions (spots) to which cardiomyocytes can adhere at a high density, preferably regularly, on a substrate having the ability to suppress adhesion of cells, cells of uniform size can be obtained.
  • a plurality of spheroids can be formed on one substrate (container) at once.
  • the spot can be formed by applying the base film forming agent.
  • a method for applying the base film-forming agent for example, an inkjet method, a screen printing method, a slit coating method, a roll-to-roll method, or the like can be used, but printing techniques such as an inkjet method or screen printing are preferable.
  • a substrate optionally protected at non-formed spots is immersed in the base film-forming agent, or the undercoat film-forming agent is added to the substrate (container) optionally protected at non-spotted locations.
  • a substrate one aspect of which is a cell culture vessel
  • a base film-forming agent is optionally added to the vessel in which the non-spotted areas are protected, and then left to stand for a predetermined period of time. It is done by the method of standing for a while.
  • the addition can be performed, for example, by adding the base film-forming agent in an amount of 0.5 to 1 times the total volume of the container using a syringe or the like.
  • the standing is carried out by appropriately selecting the time and temperature depending on the material of the vessel or substrate and the type of base film-forming agent for cell culture. It is carried out at 10-80°C.
  • the spots on the surface of the substrate obtained by such a method can be washed as they are without a drying step, or washed with water or a sample medium (e.g., water, buffer solution, medium, etc.) to be subjected to cell culture. Later, it can be used as a substrate for manufacturing cardiomyocyte aggregates.
  • a sample medium e.g., water, buffer solution, medium, etc.
  • a sample medium subjected to cell culture e.g., water, buffer, medium, etc., particularly preferably a medium (e.g., DMEM medium (Dulbecco's modified Eagle medium)) After washing, it can be used as a substrate for producing cardiomyocyte aggregates.
  • a sample medium subjected to cell culture e.g., water, buffer, medium, etc., particularly preferably a medium (e.g., DMEM medium (Dulbecco's modified Eagle medium)
  • DMEM medium Dulbecco's modified Eagle medium
  • the cell aggregate-producing substrate may be subjected to a drying process.
  • the drying step is carried out in the atmosphere or under vacuum, preferably at a temperature in the range of -200°C to 200°C.
  • the base film-forming agent is completely fixed to the substrate.
  • the spots can also be formed by drying at room temperature (10° C. to 35° C., preferably 20° C. to 30° C., eg 25° C.), but in order to form the spots more rapidly, for example, at 40° C. to 80° C. It may be dried at °C.
  • drying temperature is less than ⁇ 200° C., an uncommon refrigerant must be used, which lacks versatility, and drying takes a long time due to solvent sublimation, resulting in poor efficiency. If the drying temperature is above 200°C, thermal decomposition of the polymer will occur. A more preferable drying temperature is 10°C to 180°C, and a more preferable drying temperature is 20°C to 150°C.
  • the cell aggregate-producing substrate of the present application is produced through the simple steps described above.
  • a step of washing with at least one solvent selected from aqueous solutions containing water and electrolytes may be carried out. Cleaning is preferably performed with running water, ultrasonic cleaning, or the like.
  • the aqueous solution containing the water and the electrolyte may be heated, for example, in the range of 40.degree. C. to 95.degree.
  • Aqueous solutions containing electrolytes are preferably PBS, physiological saline (containing only sodium chloride), Dulbecco's phosphate-buffered saline, Tris-buffered physiological saline, HEPES-buffered physiological saline, and Veronal-buffered physiological saline, and PBS is preferred. Especially preferred.
  • the coating film After being fixed, the coating film is not eluted even if it is washed with water, PBS, alcohol, etc., and remains firmly fixed to the substrate.
  • the film thickness of the spot (underlying film) of the present application is such that the maximum film thickness and the minimum film thickness are in the range of 1 to 1000 nm, preferably in the range of 5 to 500 nm.
  • the substrate for producing cell aggregates of the present invention can be produced by coating the base film-forming agent on the surface of the substrate and drying it.
  • the term “surface” refers to a surface that contacts contents such as cells or cell culture medium.
  • the shape of the substrate surface may be flat or uneven, but is preferably flat.
  • substrate materials include glass, metals, metal-containing compounds or metalloid-containing compounds, activated carbon, and resins.
  • Typical metals (aluminum group elements: Al, Ga, In; iron group elements: Fe, Co, Ni; chromium group elements: Cr, Mo, W, U; manganese group elements: Mn, Re; noble metals: Cu , Ag, Au, etc.
  • the metal-containing compound or semi-metal-containing compound is, for example, a metal oxide as a basic component, and is a sintered body sintered by heat treatment at high temperature, such as ceramics, semiconductors such as silicon, metals Inorganic compounds such as oxides or metalloid oxides (silicon oxide, alumina, etc.), metal carbides, metalloid carbides, metal nitrides, metalloid nitrides (silicon nitride, etc.), metal borides, metalloid borides, etc. inorganic solid materials such as molded bodies, aluminum, nickel titanium, and stainless steel (SUS304, SUS316, SUS316L, etc.).
  • the resin may be a natural resin or a derivative thereof, or a synthetic resin.
  • the natural resin or a derivative thereof include cellulose, cellulose triacetate (CTA), nitrocellulose (NC), cellulose with immobilized dextran sulfate, and synthetic resins.
  • Resins include polyacrylonitrile (PAN), polyimide (PI), polyester polymer alloy (PEPA), polystyrene (PS), polysulfone (PSF), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA).
  • polyurethane PU
  • EVAL ethylene vinyl alcohol
  • PE polyethylene
  • PET polyester
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • PES polyethersulfone
  • PC polycarbonate
  • COP cycloolefin polymer
  • PVC polyvinyl chloride
  • PTFE polytetrafluoroethylene
  • UHPE ultra-high molecular weight polyethylene
  • PDMS polydimethylsiloxane
  • ABS acrylonitrile-butadiene-styrene resin
  • Teflon registered trademark
  • the material of the substrate may be one kind or a combination of two or more kinds. It is preferable that the substrate has flexibility so that it can be wound up (roll system) as shown in FIG.
  • Materials for the substrate used in the roll method include synthetic resins and natural polymers.
  • the substrate of the present application may be a substrate used in a so-called cell culture vessel.
  • Petri dishes commonly used for cell culture tissue culture dishes, petri dishes or dishes such as multi-dishes, flasks such as cell culture flasks, spinner flasks, multi-layered flasks, plastic bags, Teflon (registered trademark) bags, culture bags bags, plates such as microplates, microwell plates, multiplates, multiwell plates, chamber slides, tubes, trays, bottles such as roller bottles, and the like.
  • the production method of the present invention includes a step of seeding cardiomyocytes and a step of culturing cardiomyocytes.
  • the step of seeding and culturing cardiomyocytes can be performed by a known method suitable for cardiomyocytes.
  • the steps of seeding and culturing cardiomyocytes can be performed in the presence or absence of biological serum. .
  • the present invention relates to a method for producing human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates.
  • the hiPS cell-derived cardiomyocytes used in the present invention means cardiomyocytes that have been induced to differentiate from hiPS cells.
  • hiPS cells available from reagent suppliers or from cell banks are differentiated into cardiomyocytes.
  • Derived, purified and purified products can be used, and such methods are described in various literatures (e.g., Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017), and hiPS cell-derived cardiomyocytes can be obtained accordingly.
  • GFC Gel Filtration Chromatography
  • a polymer was synthesized by dropwise polymerization in 166.62 g of 2-propanol.
  • the reaction product was reprecipitated with hexane, which is a poor solvent, and the precipitate was collected by filtration and dried under reduced pressure.
  • the weight average molecular weight of this polymer by GFC was 228,000 (hereinafter referred to as "Synthetic Example Polymer 1").
  • a culture plate (Sumitomo Bakelite Co., Ltd., PrimeSurface (registered trademark) ) Plate 24F, model number: MS-90240) was coated with 13 spots of a base film-forming agent at about 0.75 nL/spot (spot diameter: 500 ⁇ m, center-to-spot spacing: 600 ⁇ m). It was dried in a constant temperature dryer at 70° C. for one day to prepare a cell aggregate-producing substrate 1 . Sterilization was performed by irradiating 25 kGy of gamma rays.
  • ⁇ Production example 1> (Preparation of Substrate with Inhibitory Cell Adhesion Ability by Inkjet) Using an inkjet device (manufactured by Seiko Epson Corporation, inkjet device for R & D) and an inkjet head (manufactured by Seiko Epson Corporation, Precision Core Head S800-A1), a polystyrene substrate having a size of 79 mm ⁇ 121 mm was prepared. An appropriate amount of the composition for forming a coating film prepared in Example 1 was applied in a perfect circle with a diameter of 37 mm. It was dried in an oven at 70° C. for 24 hours to produce a substrate capable of suppressing cell adhesion.
  • Example 2 (Base film forming step) To 6.50 g of the diluent composition obtained in Preparation Example 2 above, 34.20 g of sterile water and 2.61 g of Recombinant Human Vitronectin (manufactured by Peprotech) diluted to 0.5 mg/mL with sterile water were added and thoroughly mixed. The mixture was stirred to prepare a base film forming agent 2. Using an inkjet device (manufactured by Seiko Epson Corporation, inkjet device for R & D) and an inkjet head (manufactured by Seiko Epson Corporation, Precision Core head S800-A1), the ability to suppress adhesion of the cells prepared in Preparation Example 1 was evaluated.
  • an inkjet device manufactured by Seiko Epson Corporation, inkjet device for R & D
  • an inkjet head manufactured by Seiko Epson Corporation, Precision Core head S800-A1
  • An appropriate amount of the prepared base film forming agent 2 was applied to the culture surface of the substrate so that the spot diameter was 400 ⁇ m and the spot center-to-center interval was 500 ⁇ m. It was dried in a constant temperature dryer at 70°C for 1 day. Affixed to a bottomless 6-well plate (manufactured by CES Tech) to prepare a substrate 2 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
  • an appropriate amount of the prepared base film forming agent 2 was applied so that the spot diameter was 400 ⁇ m and the spot center-to-center spacing was 500 ⁇ m. After drying for 5 minutes at room temperature, it was applied again to carry out overcoating. It was dried in a constant temperature dryer at 70°C for 1 day. Affixed to a bottomless 6-well plate (manufactured by CES Tech) to prepare a substrate 3 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
  • the cell suspension was slowly added so that 4 ⁇ 10 6 cells were seeded in each well of the substrate 2 for producing cell aggregates, and 3 ⁇ 10 6 cells were seeded in each well of the substrate 3 for producing cell aggregates. It was gently shaken by hand to evenly distribute the mixture. After that, it was allowed to stand in a 37° C./CO 2 incubator while maintaining a carbon dioxide concentration of 5%. After 72 hours, the entire surface of the well was photographed. The results for substrates 2 and 3 are shown in FIGS. 4A and 4B, respectively. After that, 1 mL of AS301 medium was slowly added, and the culture was continued. After 96 hours from seeding, a photograph of the entire surface of the well was taken, and the cells were collected by pipetting. was used to measure cell diameter.
  • FIGS. 5A and B The results for substrates 2 and 3 are shown in FIGS. 5A and B, respectively.
  • 72 hours after seeding some of the cardiomyocyte clusters were detached from the bottom of the plate and were floating, but uniform cardiomyocyte clusters were observed to be formed in all wells. Cardiomyocyte spheres with a diameter of about 150 ⁇ m were formed in all the cells collected 96 hours after seeding.
  • Example 3> (Maturity of cells contained in cardiomyocyte spheres)
  • the cardiomyocyte stock frozen in the same manner as above was thawed in a water bath set at 37°C, suspended in clinical serum-free medium AS301 (manufactured by Ajinomoto Co., Inc.), and used for the production of cell aggregates obtained in the above step.
  • the cell suspension was slowly added to each well of Substrates 2 and 3 so that 4 ⁇ 10 6 cells were seeded, and the cells were gently shaken by hand to evenly spread the cells. After that, the cells were collected by pipetting after standing in a 37° C./CO 2 incubator for 48 hours and 72 hours while maintaining a carbon dioxide concentration of 5%.
  • FIG. 6A shows the appearance of the spheres after 48 hours and 72 hours from the cell aggregate-producing substrate 2
  • FIG. 6B shows the appearance of the spheres from the Elplasia plate after 48 hours and 7 days.
  • the ratio of TNNI3/TNNI1 was almost the same between the sample cultured for 48 hours and the sample cultured on the Elplasia plate for 7 days. It was shown that the degree of maturity was similar to that of myocardial spheres prepared over 7 days on Elplasia plates.
  • Example 4 (Base film forming step) To 1.00 g of the composition for dilution obtained in Preparation Example 2 above, 5.59 g of sterilized water and 0.10 g of iMatrix-221 (manufactured by Matrixome Co., Ltd.) were added and thoroughly stirred. prepared.
  • an inkjet device manufactured by Microjet Co., Ltd., model number: LaboJet-600
  • an inkjet head model number: IJHBS-1000
  • An appropriate amount of the base film forming agent 2 prepared above was applied so that the spot diameter was 400 ⁇ m and the center-to-center interval of the spots was 500 ⁇ m. It was dried in a constant temperature dryer at 70°C for 1 day.
  • a base film-forming agent 3 was applied in the same manner to prepare a substrate 5 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
  • FIGS. 8A to 8D The results for each cell seeding amount for Substrates 4 and 5 are shown in FIGS. 8A to 8D, respectively.
  • FIG. 7 72 hours after seeding, some cells were separated from the bottom of the plate and were floating, but uniform cardiomyocyte clusters were observed to be formed in all wells. Cardiomyocyte spheres with a diameter of about 120 to 160 ⁇ m were formed in all the cells collected 96 hours after seeding (FIG. 8).
  • the method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention uniform adhesion of cardiomyocytes can be achieved even under animal-derived serum-free culture conditions, and cell aggregates can be produced subsequently. As a result, mass production of homogeneous and high-quality cardiomyocyte aggregates for use in the field of regenerative medicine can be achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention addresses the problem of providing a method for enabling, in mass production of human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates, the production of homogeneous and high-quality cardiomyocyte aggregates without using a living body-derived serum. The present invention provides a method for producing human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates, comprising: a step for forming, on a substrate having the ability to inhibit the adhesion of cells, a base membrane for cardiomyocyte culture that includes a cell adhesive substance and a polymer which contains a repeating unit derived from a monomer represented by formula (I); and a step for then seeding cardiomyocytes. (I) [In formula (1), Ua1, Ua2, Ra1, and Ra2 are as described in the specification and claims.]

Description

細胞培養方法Cell culture method
 本発明は、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法に関する。 The present invention relates to a method for producing human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates.
 人間において、世界の死因の第1位は心臓病であり、左心室の収縮不全による心不全がその原因として挙げられる。 十分な数の心室筋を移植すること、これが収縮不全の心不全(HFrEF)の抜本的な治療になり得る可能性がある。しかしながら十分な数の心室筋細胞を効率よく製造方法は、これまで知られていない。
 一方で、再生医療分野においては細胞凝集塊(スフェロイド)治療が注目されており、その中で、スフェロイドを大量、且つ、安定的に製造できる工業的な技術の確立が望まれている。これまでに、細胞培養を効率的に行うための下地膜形成剤として、様々な材料が提案されている。例えば、特許文献1には、細胞培養の下地膜として使用するポリマーの製造方法及び細胞培養容器が開示され、特許文献2には、細胞構造体の製造方法が開示されている。
 これらの細胞培養の下地膜は、均質な細胞凝集塊の製造(培養)工程においては、細胞の下地膜への均一な接着のために、生体由来の血清を用いる必要があり、個体差による増殖能力をはじめとする品質のばらつきの問題や、人以外の動物由来血清を用いる場合のアレルギー発生やウイルス混入など安全性のリスクが発生するなどの問題があった。
Cardiac disease is the leading cause of death in humans worldwide, and heart failure due to contraction failure of the left ventricle is cited as the cause. Transplanting a sufficient number of ventricular muscles could be a radical cure for heart failure with asystole failure (HFrEF). However, a method for efficiently producing a sufficient number of ventricular myocytes has not been known so far.
On the other hand, in the field of regenerative medicine, treatment with cell aggregates (spheroids) has attracted attention, and among them, establishment of an industrial technique capable of stably producing large amounts of spheroids is desired. Various materials have been proposed so far as base film-forming agents for efficient cell culture. For example, Patent Document 1 discloses a method for producing a polymer used as a base film for cell culture and a cell culture vessel, and Patent Document 2 discloses a method for producing a cell structure.
In the production (culturing) process of homogenous cell aggregates, it is necessary to use serum derived from living organisms for the base membrane of these cell cultures for uniform adhesion of cells to the base membrane. There have been problems such as quality variations, including the ability, and safety risks such as allergies and virus contamination when using serum derived from animals other than humans.
国際公開第2020/040247号WO2020/040247 特開2017-143755号公報JP 2017-143755 A
 本発明は、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の量産製造において、生体由来の血清を用いなくても均質で高品質な心筋細胞凝集塊を製造できる方法を提供することを目的とする。 The present invention provides a method for mass production of human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates, which can produce homogeneous and high-quality cardiomyocyte aggregates without using biological serum. The purpose is to
 本発明者らは鋭意検討した結果、特定のポリマー及び細胞接着性物質を含む下地膜を備える細胞凝集塊製造用基板を用い、hiPS細胞由来の心筋細胞を播種・培養することにより、生体由来の血清を用いなくても、均質で高品質な心筋細胞凝集塊を製造できることを見出し、本発明を完成させた。 As a result of extensive studies, the present inventors have found that by seeding and culturing hiPS cell-derived cardiomyocytes using a cell aggregate-producing substrate comprising a base film containing a specific polymer and a cell-adhesive substance, The present invention has been completed based on the finding that homogeneous and high-quality cardiomyocyte aggregates can be produced without using serum.
 本発明は以下を包含する。
[1] 細胞の付着抑制能を有する基板上に、下記式(I):
Figure JPOXMLDOC01-appb-C000005

[式中、
 Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表されるモノマーから誘導される繰り返し単位を含むポリマー及び細胞接着性物質を含む、心筋細胞培養の下地膜を形成する工程、次いで心筋細胞を播種する工程を含む、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法。
[2] 前記心筋細胞が、無血清培地中で培養される工程を含む、[1]に記載の心筋細胞凝集塊の製造方法。
[3] 前記心筋細胞培養の下地膜が、前記基板上にスポット状に形成されている、[1]又は[2]に記載の心筋細胞凝集塊の製造方法。
[4] 前記スポットの直径が、50~5000μmである、[3]に記載の心筋細胞凝集塊の製造方法。
[5] 上記ポリマーが、さらに式(II):
Figure JPOXMLDOC01-appb-C000006

[式中、
 Rは、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表す]で表されるモノマーから誘導される繰り返し単位を含む、[1]~[4]何れか1つに記載の心筋細胞凝集塊の製造方法。
[6] 前記ポリマーと、細胞接着性物質の重量比が、100:0.1~100:100である、[1]~[5]何れか1つに記載の心筋細胞凝集塊の製造方法。
[7] 前記細胞接着性物質が、糖タンパク質を含む、[1]~[6]何れか1つに記載の心筋細胞凝集塊の製造方法。
[8] 細胞の付着抑制能を有する基板上に、下記式(Ia):
Figure JPOXMLDOC01-appb-C000007

[式中、
 Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表される繰り返し単位を含むポリマー及び細胞接着性物質を含む、心筋細胞培養の下地膜を備える細胞凝集塊製造用基板に、心筋細胞を播種する工程を含む、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法。
[9]上記ポリマーが、さらに式(IIa):
Figure JPOXMLDOC01-appb-C000008

[式中、
 Rは、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表す]で表される繰り返し単位を含む、[8]に記載の心筋細胞凝集塊の製造方法。
The present invention includes the following.
[1] The following formula (I) is applied onto a substrate having the ability to suppress adhesion of cells:
Figure JPOXMLDOC01-appb-C000005

[In the formula,
U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. A method for producing cardiomyocyte aggregates derived from human induced pluripotent stem cells (hiPS cells), comprising the steps of forming a basement membrane and then seeding cardiomyocytes.
[2] The method for producing cardiomyocyte aggregates according to [1], comprising a step of culturing the cardiomyocytes in a serum-free medium.
[3] The method for producing cardiomyocyte aggregates according to [1] or [2], wherein the base film for the cardiomyocyte culture is formed in the form of spots on the substrate.
[4] The method for producing cardiomyocyte aggregates according to [3], wherein the spots have a diameter of 50 to 5000 μm.
[5] The polymer further has the formula (II):
Figure JPOXMLDOC01-appb-C000006

[In the formula,
R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms]. method for producing cardiomyocyte aggregates.
[6] The method for producing cardiomyocyte aggregates according to any one of [1] to [5], wherein the weight ratio of the polymer to the cell adhesive substance is 100:0.1 to 100:100.
[7] The method for producing cardiomyocyte aggregates according to any one of [1] to [6], wherein the cell adhesive substance contains a glycoprotein.
[8] The following formula (Ia) is applied onto a substrate capable of suppressing adhesion of cells:
Figure JPOXMLDOC01-appb-C000007

[In the formula,
U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. A method for producing a human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregate, comprising the step of seeding cardiomyocytes on an aggregate-producing substrate.
[9] The polymer further has the formula (IIa):
Figure JPOXMLDOC01-appb-C000008

[In the formula,
R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms].
 本発明のhiPS細胞由来の心筋細胞凝集塊の製造方法により、動物由来の血清不含の培養条件であっても、心筋細胞の均一な接着を実現し、それに引き続き細胞凝集塊を製造できる。これより、再生医療分野で用いられる均質で高品質な心筋細胞凝集塊の量産化を達成できる。 According to the method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention, uniform adhesion of cardiomyocytes can be achieved even under animal-derived serum-free culture conditions, and cell aggregates can be produced subsequently. As a result, mass production of homogeneous and high-quality cardiomyocyte aggregates for use in the field of regenerative medicine can be achieved.
実施例1の播種・培養工程において、心筋細胞を各wellに播種し、24時間培養後にwell全面を撮影した写真である。1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 24 hours in the seeding/culturing step of Example 1. FIG. 実施例1の播種・培養工程において、心筋細胞を各wellに播種し、48時間培養後にwell全面を撮影した写真である。1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 48 hours in the seeding/culturing step of Example 1. FIG. 実施例1の播種・培養工程において、心筋細胞を各wellに播種し、72時間培養後にwell全面を撮影した写真である。1 is a photograph of the entire surface of a well after seeding cardiomyocytes in each well and culturing for 72 hours in the seeding/culturing step of Example 1. FIG. 実施例2の播種・培養工程において、心筋細胞を基板2の各wellに播種し、72時間培養後にwell全面を撮影した写真である。FIG. 10 is a photograph of the entire surface of the well after seeding cardiomyocytes in each well of substrate 2 and culturing for 72 hours in the seeding/culturing step of Example 2. FIG. 実施例2の播種・培養工程において、心筋細胞を基板3の各wellに播種し、72時間培養後にwell全面を撮影した写真である。FIG. 10 is a photograph of the entire surface of the well after seeding cardiomyocytes in each well of the substrate 3 and culturing for 72 hours in the seeding/culturing step of Example 2. FIG. 実施例2の播種・培養工程において、心筋細胞を基板2に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。10 is a graph showing the results of measuring the diameter of cardiomyocytes after seeding cardiomyocytes on substrate 2 and culturing them for 96 hours in the seeding/culturing step of Example 2. FIG. 実施例2の播種・培養工程において、心筋細胞を基板3に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。10 is a graph showing the results of measuring the diameter of cardiomyocytes after seeding cardiomyocytes on the substrate 3 and culturing them for 96 hours in the seeding/culturing step of Example 2. FIG. 実施例3において、心筋細胞(ストック:CM1、CM2及びCM3)を基板2の各wellに播種し、48時間及び72時間培養後にwell全面を撮影した写真である。In Example 3, cardiomyocytes (stocks: CM1, CM2 and CM3) were seeded in each well of substrate 2, and the entire surface of the wells was photographed after 48 hours and 72 hours of culture. 実施例3において、心筋細胞(ストック:CM1、CM2及びCM3)をElplasiaプレートの各wellに播種し、48時間及び7日間培養後にwell全面を撮影した写真である。In Example 3, cardiomyocytes (stocks: CM1, CM2 and CM3) were seeded in each well of an Elplasia plate, and the entire surface of the wells was photographed after culturing for 48 hours and 7 days. 実施例3において、本発明の基板2及び3で培養した細胞塊(心筋細胞球)と、Elplasiaプレートで培養した細胞塊(心筋細胞球)の成熟度を、定量PCR(比較Ct法)により解析された成熟マーカー(TNNI3/TNNI1)の発現量で示したグラフである。In Example 3, the degree of maturity of the cell clusters (cardiomyocyte spheres) cultured on the substrates 2 and 3 of the present invention and the cell clusters (cardiomyocyte spheres) cultured on the Elplasia plate was analyzed by quantitative PCR (comparative Ct method). 2 is a graph showing the expression levels of the maturation markers (TNNI3/TNNI1) that were determined. 実施例4の播種・培養工程において、4×10cellsの心筋細胞を基板4の各wellに播種し、72時間培養後にwell全面を撮影した写真である。4 is a photograph of the whole surface of the well after seeding 4×10 6 cells of cardiomyocytes in each well of the substrate 4 and culturing for 72 hours in the seeding/culturing step of Example 4. FIG. 実施例4の播種・培養工程において、3×10cellsの心筋細胞を基板4の各wellに播種し、72時間培養後にwell全面を撮影した写真である。3 is a photograph of the entire surface of the well after seeding 3×10 6 cells of cardiomyocytes in each well of the substrate 4 and culturing for 72 hours in the seeding/culturing step of Example 4. FIG. 実施例4の播種・培養工程において、4×10cellsの心筋細胞を基板5の各wellに播種し、72時間培養後にwell全面を撮影した写真である。4 is a photograph of the entire surface of the well after seeding 4×10 6 cells of cardiomyocytes in each well of substrate 5 and culturing for 72 hours in the seeding/culturing step of Example 4. FIG. 実施例4の播種・培養工程において、3×10cellsの心筋細胞を基板5の各wellに播種し、72時間培養後にwell全面を撮影した写真である。3 is a photograph of the entire surface of the well after seeding 3×10 6 cells of cardiomyocytes in each well of substrate 5 and culturing for 72 hours in the seeding/culturing step of Example 4. FIG. 実施例4の播種・培養工程において、4×10cellsの心筋細胞を基板4に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。4 is a graph showing the results of measuring the diameter of 4×10 6 cells of cardiomyocytes seeded on substrate 4 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter. 実施例4の播種・培養工程において、3×10cellsの心筋細胞を基板4に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。10 is a graph showing the results of measuring the diameter of 3×10 6 cardiomyocytes seeded on substrate 4, collected after culturing for 96 hours, and measured in the seeding/culturing step of Example 4. FIG. 実施例4の播種・培養工程において、4×10cellsの心筋細胞を基板5に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。4 is a graph showing the results of measuring the diameter of 4×10 6 cells of myocardial cells seeded on substrate 5 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter. 実施例4の播種・培養工程において、3×10cellsの心筋細胞を基板5に播種し、96時間培養後に回収し、その直径を測定した結果を示したグラフである。3 is a graph showing the results of measuring the diameter of 3×10 6 cells of myocardial cells seeded on substrate 5 in the seeding/culturing step of Example 4, harvested after culturing for 96 hours, and measuring the diameter.
<細胞凝集塊の製造方法>
 本発明のhiPS細胞由来の心筋細胞凝集塊の製造方法は、細胞の付着抑制能を有する基板上に、下記式(I):
Figure JPOXMLDOC01-appb-C000009

[式中、
 Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表されるモノマーから誘導される繰り返し単位を含むポリマー及び細胞接着性物質を含む、心筋細胞培養の下地膜を形成する工程、次いで心筋細胞を播種する工程を含む。
<Method for producing cell aggregates>
The method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention comprises the following formula (I):
Figure JPOXMLDOC01-appb-C000009

[In the formula,
U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. Forming a basement membrane followed by seeding cardiomyocytes.
(下地膜形成工程)
 本発明の製造方法に係る心筋細胞培養の下地膜は、下地膜形成剤を用いて形成される。下地膜形成剤は、典型的には、下記式(I):
Figure JPOXMLDOC01-appb-C000010

[式中、
 Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表されるモノマーから誘導される繰り返し単位を含むポリマー、細胞接着性物質及び溶媒を含む。
(Base film forming step)
The base film for cardiomyocyte culture according to the production method of the present invention is formed using a base film-forming agent. The base film former typically has the following formula (I):
Figure JPOXMLDOC01-appb-C000010

[In the formula,
U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms].
(ポリマー)
 本願の細胞培養の下地膜形成剤が含むポリマーは、上記式(I)で表されるモノマーから誘導される繰り返し単位を含むポリマーである。
 上記ポリマーは、上記式(I)で表されるカチオン性モノマーと共に、下記式(II):
Figure JPOXMLDOC01-appb-C000011

[式中、
 Rは、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表す]で表されるアニオン性モノマーを重合することで得られるポリマーであることが好ましい。
(polymer)
The polymer contained in the base film-forming agent for cell culture of the present application is a polymer containing a repeating unit derived from the monomer represented by formula (I) above.
The polymer is represented by the following formula (II) together with the cationic monomer represented by the above formula (I):
Figure JPOXMLDOC01-appb-C000011

[In the formula,
R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms].
 上記式(I)で表されるモノマーから誘導される繰り返し単位を含むポリマーは、下記式(Ia):
Figure JPOXMLDOC01-appb-C000012

[式中、Ua1、Ua2、Ra1並びにRa2は、式(I)と同義である]で表される繰り返し単位を含むポリマーと表すこともできる。同様に、上記式(I)で表されるカチオン性モノマーと共に、上記式(II)で表されるアニオン性モノマーを重合することで得られるポリマーは、上記式(Ia)で表される繰り返し単位と共に、下記式(IIa):
Figure JPOXMLDOC01-appb-C000013

[式中、Rは、式(II)と同義である]で表される繰り返し単位を含むポリマーと表すこともできる。
The polymer containing repeating units derived from the monomer represented by the formula (I) has the following formula (Ia):
Figure JPOXMLDOC01-appb-C000012

[wherein U a1 , U a2 , R a1 and R a2 have the same meanings as in formula (I)]. Similarly, the polymer obtained by polymerizing the anionic monomer represented by the formula (II) together with the cationic monomer represented by the formula (I) is the repeating unit represented by the formula (Ia) together with the following formula (IIa):
Figure JPOXMLDOC01-appb-C000013

It can also be expressed as a polymer containing a repeating unit represented by [wherein Rb has the same meaning as in formula (II)].
 したがって本発明の製造方法は、上記式(Ia)で表される繰り返し単位を含むポリマー、又は上記式(Ia)で表される繰り返し単位と共に、上記式(IIa)で表される繰り返し単位を含むポリマーと、細胞接着性物質とを含む心筋細胞培養の下地膜を有する、細胞の付着抑制能を有する基板上に、心筋細胞を播種する工程を含む、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法でもある。 Therefore, the production method of the present invention includes a polymer containing a repeating unit represented by the above formula (Ia), or a repeating unit represented by the above formula (IIa) together with a repeating unit represented by the above formula (Ia). Derived from human induced pluripotent stem cells (hiPS cells), comprising the step of seeding cardiomyocytes on a substrate having the ability to suppress adhesion of cells and having a base membrane for cardiomyocyte culture containing a polymer and a cell adhesive substance It is also a method for producing cardiomyocyte aggregates.
 本明細書において、他に定義のない限り、「炭素原子数1~5の直鎖若しくは分岐アルキル基」としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基又は1-エチルプロピル基が挙げられる。 In this specification, unless otherwise defined, the "linear or branched alkyl group having 1 to 5 carbon atoms" includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2 , 2-dimethylpropyl group or 1-ethylpropyl group.
 Ra1及びRは、それぞれ独立して、水素原子及びメチル基から選ばれることが好ましい。
 Ua1及びUa2は、それぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基及びn-ブチル基から選ばれることが好ましいが、メチル基又はエチル基であることが好ましく、メチル基が最も好ましい。
Preferably, R a1 and R b are each independently selected from a hydrogen atom and a methyl group.
U a1 and U a2 are preferably each independently selected from hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group, but are preferably methyl group or ethyl group. Preferred are methyl groups.
 本明細書において、他に定義のない限り、「炭素原子数1~5の直鎖若しくは分岐アルキレン基」としては、例えばメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、2,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基等が挙げられる。これらの中で、Ra2としてはエチレン基及びプロピレン基から選ばれることが好ましい。  In this specification, unless otherwise defined, the "linear or branched alkylene group having 1 to 5 carbon atoms" includes, for example, methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, 1-methyl propylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1,1-dimethyl-trimethylene group, 1,2- dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl-trimethylene group and the like. Among these, R a2 is preferably selected from an ethylene group and a propylene group.
 したがって、上記式(I)で表されるカチオン性モノマーとしては、2-N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノメチルメタクリレートなどが挙げられ、2-N,N-ジメチルアミノエチルメタクリレートが好ましい。上記式(II)で表されるアニオン性モノマーとしては、アクリル酸、メタクリル酸などが挙げられ、メタクリル酸が好ましい。 Accordingly, cationic monomers represented by formula (I) above include 2-N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminomethyl methacrylate and the like, and 2-N,N-dimethylaminoethyl Methacrylates are preferred. Examples of the anionic monomer represented by formula (II) include acrylic acid and methacrylic acid, with methacrylic acid being preferred.
 前記ポリマー中の式(I)で表されるモノマー由来の単位/式(II)で表されるモノマー由来の単位のモル比が、100/0~50/50である。好ましくは98/2~50/50である。より好ましくは98/2~60/40であり、特に好ましくは98/2~70/30である。
 式(II)のモル比が50以下であると、ポリマーのアニオン性による細胞の接着力低下を抑制できる。
The molar ratio of units derived from the monomer represented by formula (I)/units derived from the monomer represented by formula (II) in the polymer is 100/0 to 50/50. It is preferably 98/2 to 50/50. More preferably 98/2 to 60/40, particularly preferably 98/2 to 70/30.
When the molar ratio of the formula (II) is 50 or less, it is possible to suppress a decrease in cell adhesive force due to the anionicity of the polymer.
(2つ以上の炭素-炭素不飽和結合を有するモノマー)
 上記ポリマーは、式(I)で表されるモノマー由来の単位と、場合により式(II)で表されるモノマー由来の単位とを含むものであれば特に限定されず、本発明の目的を損なわない範囲において、式(I)/式(II)で表されるモノマー由来の単位以外の他の繰返し単位を含むものであってよい。上記ポリマーは、繰り返し単位として、式(I)/式(II)で表されるモノマー由来の単位を、50モル%以上、好ましくは75モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上であってよい。例えば、式(I)/式(II)で表されるモノマーと共に、さらに2つ以上の炭素-炭素不飽和結合を有するモノマーとを重合することで得られるポリマーであってもよい。2つ以上の炭素-炭素不飽和結合を有するモノマーとは、具体的には、2つ以上の炭素-炭素二重結合を有するモノマーであり、例えば多官能アクリレート化合物、多官能アクリルアミド化合物、多官能ポリエステル、又はイソプレン化合物などが挙げられる。
(monomers having two or more carbon-carbon unsaturated bonds)
The polymer is not particularly limited as long as it contains units derived from the monomer represented by formula (I) and optionally units derived from the monomer represented by formula (II), which impairs the object of the present invention. It may contain repeating units other than the units derived from the monomers represented by formula (I)/formula (II), within the range of not included. The polymer contains, as repeating units, 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, more preferably 80 mol% or more, and more preferably It may be 90 mol % or more. For example, it may be a polymer obtained by polymerizing a monomer represented by Formula (I)/Formula (II) and a monomer having two or more carbon-carbon unsaturated bonds. A monomer having two or more carbon-carbon unsaturated bonds is specifically a monomer having two or more carbon-carbon double bonds, such as polyfunctional acrylate compounds, polyfunctional acrylamide compounds, polyfunctional A polyester or an isoprene compound may be used.
 好ましい具体例としては下記式(III)~(V)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
Preferred specific examples include monomers represented by the following formulas (III) to (V).
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
 式中、R及びRは、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Reは、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表し、nは1~50の数を表す。これらの中で、式(III)で表されるモノマーであることが好ましい。 In the formula, R c and R d each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R e is a linear or branched alkylene group having 1 to 5 carbon atoms. group, and n represents a number from 1 to 50. Among these, the monomer represented by formula (III) is preferred.
 前記ポリマー全体に対する式(III)~(V)で表されるモノマーのモル比は、好ましくは0~50%であり、さらに好ましくは2~25%である。
 式(III)~(V)のモル比が50%以下であると、過度な架橋による高分子量化による製造中の固形分のゲル化を抑制でき、製造を容易にできる。
The molar ratio of the monomers represented by formulas (III)-(V) to the total polymer is preferably 0-50%, more preferably 2-25%.
When the molar ratio of the formulas (III) to (V) is 50% or less, gelation of the solid content during production due to high molecular weight due to excessive cross-linking can be suppressed, and production can be facilitated.
 R及びRは、それぞれ独立して、水素原子及びメチル基から選ばれることが好ましい。
 Rはメチレン基、エチレン基及びプロピレン基から選ばれることが好ましく、エチレン基が最も好ましい。
 nは1~50の数であるが、nは1~30の数であることが好ましく、nは1~10の数であることが好ましい。
Preferably, R c and R d are each independently selected from a hydrogen atom and a methyl group.
R e is preferably selected from a methylene group, an ethylene group and a propylene group, most preferably an ethylene group.
Although n is a number from 1 to 50, n is preferably a number from 1 to 30, and n is preferably a number from 1 to 10.
 前記ポリマー全体に対する式(II)で表されるモノマーの占めるモル%の値と、前記調製工程時のモノマー仕込み量全体に対する式(II)で表される単量体の占めるモル%の値の差は、0~10モル%である。本願のポリマーは後述する製造方法により、モノマー仕込み比と、製造されたポリマーの実測値との差が少なく、0~10モル%であり、さらに好ましくは0~8モル%である。 Difference between the mol% value of the monomer represented by the formula (II) with respect to the entire polymer and the mol% value of the monomer represented by the formula (II) with respect to the total amount of monomer charged during the preparation step is 0 to 10 mol %. The polymer of the present application has a small difference between the charged ratio of the monomer and the measured value of the polymer produced by the production method described later, and is 0 to 10 mol %, more preferably 0 to 8 mol %.
 前記ポリマーの数平均分子量(Mn)は、20,000~1,000,000であり、50,000~800,000であることがさらに好ましい。
 前記ポリマーの重量平均分子量(Mw)と前記数平均分子量(Mn)との比(Mw/Mn)が、1.01~10.00であり、1.2~8.0であることが好ましく、1.4~6.0であることが好ましく、1.5~5.0であることが好ましく、1.6~4.5であることが好ましい。
 前記数平均分子量(Mn)と数平均分子量(Mn)は、例えば実施例に記載のGel Filtration Chromatographyにより求めることができる。
The number average molecular weight (Mn) of the polymer is 20,000 to 1,000,000, more preferably 50,000 to 800,000.
The ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer is 1.01 to 10.00, preferably 1.2 to 8.0, It is preferably 1.4 to 6.0, preferably 1.5 to 5.0, preferably 1.6 to 4.5.
The number average molecular weight (Mn) and the number average molecular weight (Mn) can be determined, for example, by Gel Filtration Chromatography described in Examples.
 本願のポリマーを細胞培養の下地膜として利用することで、細胞を接着させた後に剥離させて細胞凝集塊を形成させることが可能である。なお細胞凝集塊とは、細胞が凝集した結果形成する構造体を示し、球状やリング状などのように形状が限定されない。従来の細胞低接着プレート上での非接着培養により作製される細胞凝集塊と比較し、接着面積の規定による細胞凝集塊のサイズ調整(任意の大きさの細胞凝集塊が製造できる)などの点でメリットがある。
 国際公開第2020/040247号公報、特願2020-028120号明細書に記載の全開示は、参照として本願に援用される。
By using the polymer of the present application as a base film for cell culture, it is possible to form cell aggregates by adhering cells and then exfoliating them. The term "cell aggregate" refers to a structure formed as a result of aggregation of cells, and its shape is not limited to a spherical shape, a ring shape, or the like. Compared to cell aggregates produced by non-adhesive culture on conventional low cell adhesion plates, the size adjustment of cell aggregates by defining the adhesion area (cell aggregates of any size can be produced). There is an advantage in
The entire disclosures described in International Publication No. WO2020/040247 and Japanese Patent Application No. 2020-028120 are incorporated herein by reference.
(細胞接着性物質)
 本発明の細胞培養の下地膜形成剤は、細胞接着性物質を含む。細胞接着性物質を含むことにより、細胞の接着、伸展、増殖及び分化を促進することができる。
 細胞接着性物質としては、細胞外基質(ECM)タンパク質、糖タンパク質、ペプチドなどの生物由来物質や、合成化合物(低分子、高分子)等の公知の物質を使用することができるが、生物由来物質でない化合物、例えば合成化合物(低分子、高分子)であることが好ましい。低分子とは、例えば重量平均分子量が2,000以下の化合物であり、高分子とは、例えば重量平均分子量が2,000以上であり、上限は例えば1,000,000である。
(cell adhesive substance)
The base film-forming agent for cell culture of the present invention contains a cell adhesive substance. By containing a cell adhesive substance, cell adhesion, spreading, proliferation and differentiation can be promoted.
As the cell-adhesive substance, known substances such as biological substances such as extracellular matrix (ECM) proteins, glycoproteins, and peptides, and synthetic compounds (low molecular weight, high molecular weight) can be used. It is preferably a non-substance compound, such as a synthetic compound (low molecular weight, high molecular weight). A low molecular weight compound is, for example, a compound having a weight average molecular weight of 2,000 or less, and a high molecular weight compound is, for example, a weight average molecular weight of 2,000 or more, and the upper limit is, for example, 1,000,000.
 細胞外基質(ECM)タンパク質の例としては、コラーゲン(例えばメルク社のI型コラーゲン(品番C9791、C7661、C1809、C2249、C2124)、II型コラーゲン(品番C9301)、IV型コラーゲン(品番C0543、C5533)、エラスチン(例えばメルク社品番:E1625、E6527)、フィブロネクチン(例えばメルク社品番F1141、F0635、F2518、F0895、F4759、F2006)、ラミニン(例えばメルク社品番:L6724、L2020、L4544)、ラミニン断片(例えばマトリクソーム社製:892011)、ビトロネクチン(例えばVTN-N(ギブコ社)、Vitronectin, Human, Recombinant, Animal Free(PeproTech社)、メルク社品番:V0132、V9881、V8379、08-126、SRP3186)が挙げられる。 Examples of extracellular matrix (ECM) proteins include collagen (e.g. Merck type I collagen (product numbers C9791, C7661, C1809, C2249, C2124), type II collagen (product number C9301), type IV collagen (product numbers C0543, C5533). ), elastin (e.g. Merck product numbers: E1625, E6527), fibronectin (e.g. Merck product numbers F1141, F0635, F2518, F0895, F4759, F2006), laminin (e.g. Merck product numbers: L6724, L2020, L4544), laminin fragments ( For example, Matrixome: 892011), vitronectin (for example, VTN-N (Gibco), Vitronectin, Human, Recombinant, Animal Free (PeproTech), Merck product numbers: V0132, V9881, V8379, 08-126, SRP3186). be done.
 細胞接着性物質が、糖タンパク質であることが好ましい。具体的にはビトロネクチン、インテグリン、カドヘリン、フィブロネクチン、ラミニン、テネイシン、オスチオポンチン及び骨シアロタンパク質から選ばれることが好ましい。また、アミノ酸配列としてRGD配列を持つタンパク質であることが好ましい。 The cell adhesive substance is preferably a glycoprotein. Specifically, it is preferably selected from vitronectin, integrin, cadherin, fibronectin, laminin, tenascin, osthiopontin and bone sialoprotein. Also, a protein having an RGD sequence as an amino acid sequence is preferred.
 ペプチドの例としては、ECMペプチド(Kollodis Bio Sciences社のMAPTrix(登録商標)、RGDペプチド(富士フイルム和光純薬社製:180-01531)が挙げられる。 Examples of peptides include ECM peptide (MAPTrix (registered trademark) from Kollodis Bio Sciences) and RGD peptide (manufactured by Fujifilm Wako Pure Chemical Industries: 180-01531).
 合成化合物(高分子)の例としては、ポリリジン(例えばメルク社製品:P4707、P4832、P7280、P9155,P6407,P6282,P7405,P5899)、ポリオルニチン(例えばメルク社品番P4975)が挙げられる。合成化合物(低分子)の例としてはアドヘサミン(例えば長瀬産業社製:AD-00000-0201)、合成環状RGDペプチド(例えばIRIS BIOTECH社製:LS-3920.0010)が挙げられる。 Examples of synthetic compounds (polymers) include polylysine (eg Merck products: P4707, P4832, P7280, P9155, P6407, P6282, P7405, P5899) and polyornithine (eg Merck product number P4975). Examples of synthetic compounds (low molecular weight) include adhesamine (eg AD-00000-0201 manufactured by Nagase & Co., Ltd.) and synthetic cyclic RGD peptide (eg LS-3920.0010 manufactured by IRIS BIOTECH).
 本発明の細胞培養の下地膜形成剤中の、前記ポリマーと、細胞接着性物質の比(質量基準)は、細胞培養が可能な下地形成剤が形成できれば制限は無いが、100:0.1~100:100、好ましくは100:10~100:30であることが好ましい。細胞接着性物質が0.1以上であると、細胞接着性が十分に発揮され、細胞接着性物質が100以下であると、細胞接着後の細胞の凝集(細胞凝集塊の形成)を容易にできる。 The ratio (mass basis) of the polymer and the cell adhesive substance in the base film-forming agent for cell culture of the present invention is not limited as long as the base-forming agent capable of cell culture can be formed, but is 100:0.1. ~100:100, preferably 100:10 to 100:30. When the cell adhesion substance is 0.1 or more, the cell adhesiveness is sufficiently exhibited, and when the cell adhesion substance is 100 or less, cell aggregation after cell adhesion (formation of cell aggregates) is facilitated. can.
 本発明の細胞培養の下地膜形成剤は、溶媒を含む。前記溶媒としては、前記ポリマーを溶解できるものであれば限定されないが、水を含む含水溶液であることが好ましい。
 含水溶液とは、水、生理食塩水又はリン酸緩衝溶液などの塩含有水溶液、あるいは水又は塩含有水溶液とアルコールとを組み合わせた混合溶媒が挙げられる。アルコールとしては、炭素原子数2~6のアルコール、例えば、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、2,2-ジメチル-1-プロパノール(=ネオペンチルアルコール)、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール(=t-アミルアルコール)、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール及びシクロヘキサノールが挙げられ、単独で又はそれらの組み合わせの混合溶媒を用いてもよい。
 含水溶液中の水の含有量は、例えば50質量%~100質量%、80質量%~100質量%、90質量%~100質量%である。
The base film-forming agent for cell culture of the present invention contains a solvent. The solvent is not limited as long as it can dissolve the polymer, but it is preferably a water-containing solution.
The aqueous solution includes water, a salt-containing aqueous solution such as physiological saline or a phosphate buffer solution, or a mixed solvent in which water or a salt-containing aqueous solution and alcohol are combined. Alcohols include alcohols having 2 to 6 carbon atoms, such as ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol. , 1-heptanol, 2-heptanol, 2,2-dimethyl-1-propanol (= neopentyl alcohol), 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol (= t-amyl alcohol), 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3 ,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3 -pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4 -methyl-3-pentanol and cyclohexanol, which may be used alone or in combination.
The content of water in the water-containing solution is, for example, 50% to 100% by mass, 80% to 100% by mass, and 90% to 100% by mass.
 さらに下地膜形成剤は、上記ポリマー、細胞接着性物質及び溶媒の他に、必要に応じて得られる下地膜の性能を損ねない範囲で他の物質を添加することもできる。他の物質としては、pH調整剤、架橋剤、防腐剤、界面活性剤、容器又は基板との密着性を高めるプライマー、防カビ剤及び糖類等が挙げられる。 In addition to the above polymer, cell-adhesive substance, and solvent, the base film-forming agent may optionally contain other substances within the range that does not impair the performance of the obtained base film. Other substances include pH adjusters, cross-linking agents, preservatives, surfactants, primers to improve adhesion to containers or substrates, antifungal agents and sugars.
(細胞凝集塊製造用基板)
 一実施態様において、本発明の製造方法は、細胞の付着抑制能を有する基板上に、前記下地膜形成剤で形成した、心筋細胞培養の下地膜のスポットを備える心筋細胞凝集塊製造用基板を用いて実施される。
 本発明の心筋細胞凝集塊製造用基板は、細胞の付着抑制能を有する基板を用いて製造される。上記スポット(下地膜)の形成前に、基板が細胞の付着抑制処理を施されたものであってよい。細胞の付着抑制能を有する基板は、市販の細胞低接着処理済みの細胞培養皿、細胞の付着抑制能を有する細胞培養器等を使用してもよく、例えば特開2008-61609号公報に記載されている細胞培養容器が使用できるが、これに限定されるものではない。また例えば公知の細胞の付着抑制能を有するコーティング膜形成用組成物を塗布する工程を経て製造した基板でも良い。上記コーティング膜形成用組成物は例えば、国際公開第2014/196650号公報に記載されているコーティング膜形成用組成物が使用できる。上記コーティング膜形成組成物としては、下記式(a)で表される有機基を含む繰り返し単位と、下記式(b)で表される有機基を含む繰り返し単位とを含む共重合体(P):
Figure JPOXMLDOC01-appb-C000017

 [式中、
 Ua11、Ua12、Ub11、Ub12及びUb13は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Anは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表す]
と、溶媒とを含むコーティング膜形成用組成物を容器又は基板の表面に塗布し乾燥する工程を含むことが好ましい。上記コーティング膜は、基板表面の少なくとも一部に含めばよいが、細胞凝集塊を製造する表面(すなわち本願のスポットが存在する表面)全体に渡って、あるいは基板表面全体に渡って塗布されていることが好ましい。
 国際公開第2014/196650号公報及び国際公開第2016/093293号公報の全開示は、参照として本願に援用される。
(Substrate for producing cell aggregates)
In one embodiment, the production method of the present invention comprises a substrate for producing cardiomyocyte aggregates, which is provided with spots of the basement membrane for cardiomyocyte culture formed with the above-mentioned basement membrane-forming agent on a substrate having the ability to suppress adhesion of cells. implemented using
The substrate for producing cardiomyocyte aggregates of the present invention is produced using a substrate having the ability to suppress adhesion of cells. Prior to the formation of the spots (underlying film), the substrate may be treated to inhibit adhesion of cells. The substrate having the ability to suppress cell adhesion may be a commercially available cell culture dish treated with low cell adhesion, a cell culture vessel having the ability to inhibit cell adhesion, or the like. Although the cell culture vessel described above can be used, it is not limited to this. Alternatively, for example, a substrate manufactured through a step of applying a coating film-forming composition having a known ability to suppress adhesion of cells may be used. As the coating film-forming composition, for example, the coating film-forming composition described in International Publication No. 2014/196650 can be used. As the coating film-forming composition, a copolymer (P) containing a repeating unit containing an organic group represented by the following formula (a) and a repeating unit containing an organic group represented by the following formula (b) :
Figure JPOXMLDOC01-appb-C000017

[In the formula,
U a11 , U a12 , U b11 , U b12 and U b13 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, An is a halide ion, an inorganic acid Represents an anion selected from the group consisting of ion, hydroxide ion and isothiocyanate ion]
and a solvent, and a step of applying the composition for forming a coating film onto the surface of the container or the substrate and drying the composition. The coating film may be included on at least a part of the substrate surface, but it is applied over the entire surface where cell aggregates are produced (i.e., the surface where the spots of the present application exist) or over the entire substrate surface. is preferred.
The entire disclosures of WO2014/196650 and WO2016/093293 are hereby incorporated by reference.
 前記細胞の付着抑制能を有するとは、例えば国際公開第2016/093293号公報の実施例に記載した方法で行う蛍光顕微鏡によるコーティング膜無し、又は細胞低吸着処理無しと比較した場合の相対吸光度(WST O.D.450nm)(%)((実施例の吸光度(WST O.D.450nm))/(比較例の吸光度(WST O.D.450nm)))が50%以下、好ましくは30%以下、さらに好ましくは20%以下であることを意味する。 Having the ability to suppress cell adhesion means, for example, the relative absorbance ( WST O.D. 450 nm) (%) ((Absorbance of Example (WST O.D. 450 nm)) / (Absorbance of Comparative Example (WST O.D. 450 nm))) is 50% or less, preferably 30% Hereinafter, more preferably, it means 20% or less.
 また、細胞の付着抑制能を有するコーティング膜として、エチレン性不飽和モノマー、又は多糖類若しくはその誘導体が共重合したものを用いてもよい。エチレン性不飽和モノマーの例としては、(メタ)アクリル酸及びそのエステル;酢酸ビニル;ビニルピロリドン;エチレン;ビニルアルコール;並びにそれらの親水性の官能性誘導体からなる群より選択される1種又は2種以上のエチレン性不飽和モノマーを挙げることができる。多糖類又はその誘導体の例としては、ヒドロキシアルキルセルロース(例えば、ヒドロキシエチルセルロース又はヒドロキシプロピルセルロース)等のセルロース系高分子、デンプン、デキストラン、カードランを挙げることができる。 In addition, as the coating film having the ability to suppress cell adhesion, copolymers of ethylenically unsaturated monomers or polysaccharides or derivatives thereof may be used. Examples of ethylenically unsaturated monomers include one or two selected from the group consisting of (meth)acrylic acid and its esters; vinyl acetate; vinylpyrrolidone; ethylene; vinyl alcohol; and hydrophilic functional derivatives thereof. More than one species of ethylenically unsaturated monomers may be mentioned. Examples of polysaccharides or derivatives thereof include cellulosic polymers such as hydroxyalkylcellulose (eg, hydroxyethylcellulose or hydroxypropylcellulose), starch, dextran, and curdlan.
 親水性の官能性誘導体とは、親水性の官能基又は構造を有するエチレン性不飽和モノマーを指す。親水性の官能性基又は構造の例としては、ベタイン構造;アミド構造;アルキレングリコール残基;アミノ基;並びにスルフィニル基等が挙げられる。 A hydrophilic functional derivative refers to an ethylenically unsaturated monomer having a hydrophilic functional group or structure. Examples of hydrophilic functional groups or structures include betaine structures; amide structures; alkylene glycol residues; amino groups;
 ベタイン構造は、第4級アンモニウム型の陽イオン構造と、酸性の陰イオン構造との両性中心を持つ化合物の一価又は二価の基を意味し、例えば、ホスホリルコリン基:
Figure JPOXMLDOC01-appb-C000018

を挙げることができる。そのような構造を有するエチレン性不飽和モノマーの例としては、2-メタクリロイルオキシエチルホスホリルコリン(MPC)等を挙げることができる。
A betaine structure means a monovalent or divalent group of compounds having an amphoteric center with a quaternary ammonium type cationic structure and an acidic anionic structure, such as the phosphorylcholine group:
Figure JPOXMLDOC01-appb-C000018

can be mentioned. Examples of ethylenically unsaturated monomers having such a structure include 2-methacryloyloxyethylphosphorylcholine (MPC).
 アミド構造は、下記式:
Figure JPOXMLDOC01-appb-C000019

[ここで、R16、R17及びR18は、互いに独立して、水素原子又は有機基(例えば、メチル基、ヒドロキシメチル基又はヒドロキシエチル基等)である]
で表される基を意味する。そのような構造を有するエチレン性不飽和モノマーの例としては、(メタ)アクリルアミド、N-(ヒドロキシメチル)(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド等を挙げることができる。さらに、そのような構造を有するモノマー又はポリマーは、例えば、特開2010-169604号公報等に開示されている。
The amide structure has the formula:
Figure JPOXMLDOC01-appb-C000019

[Here, R 16 , R 17 and R 18 are each independently a hydrogen atom or an organic group (e.g., a methyl group, a hydroxymethyl group, a hydroxyethyl group, etc.)]
means a group represented by Examples of ethylenically unsaturated monomers having such structures include (meth)acrylamide, N-(hydroxymethyl)(meth)acrylamide, N-isopropyl(meth)acrylamide and the like. Furthermore, monomers or polymers having such a structure are disclosed in, for example, JP-A-2010-169604.
 アルキレングリコール残基は、アルキレングリコール(HO-Alk-OH;ここでAlkは、炭素原子数1~10のアルキレン基である)の片側端末又は両端末の水酸基が他の化合物と縮合反応した後に残るアルキレンオキシ基(-Alk-O-)を意味し、アルキレンオキシ単位が繰り返されるポリ(アルキレンオキシ)基も包含する。そのような構造を有するエチレン性不飽和モノマーの例としては、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等を挙げることができる。さらに、そのような構造を有するモノマー又はポリマーは、例えば、特開2008-533489号公報等に開示されている。 An alkylene glycol residue is an alkylene glycol (HO-Alk-OH; where Alk is an alkylene group having 1 to 10 carbon atoms). The hydroxyl groups at one or both terminals of the alkylene glycol remain after the condensation reaction with other compounds. It means an alkyleneoxy group (--Alk--O--) and also includes a poly(alkyleneoxy) group in which the alkyleneoxy unit is repeated. Examples of ethylenically unsaturated monomers having such structures include 2-hydroxyethyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and the like. Further, monomers or polymers having such structures are disclosed in, for example, JP-A-2008-533489.
 アミノ基は、式:-NH、-NHR19又は-NR2021[ここで、R19、R20及びR21は、互いに独立して、有機基(例えば、炭素原子数1~5の直鎖若しくは分岐アルキル基等)である]で表される基を意味する。本発明におけるアミノ基には、4級化又は塩化されたアミノ基を包含する。そのような構造を有するエチレン性不飽和モノマーの例としては、ジメチルアミノエチル(メタ)アクリレート、2-(t-ブチルアミノ)エチル(メタ)アクリレート、メタクリロイルコリンクロリド等を挙げることができる。 An amino group has the formula: —NH 2 , —NHR 19 or —NR 20 R 21 [wherein R 19 , R 20 and R 21 are each independently an organic group (for example, linear or branched alkyl group, etc.)]. Amino groups in the present invention include quaternary or salified amino groups. Examples of ethylenically unsaturated monomers having such a structure include dimethylaminoethyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, methacryloylcholine chloride, and the like.
 スルフィニル基は、下記式:
Figure JPOXMLDOC01-appb-C000020

[ここで、R22は、有機基(例えば、炭素原子数1~10の有機基、好ましくは、1個以上のヒドロキシ基を有する炭素原子数1~10のアルキル基等)である]
で表される基を意味する。そのような構造を有するポリマーとして、特開2014-48278号公報等に開示された共重合体を挙げることができる。
A sulfinyl group has the formula:
Figure JPOXMLDOC01-appb-C000020

[Here, R 22 is an organic group (eg, an organic group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms and having one or more hydroxy groups, etc.)]
means a group represented by Examples of polymers having such a structure include copolymers disclosed in Japanese Unexamined Patent Application Publication No. 2014-48278.
 さらに細胞の付着抑制能を有するコーティング膜として、リン酸緩衝生理食塩水に溶解しにくい、非水溶性共重合体を使用することができる。 Furthermore, a water-insoluble copolymer that is difficult to dissolve in phosphate-buffered saline can be used as a coating film that has the ability to suppress cell adhesion.
 本明細書において「水溶性」とは、25℃の水100gに対して1.0g以上溶解可能であることをいう。「非水溶性」とは、「水溶性」に該当しないこと、即ち、25℃の水100gに対する溶解性が1.0g未満であることをいう。したがって、「非水溶性共重合体」とは、25℃の水100gに対する溶解性が1.0g未満である共重合体を意味し、特に25℃のリン酸緩衝生理食塩水100gに対する溶解性が1.0g未満である共重合体を意味する。 "Water-soluble" as used herein means that 1.0 g or more can be dissolved in 100 g of water at 25°C. "Water-insoluble" means that it does not correspond to "water-soluble", that is, the solubility in 100 g of water at 25°C is less than 1.0 g. Accordingly, the term "water-insoluble copolymer" means a copolymer having a solubility of less than 1.0 g in 100 g of water at 25°C, particularly a solubility in 100 g of phosphate buffered saline at 25°C It means a copolymer that is less than 1.0 g.
 非水溶性共重合体としては、下記式(A)で表される繰り返し単位(A)、及び下記式(B)で表される繰り返し単位(B)を含む共重合体が挙げられる。 Examples of water-insoluble copolymers include copolymers containing repeating units (A) represented by the following formula (A) and repeating units (B) represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、X及びXは、それぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合、又は酸素原子で中断されていてもよい炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す。 In the formula, R 1 to R 3 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and X 1 and X 2 each independently represent a single bond, an ester It represents a bond, an ether bond, an amide bond, or a linear or branched alkylene group having 1 to 5 carbon atoms which may be interrupted by an oxygen atom.
 前記非水溶性共重合体は、2種以上の繰り返し単位(A)を含んでいてもよく、また2種以上の繰り返し単位(B)を含んでいてもよいが、1種類の繰り返し単位(A)及び1種類の繰り返し単位(B)を含むことが好ましい。 The water-insoluble copolymer may contain two or more types of repeating units (A), and may contain two or more types of repeating units (B), but one type of repeating unit (A ) and one type of repeating unit (B).
 前記非水溶性共重合体において、R~Rは、それぞれ独立して、水素原子、メチル基、又はエチル基であることが好ましい。 In the water-insoluble copolymer, R 1 to R 3 are each independently preferably a hydrogen atom, a methyl group, or an ethyl group.
 本明細書において、他に定義のない限り、「エステル結合」は、-C(=O)-O-又は-O-C(=O)-を意味し、「エーテル結合」は、-O-を意味し、「アミド結合」は、-NHC(=O)-又は-C(=O)NH-を意味する。 As used herein, unless otherwise defined, "ester bond" means -C(=O)-O- or -O-C(=O)-, and "ether bond" means -O- and "amide bond" means -NHC(=O)- or -C(=O)NH-.
 本明細書において、他に定義のない限り、「酸素原子で中断されていてもよい炭素原子数1~5の直鎖若しくは分岐アルキレン基」とは、炭素原子数1~5の直鎖若しくは分岐アルキレン基であるか、あるいは炭素原子数1~5の直鎖若しくは分岐アルキレン基の1つ又は2以上の炭素-炭素結合間がエーテル結合を介して結合している基を意味する。
 前記非水溶性共重合体において、X及びXは、それぞれ独立して、メチレン基、エチレン基、又はプロピレン基であるのが好ましい。
In this specification, unless otherwise defined, the term "linear or branched alkylene group having 1 to 5 carbon atoms optionally interrupted by an oxygen atom" means a linear or branched alkylene group having 1 to 5 carbon atoms. It means an alkylene group or a group in which one or more carbon-carbon bonds of a linear or branched alkylene group having 1 to 5 carbon atoms are linked through an ether bond.
In the water-insoluble copolymer, X 1 and X 2 are each independently preferably a methylene group, an ethylene group, or a propylene group.
 前記非水溶性共重合体において、R及びRが水素原子であり、Rがメチル基であり、X及びXが単結合であるのが好ましい。 Preferably, in the water-insoluble copolymer, R 1 and R 2 are hydrogen atoms, R 3 is a methyl group, and X 1 and X 2 are single bonds.
 前記非水溶性共重合体における繰り返し単位(A)と繰り返し単位(B)とのモル比率(A:B)は、89:11~50:50である。
 前記非水溶性共重合体における、繰り返し単位(A)と繰り返し単位(B)との合計のモル数を100とした場合、繰り返し単位(A)と繰り返し単位(B)とのモル比率(A:B)は、(100-m):mで表すことができる。その場合、mの範囲は、11~50である。そして、mの下限は、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、又は30であってよい。mの上限は、49、48、47、46、45、44、43、42、41、40、38、37、36、又は35であってよい。mの範囲としては、例えば、12~49、12~48、15~48、20~49、20~45、22~49、又は22~45である。
The molar ratio (A:B) of the repeating unit (A) and the repeating unit (B) in the water-insoluble copolymer is from 89:11 to 50:50.
When the total number of moles of the repeating unit (A) and the repeating unit (B) in the water-insoluble copolymer is 100, the molar ratio of the repeating unit (A) and the repeating unit (B) (A: B) can be expressed as (100−m):m. In that case, the range of m is 11-50. and the lower limit of m may be 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. An upper limit for m may be 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, or 35. The range of m is, for example, 12-49, 12-48, 15-48, 20-49, 20-45, 22-49, or 22-45.
 前記非水溶性共重合体における全繰り返し単位中の繰り返し単位(A)と繰り返し単位(B)の合計のモル%としては、特に制限されないが、90モル%以上が好ましく、95モル%以上がより好ましく、99.5モル%以上がより一層好ましく、100%が特に好ましい。 The total mol% of the repeating unit (A) and the repeating unit (B) in all repeating units in the water-insoluble copolymer is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more. Preferably, 99.5 mol % or more is more preferable, and 100% is particularly preferable.
 前記非水溶性共重合体における繰り返し単位(A)と繰り返し単位(B)とのモル比率を特定の範囲とすることで、共重合体を架橋させることなく、リン酸緩衝生理食塩水に溶解しにくいコーティング膜が得られる。よって、前記非水溶性共重合体は、共重合体を架橋させるための感光基を有する必要がない。即ち、前記非水溶性共重合体は感光基を有さないことが好ましい。感光基としては、例えば、アジド基が挙げられる。
 このように前記非水溶性共重合体は、共重合体を架橋させるための感光基を有する必要がないため、コーティング膜を形成する際に、共重合体を架橋させるための光照射を行う必要がない。よって、前記非水溶性共重合体の使用は、細胞の付着抑制能を有するコーティング膜を形成する際の工程を簡素にすることができる。
By setting the molar ratio of the repeating unit (A) and the repeating unit (B) in the water-insoluble copolymer to a specific range, the copolymer can be dissolved in phosphate buffered saline without cross-linking. A hard-to-remove coating film is obtained. Therefore, the water-insoluble copolymer need not have photosensitive groups for cross-linking the copolymer. That is, it is preferable that the water-insoluble copolymer does not have a photosensitive group. Photosensitive groups include, for example, an azide group.
Thus, since the water-insoluble copolymer does not need to have a photosensitive group for cross-linking the copolymer, it is necessary to perform light irradiation for cross-linking the copolymer when forming the coating film. There is no Therefore, the use of the water-insoluble copolymer simplifies the process of forming a coating film having the ability to inhibit cell adhesion.
 前記非水溶性共重合体の粘度平均重合度(以下、単に「重合度」ということがある)は、特に制限されないが、細胞の付着抑制能を好適に得る観点から、200~3,000が好ましく、200~2,500がより好ましく、200~2,000が特に好ましい。
 粘度平均重合度は、前記非水溶性共重合体を完全けん化した状態で測定される。
 完全けん化して得られるポリビニルアルコールの「粘度平均重合度」は、イオン交換水を溶媒としたオストワルド粘度計により30℃で測定した際の極限粘度[η](g/dL)から、下記式により算出される値である。
The viscosity-average degree of polymerization of the water-insoluble copolymer (hereinafter sometimes simply referred to as "degree of polymerization") is not particularly limited, but from the viewpoint of suitably obtaining the cell adhesion inhibitory ability, 200 to 3,000. Preferably, 200 to 2,500 is more preferable, and 200 to 2,000 is particularly preferable.
The viscosity-average degree of polymerization is measured in a completely saponified state of the water-insoluble copolymer.
The "viscosity average degree of polymerization" of polyvinyl alcohol obtained by complete saponification is determined by the following formula from the intrinsic viscosity [η] (g / dL) when measured at 30 ° C. with an Ostwald viscometer using ion-exchanged water as a solvent. It is a calculated value.
Figure JPOXMLDOC01-appb-M000022

 ここで、Pは粘度平均重合度を示す。
 粘度平均重合度は、JIS K 6726に従って求めることができる。
Figure JPOXMLDOC01-appb-M000022

Here, P indicates the viscosity average degree of polymerization.
The viscosity average degree of polymerization can be determined according to JIS K6726.
 前記非水溶性共重合体を製造する方法としては、特に制限されないが、例えば、下記式(C)で表される化合物を重合してホモポリマーを製造し、得られたホモポリマーを公知のけん化反応により部分加水分解して、共重合体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000023
The method for producing the water-insoluble copolymer is not particularly limited. A method of partially hydrolyzing by reaction to obtain a copolymer can be mentioned.
Figure JPOXMLDOC01-appb-C000023
 式中、R、R、及びXは上記と同義である。 In the formula, R 1 , R 3 and X 1 are defined as above.
 また、前記非水溶性共重合体を製造する方法としては、例えば、下記式(C)で表される化合物と下記式(D)で表される化合物とを共重合して、共重合体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Further, as a method for producing the water-insoluble copolymer, for example, a compound represented by the following formula (C) and a compound represented by the following formula (D) are copolymerized to obtain a copolymer. method to obtain.
Figure JPOXMLDOC01-appb-C000024
 式中、R~R、X、及びXは上記と同義である。 In the formula, R 1 to R 3 , X 1 and X 2 have the same meanings as above.
 前記非水溶性共重合体は、ランダムコポリマーであってもよいし、ブロックコポリマーであってもよい。
 前記非水溶性共重合体としては、市販品を使用してもよい。共重合体の市販品としては、具体的にはポリ酢酸ビニル(日本酢ビ・ポバール(株)製、商品名JMR-150L(登録商標))が挙げられる。
The water-insoluble copolymer may be a random copolymer or a block copolymer.
A commercially available product may be used as the water-insoluble copolymer. Specific examples of commercially available copolymers include polyvinyl acetate (manufactured by Nippon Acetate & Poval Co., Ltd., trade name JMR-150L (registered trademark)).
 本発明に係る、細胞の付着抑制能を有する基板の製造で用いられるコーティング膜形成用組成物中の膜形成成分における共重合体の含有量としては、特に制限されないが、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が特に好ましい。なお膜形成成分とは、組成物の全成分から溶媒成分を除いた成分を指す。 The content of the copolymer in the film-forming component in the coating film-forming composition used in the production of the substrate capable of inhibiting adhesion of cells according to the present invention is not particularly limited, but is preferably 80% by mass or more. , more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The film-forming component refers to a component excluding the solvent component from all components of the composition.
 本発明に係る、細胞の付着抑制能を有する基板の製造で用いられるコーティング膜形成用組成物における共重合体の含有量としては、特に制限されないが、所望の厚みのコーティング膜を形成しやすい観点から、0.1~10質量%が好ましく、0.3~8質量%がより好ましく、0.5~5質量%が特に好ましい。また、コーティング膜形成用組成物における共重合体の含有量は、0.02~2質量%であってもよいし、0.05~1質量%であってよい。 The content of the copolymer in the coating film-forming composition used in the production of the substrate having the ability to suppress cell adhesion according to the present invention is not particularly limited, but from the viewpoint of facilitating the formation of a coating film having a desired thickness. Therefore, 0.1 to 10% by mass is preferable, 0.3 to 8% by mass is more preferable, and 0.5 to 5% by mass is particularly preferable. The content of the copolymer in the coating film-forming composition may be 0.02 to 2% by mass, or may be 0.05 to 1% by mass.
(スポット)
 本発明の心筋細胞凝集塊製造用基板が備える、スポット、好ましくは複数のスポット(下地膜)の総面積の割合、各スポットの直径やスポット中心間の間隔は、用いる細胞や基板の種類、細胞凝集塊の所望のサイズ等に応じて、所定の範囲から適宜選択することができるが、基板の表面積に対するスポットの総面積の割合は、30%以上、40%以上、50%以上であることが好ましく、かつ99%以下であることが好ましく、各スポットの直径は、50~5000μmであり、300~3000μmが好ましく、300~1000μmがさらに好ましく、300~600μmが最も好ましく、スポット中心間の間隔は、30~1000μmであり、50~800μmであることが好ましく、400~600μmがさらに好ましい。
(spot)
The ratio of the total area of the spots, preferably a plurality of spots (underlying membrane), the diameter of each spot, and the distance between the centers of the spots, provided on the substrate for producing cardiomyocyte aggregates of the present invention, is determined by the type of cells and substrate used, the type of cells, and the Depending on the desired size of the agglomerate, etc., it can be appropriately selected from a predetermined range. preferably 99% or less, the diameter of each spot is 50 to 5000 μm, preferably 300 to 3000 μm, more preferably 300 to 1000 μm, most preferably 300 to 600 μm, the distance between the center of the spot , 30 to 1000 μm, preferably 50 to 800 μm, more preferably 400 to 600 μm.
 本発明は、細胞の付着抑制能を有する基板上に、心筋細胞が接着し得る独立したマイクロサイズの領域(スポット)を、高密度で、好ましくは規則的に配することにより、均一なサイズのスフェロイドを一つの基板(容器)で一度に複数形成できる。
 上記スポットは、上記下地膜形成剤を塗布することにより形成することができる。下地膜形成剤の塗布の方式としては、例えばインクジェット法、スクリーン印刷法、スリットコート法、ロール・トゥー・ロール法等を用いることが出来るが、好ましくはインクジェット法又はスクリーン印刷等の印刷技術で行われる。
According to the present invention, by arranging independent micro-sized regions (spots) to which cardiomyocytes can adhere at a high density, preferably regularly, on a substrate having the ability to suppress adhesion of cells, cells of uniform size can be obtained. A plurality of spheroids can be formed on one substrate (container) at once.
The spot can be formed by applying the base film forming agent. As a method for applying the base film-forming agent, for example, an inkjet method, a screen printing method, a slit coating method, a roll-to-roll method, or the like can be used, but printing techniques such as an inkjet method or screen printing are preferable. will be
 別の塗布方法としては、例えば場合によりスポットの非形成箇所を保護した基板を上記下地膜形成剤に浸漬する、下地膜形成剤を場合によりスポットの非形成箇所を保護した基板(容器)に添加し、所定の時間静置する等の方法が用いられるが、基板、一態様として細胞培養容器の場合は、下地膜形成剤を場合によりスポットの非形成箇所を保護した容器に添加し、所定の時間静置する方法によって行われる。添加は、例えば、容器の全容積の0.5~1倍量の下地膜形成剤を、シリンジ等を用いて添加することによって行うことができる。静置は、容器又は基板の材質や細胞培養の下地膜形成剤の種類に応じて、時間や温度を適宜選択して実施されるが、例えば、1分から24時間、好ましくは5分から3時間、10~80℃で実施される。これにより、心筋細胞凝集塊製造用基板を製造することができる。 As another coating method, for example, a substrate optionally protected at non-formed spots is immersed in the base film-forming agent, or the undercoat film-forming agent is added to the substrate (container) optionally protected at non-spotted locations. In the case of a substrate, one aspect of which is a cell culture vessel, a base film-forming agent is optionally added to the vessel in which the non-spotted areas are protected, and then left to stand for a predetermined period of time. It is done by the method of standing for a while. The addition can be performed, for example, by adding the base film-forming agent in an amount of 0.5 to 1 times the total volume of the container using a syringe or the like. The standing is carried out by appropriately selecting the time and temperature depending on the material of the vessel or substrate and the type of base film-forming agent for cell culture. It is carried out at 10-80°C. As a result, a substrate for producing cardiomyocyte aggregates can be produced.
 また、かかる方法により得られる基板の表面のスポットは、乾燥工程を経ずにそのまま、あるいは水又は細胞培養に付される試料の媒質(例えば、水、緩衝液、培地等)を用いての洗浄後に、心筋細胞凝集塊製造用基板として使用することができる。
 すなわち、上記基板の表面のスポットの形成後、48時間以内、好ましくは24時間以内、さらに好ましくは12時間以内、さらに好ましくは6時間以内、さらに好ましくは3時間以内、さらに好ましくは1時間以内に乾燥工程を経ずにそのまま、あるいは水又は細胞培養に付される試料の媒質(例えば、水、緩衝液、培地等、特に好ましくは培地(例えば、DMEM培地(ダルベッコ改変イーグル培地))を用いての洗浄後に、心筋細胞凝集塊製造用基板として使用することができる。
In addition, the spots on the surface of the substrate obtained by such a method can be washed as they are without a drying step, or washed with water or a sample medium (e.g., water, buffer solution, medium, etc.) to be subjected to cell culture. Later, it can be used as a substrate for manufacturing cardiomyocyte aggregates.
That is, within 48 hours, preferably within 24 hours, more preferably within 12 hours, still more preferably within 6 hours, still more preferably within 3 hours, more preferably within 1 hour after the formation of spots on the surface of the substrate As it is without a drying step, or using water or a sample medium subjected to cell culture (e.g., water, buffer, medium, etc., particularly preferably a medium (e.g., DMEM medium (Dulbecco's modified Eagle medium)) After washing, it can be used as a substrate for producing cardiomyocyte aggregates.
 細胞凝集塊製造用基板は、乾燥工程に付してもよい。乾燥工程は、大気下又は真空下にて、好ましくは、温度-200℃~200℃の範囲内で行なう。乾燥工程により、上記下地膜形成剤中の溶媒を取り除くことで、基体へ完全に固着する。
 スポットは、例えば室温(10℃~35℃、好ましくは20℃~30℃、例えば25℃)での乾燥でも形成することができるが、より迅速にスポットを形成させるために、例えば40℃~80℃にて乾燥させてもよい。乾燥温度が-200℃未満であると、一般的ではない冷媒を使用しなければならず汎用性に欠けることと、溶媒昇華のために乾燥に長時間を要し効率が悪い。乾燥温度が200℃超であると、ポリマーの熱分解が生じる。より好ましい乾燥温度は10℃~180℃、より好ましい乾燥温度は20℃~150℃である。本願の細胞凝集塊製造用基板は、以上の簡便な工程を経て製造される。
The cell aggregate-producing substrate may be subjected to a drying process. The drying step is carried out in the atmosphere or under vacuum, preferably at a temperature in the range of -200°C to 200°C. By removing the solvent in the base film-forming agent by the drying process, the base film-forming agent is completely fixed to the substrate.
The spots can also be formed by drying at room temperature (10° C. to 35° C., preferably 20° C. to 30° C., eg 25° C.), but in order to form the spots more rapidly, for example, at 40° C. to 80° C. It may be dried at °C. If the drying temperature is less than −200° C., an uncommon refrigerant must be used, which lacks versatility, and drying takes a long time due to solvent sublimation, resulting in poor efficiency. If the drying temperature is above 200°C, thermal decomposition of the polymer will occur. A more preferable drying temperature is 10°C to 180°C, and a more preferable drying temperature is 20°C to 150°C. The cell aggregate-producing substrate of the present application is produced through the simple steps described above.
 また、スポット(下地膜)に残存する不純物、未固着のポリマー等を無くすために、水及び電解質を含む水溶液から選ばれる少なくとも1種の溶媒で洗浄する工程を実施してもよい。洗浄は、流水洗浄又は超音波洗浄等が望ましい。上記水及び電解質を含む水溶液は例えば40℃~95℃の範囲で加温されたものでもよい。電解質を含む水溶液は、PBS、生理食塩水(塩化ナトリウムのみを含むもの)、ダルベッコリン酸緩衝生理食塩水、トリス緩衝生理食塩水、HEPES緩衝生理食塩水及びベロナール緩衝生理食塩水が好ましく、PBSが特に好ましい。固着後は水、PBS及びアルコール等で洗浄してもコーティング膜は溶出せずに基体に強固に固着したままである。
 本願のスポット(下地膜)の膜厚は、最大膜厚と最小膜厚が1~1000nmの範囲であり、好ましくは5~500nmの範囲である。
In addition, in order to remove impurities, unfixed polymers, etc. remaining in the spot (underlying film), a step of washing with at least one solvent selected from aqueous solutions containing water and electrolytes may be carried out. Cleaning is preferably performed with running water, ultrasonic cleaning, or the like. The aqueous solution containing the water and the electrolyte may be heated, for example, in the range of 40.degree. C. to 95.degree. Aqueous solutions containing electrolytes are preferably PBS, physiological saline (containing only sodium chloride), Dulbecco's phosphate-buffered saline, Tris-buffered physiological saline, HEPES-buffered physiological saline, and Veronal-buffered physiological saline, and PBS is preferred. Especially preferred. After being fixed, the coating film is not eluted even if it is washed with water, PBS, alcohol, etc., and remains firmly fixed to the substrate.
The film thickness of the spot (underlying film) of the present application is such that the maximum film thickness and the minimum film thickness are in the range of 1 to 1000 nm, preferably in the range of 5 to 500 nm.
(基板)
 前記下地膜形成剤を基板の表面に塗布し乾燥することにより、本発明の細胞凝集塊製造用基板が製造できる。ここで「表面」とは、細胞又は細胞培養液などの内容物と接する面を指す。
 基板表面の形状は、平面であっても凹凸があってもよいが、平面形状であることが好ましい。
(substrate)
The substrate for producing cell aggregates of the present invention can be produced by coating the base film-forming agent on the surface of the substrate and drying it. As used herein, the term “surface” refers to a surface that contacts contents such as cells or cell culture medium.
The shape of the substrate surface may be flat or uneven, but is preferably flat.
 基板の材質は、例えば、ガラス、金属、金属含有化合物若しくは半金属含有化合物、活性炭又は樹脂を挙げることができる。金属は、典型金属:(アルミニウム族元素:Al、Ga、In;鉄族元素:Fe、Co、Ni;クロム族元素:Cr、Mo、W、U;マンガン族元素:Mn、Re;貴金属:Cu、Ag、Au等が挙げられる。金属含有化合物若しくは半金属含有化合物は、例えば基本成分が金属酸化物で、高温での熱処理によって焼き固めた焼結体であるセラミックス、シリコンのような半導体、金属酸化物若しくは半金属酸化物(シリコン酸化物、アルミナ等)、金属炭化物若しくは半金属炭化物、金属窒化物若しくは半金属窒化物(シリコン窒化物等)、金属ホウ化物若しくは半金属ホウ化物等の無機化合物の成形体等の無機固体材料、アルミニウム、ニッケルチタン、ステンレス(SUS304、SUS316、SUS316L等)が挙げられる。 Examples of substrate materials include glass, metals, metal-containing compounds or metalloid-containing compounds, activated carbon, and resins. Typical metals: (aluminum group elements: Al, Ga, In; iron group elements: Fe, Co, Ni; chromium group elements: Cr, Mo, W, U; manganese group elements: Mn, Re; noble metals: Cu , Ag, Au, etc. The metal-containing compound or semi-metal-containing compound is, for example, a metal oxide as a basic component, and is a sintered body sintered by heat treatment at high temperature, such as ceramics, semiconductors such as silicon, metals Inorganic compounds such as oxides or metalloid oxides (silicon oxide, alumina, etc.), metal carbides, metalloid carbides, metal nitrides, metalloid nitrides (silicon nitride, etc.), metal borides, metalloid borides, etc. inorganic solid materials such as molded bodies, aluminum, nickel titanium, and stainless steel (SUS304, SUS316, SUS316L, etc.).
 樹脂としては、天然樹脂若しくはその誘導体、又は合成樹脂いずれでもよく、天然樹脂若しくはその誘導体としては、セルロース、三酢酸セルロース(CTA)、ニトロセルロース(NC)、デキストラン硫酸を固定化したセルロース等、合成樹脂としてはポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリエステル系ポリマーアロイ(PEPA)、ポリスチレン(PS)、ポリスルホン(PSF)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリウレタン(PU)、エチレンビニルアルコール(EVAL)、ポリエチレン(PE)、ポリエステル、ポリプロピレン(PP)、ポリフッ化ビニリデン(PVDF)、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)、超高分子量ポリエチレン(UHPE)、ポリジメチルシロキサン(PDMS)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)又はテフロン(登録商標)が好ましく用いられる。 The resin may be a natural resin or a derivative thereof, or a synthetic resin. Examples of the natural resin or a derivative thereof include cellulose, cellulose triacetate (CTA), nitrocellulose (NC), cellulose with immobilized dextran sulfate, and synthetic resins. Resins include polyacrylonitrile (PAN), polyimide (PI), polyester polymer alloy (PEPA), polystyrene (PS), polysulfone (PSF), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA). , polyurethane (PU), ethylene vinyl alcohol (EVAL), polyethylene (PE), polyester, polypropylene (PP), polyvinylidene fluoride (PVDF), polyethersulfone (PES), polycarbonate (PC), cycloolefin polymer (COP) , polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), ultra-high molecular weight polyethylene (UHPE), polydimethylsiloxane (PDMS), acrylonitrile-butadiene-styrene resin (ABS) or Teflon (registered trademark) is preferably used. .
 本発明の細胞凝集塊製造用基板の製造では、下地膜の形成の際に、高温での処理を要しないため、耐熱性が低い樹脂等も適用可能である。
 基板の材質は1種類であっても2種類以上の組み合わせであってもよいが、本願の細胞凝集塊製造用基板は、例えば、細胞培養凝集塊を大量製造するために、該基板がベルトコンベアーのように巻き取り(ロール方式)できるような柔軟性を有する基板であることが好ましい。上記ロール方式に用いられる基板の材質としては、合成樹脂、天然高分子が挙げられる。
In the production of the cell aggregate-producing substrate of the present invention, since high-temperature treatment is not required in the formation of the base film, a resin having low heat resistance can also be used.
The material of the substrate may be one kind or a combination of two or more kinds. It is preferable that the substrate has flexibility so that it can be wound up (roll system) as shown in FIG. Materials for the substrate used in the roll method include synthetic resins and natural polymers.
 又、本願の基板は、いわゆる細胞培養器で使用される基板であってもよい。細胞の培養に一般的に用いられるペトリデッシュ、組織培養用ディッシュ、マルチディッシュなどのシャーレ又はディッシュ、細胞培養フラスコ、スピナーフラスコ、多段フラスコなどのフラスコ、プラスチックバッグ、テフロン(登録商標)バッグ、培養バッグなどのバッグ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレートなどのプレート、チャンバースライド、チューブ、トレイ、ローラーボトルなどのボトル等が挙げられる。 Also, the substrate of the present application may be a substrate used in a so-called cell culture vessel. Petri dishes commonly used for cell culture, tissue culture dishes, petri dishes or dishes such as multi-dishes, flasks such as cell culture flasks, spinner flasks, multi-layered flasks, plastic bags, Teflon (registered trademark) bags, culture bags bags, plates such as microplates, microwell plates, multiplates, multiwell plates, chamber slides, tubes, trays, bottles such as roller bottles, and the like.
(播種・培養工程)
 心筋細胞培養の下地膜形成工程に次いで、本発明の製造方法は、心筋細胞を播種する工程、心筋細胞を培養する工程を含む。心筋細胞の播種・培養工程は、心筋細胞に適した公知の方法で行うことができる。
 本発明の心筋細胞凝集塊の製造方法は、心筋細胞の播種・培養工程を生体由来の血清の存在下又は不在下で行うことができ、特に、培地中の生体由来の血清が低濃度(例えば、5質量%未満、特には3質量%未満)であっても又は不存在であっても、高品質な心筋細胞凝集塊の製造を行うことができる点で優れる。
(Sowing/culturing process)
Subsequent to the basement membrane formation step for cardiomyocyte culture, the production method of the present invention includes a step of seeding cardiomyocytes and a step of culturing cardiomyocytes. The step of seeding and culturing cardiomyocytes can be performed by a known method suitable for cardiomyocytes.
In the method for producing cardiomyocyte aggregates of the present invention, the steps of seeding and culturing cardiomyocytes can be performed in the presence or absence of biological serum. .
(細胞)
 本発明は、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法に関する。本発明で使用されるhiPS細胞由来の心筋細胞とは、hiPS細胞から分化誘導された心筋細胞を意味し、例えば、試薬供給業者から、又は細胞バンクから入手できるhiPS細胞を、心筋細胞へと分化誘導し、純化精製したものを使用することができ、そのような方法は、各種文献(例えば、Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017)に報告されており、それらに従い適宜、hiPS細胞由来の心筋細胞が得られる。
(cell)
The present invention relates to a method for producing human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregates. The hiPS cell-derived cardiomyocytes used in the present invention means cardiomyocytes that have been induced to differentiate from hiPS cells. For example, hiPS cells available from reagent suppliers or from cell banks are differentiated into cardiomyocytes. Derived, purified and purified products can be used, and such methods are described in various literatures (e.g., Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017), and hiPS cell-derived cardiomyocytes can be obtained accordingly.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
<重量平均分子量の測定方法>
下記合成例に示す重量平均分子量はGel Filtration Chromatography(以下、GFCと略称する)による結果である。
(測定条件)
・装置:HLC-8320GPC(東ソー(株)製)
・GFCカラム:TSKgel G 6000 + 3000 PWXL-CP
・流速:1.0mL/min
・溶離液:塩含有の水/有機混合溶媒
・カラム温度:40℃
・検出器:RI
・注入濃度:ポリマー固形分0.05質量%
・注入量:100μL
・検量線:三次近似曲線
・標準試料:ポリエチレンオキサイド(Agilent社製)×10種
<Method for measuring weight average molecular weight>
The weight average molecular weights shown in the synthesis examples below are the results obtained by Gel Filtration Chromatography (hereinafter abbreviated as GFC).
(Measurement condition)
・Equipment: HLC-8320GPC (manufactured by Tosoh Corporation)
・GFC column: TSKgel G6000 + 3000 PWXL-CP
・Flow rate: 1.0 mL/min
・Eluent: salt-containing water/organic mixed solvent ・Column temperature: 40°C
・Detector: RI
・Injection concentration: polymer solid content 0.05% by mass
・Injection volume: 100 μL
・ Calibration curve: cubic approximation curve ・ Standard sample: polyethylene oxide (manufactured by Agilent) x 10 types
<合成例1>
 メタクリル酸2-(ジメチルアミノ)エチル(東京化成工業(株)製)24.00g、メタクリル酸(東京化成工業(株)製)1.46g、エチレングリコールジメタクリレート(東京化成工業(株)製)5.09g、ジメチル 1,1′-アゾビス(1-シクロヘキサンカルボキシレート)(VE-073、富士フイルム和光純薬(株)製)0.31g、2-プロパノール111.09gを混合し、リフラックス温度とした2-プロパノール166.62gに対して滴下重合することでポリマーを合成した。反応生成物を貧溶媒であるヘキサンで再沈殿させ、析出物を濾過により回収し減圧乾燥させた。
 GFCによるこのポリマーの重量平均分子量は228,000であった(以下、「合成例ポリマー1」と称す)。
<Synthesis Example 1>
2-(dimethylamino)ethyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 24.00 g, methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1.46 g, ethylene glycol dimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 5.09 g, 0.31 g of dimethyl 1,1'-azobis(1-cyclohexanecarboxylate) (VE-073, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 111.09 g of 2-propanol were mixed and adjusted to the reflux temperature. A polymer was synthesized by dropwise polymerization in 166.62 g of 2-propanol. The reaction product was reprecipitated with hexane, which is a poor solvent, and the precipitate was collected by filtration and dried under reduced pressure.
The weight average molecular weight of this polymer by GFC was 228,000 (hereinafter referred to as "Synthetic Example Polymer 1").
<実施例1>
(下地膜形成工程)
 上記合成例1で得られたポリマー0.0075gに、純水98g、0.5mg/mLビトロネクチンVTN-N(ギブコ社)2.0mLを加えて十分に攪拌し、下地膜形成剤1を調製した。インクジェット装置((株)マイクロジェット製、型番:LaboJet-600)、及びインクジェットヘッド(型番:IJHBS-1000)を用いて、細胞の付着抑制能を有する培養プレート(住友ベークライト株式会社、PrimeSurface(登録商標)プレート24F、型番: MS-90240)の培養表面に、下地膜形成剤を約0.75nL/spotで13spotずつ塗布した(スポット直径:500μm、スポット中心間間隔:600μm)。70℃の恒温乾燥機で1日間乾燥させて細胞凝集塊製造用基板1を調製した。ガンマ線を25kGy照射することで滅菌を行った。
<Example 1>
(Base film forming step)
To 0.0075 g of the polymer obtained in Synthesis Example 1, 98 g of pure water and 2.0 mL of 0.5 mg/mL vitronectin VTN-N (Gibco) were added and thoroughly stirred to prepare Undercoat Film Forming Agent 1. . Using an inkjet device (Microjet Co., model number: LaboJet-600) and an inkjet head (model number: IJHBS-1000), a culture plate (Sumitomo Bakelite Co., Ltd., PrimeSurface (registered trademark) ) Plate 24F, model number: MS-90240) was coated with 13 spots of a base film-forming agent at about 0.75 nL/spot (spot diameter: 500 μm, center-to-spot spacing: 600 μm). It was dried in a constant temperature dryer at 70° C. for one day to prepare a cell aggregate-producing substrate 1 . Sterilization was performed by irradiating 25 kGy of gamma rays.
(播種・培養工程)
 ヒト人工多能性幹細胞(hiPS細胞)から分化誘導された心筋細胞を純化精製後(Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017等参照)、凍結したストックを37℃に設定した水浴で解凍し、臨床用無血清培地であるAS301(味の素(株)製)で5×10cells/350μLとなるよう懸濁した。上記工程で得られた細胞凝集塊製造用基板の各wellに、細胞懸濁液をモールドの壁を伝わらせながらゆっくりと全量添加し、細胞が均等になるように手でゆっくり振とうした。その後、5%二酸化炭素濃度を保った状態で、37℃/COインキュベーター内にて静置した。24時間後、well全面の写真を撮影した。結果を図1に示す。その後、AS301培地1mLをゆっくりと追加し、さらに培養を続け、48時間後、72時間後にもwell全面の写真を撮影した。結果を図2及び図3に示す。
(Sowing/culturing process)
After purifying cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells) (Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017 etc.), the frozen stock was thawed in a water bath set at 37° C., and suspended in AS301 (Ajinomoto Co., Inc.), a clinical serum-free medium, to 5×10 5 cells/350 μL. To each well of the cell aggregate-producing substrate obtained in the above step, the entire amount of the cell suspension was slowly added along the wall of the mold, and gently shaken by hand so that the cells were evenly distributed. After that, it was allowed to stand in a 37° C./CO 2 incubator while maintaining a carbon dioxide concentration of 5%. After 24 hours, the entire surface of the well was photographed. The results are shown in FIG. After that, 1 mL of AS301 medium was slowly added, the culture was continued, and the whole surface of the wells was photographed after 48 hours and 72 hours. The results are shown in FIGS. 2 and 3. FIG.
 播種の72時間後には、直径およそ210μmの心筋球がスポット上に形成された。 72 hours after seeding, myocardial spheres with a diameter of approximately 210 μm were formed on the spots.
<調製例1>
 ポリ酢酸ビニル(日本酢ビ・ポバール(株)製 JMR-150L(登録商標)(重合度1480,けん化度22.7%))をエタノール/1-メトキシ-2-プロパノール(7/3質量比)で3mg/gの濃度となるように溶解させ、細胞の付着抑制能を有するコーティング膜形成用組成物を調製した。得られた組成物は透明かつ均一であった。
<Preparation Example 1>
Polyvinyl acetate (JMR-150L (registered trademark) manufactured by Nippon Acetate & Poval Co., Ltd. (degree of polymerization: 1480, degree of saponification: 22.7%)) was mixed with ethanol/1-methoxy-2-propanol (7/3 mass ratio). was dissolved at a concentration of 3 mg/g to prepare a coating film-forming composition having an ability to inhibit cell adhesion. The resulting composition was transparent and uniform.
<調製例2>
 上記合成例1で得られたポリマー0.0466gに、純水46.6gを加えて十分に攪拌し、希釈用組成物を調製した。
<Preparation Example 2>
To 0.0466 g of the polymer obtained in Synthesis Example 1, 46.6 g of pure water was added and thoroughly stirred to prepare a composition for dilution.
<作製例1>
(インクジェットによる細胞の付着抑制能を有する基板の作製)
 インクジェット装置(セイコーエプソン(株)製、R&D用インクジェット装置)、及びインクジェットヘッド(セイコーエプソン(株)製、Precision Core ヘッド S800-A1)を用いて、79mm×121mmのサイズを有するポリスチレン基板に、調製例1にて調製したコーティング膜形成用組成物を直径37mmの真円状に適量塗布した。70℃のオーブンで24時間乾燥し、細胞の付着抑制能を有する基板を作製した。
<Production example 1>
(Preparation of Substrate with Inhibitory Cell Adhesion Ability by Inkjet)
Using an inkjet device (manufactured by Seiko Epson Corporation, inkjet device for R & D) and an inkjet head (manufactured by Seiko Epson Corporation, Precision Core Head S800-A1), a polystyrene substrate having a size of 79 mm × 121 mm was prepared. An appropriate amount of the composition for forming a coating film prepared in Example 1 was applied in a perfect circle with a diameter of 37 mm. It was dried in an oven at 70° C. for 24 hours to produce a substrate capable of suppressing cell adhesion.
<実施例2>
(下地膜形成工程)
 上記調製例2で得られた希釈用組成物6.50gに、滅菌水34.20g、滅菌水で0.5mg/mLに希釈したRecombinant Human Vitronectin(Peprotech社製)2.61gを加えて十分に攪拌し、下地膜形成剤2を調製した。インクジェット装置(セイコーエプソン(株)製、R&D用インクジェット装置)、及びインクジェットヘッド(セイコーエプソン(株)製、Precision Core ヘッド S800-A1)を用いて、作製例1で作製した細胞の付着抑制能を有する基板の培養表面に、調製した下地膜形成剤2をスポット直径400μm、スポット中心間間隔500μmとなるように適量塗布した。70℃の恒温乾燥機で1日間乾燥させた。底なし6ウェルプレート(シーエステック社製)へ貼り付け、細胞凝集塊製造用基板2を調製した。ガンマ線を25kGy照射することで滅菌を行った。
<Example 2>
(Base film forming step)
To 6.50 g of the diluent composition obtained in Preparation Example 2 above, 34.20 g of sterile water and 2.61 g of Recombinant Human Vitronectin (manufactured by Peprotech) diluted to 0.5 mg/mL with sterile water were added and thoroughly mixed. The mixture was stirred to prepare a base film forming agent 2. Using an inkjet device (manufactured by Seiko Epson Corporation, inkjet device for R & D) and an inkjet head (manufactured by Seiko Epson Corporation, Precision Core head S800-A1), the ability to suppress adhesion of the cells prepared in Preparation Example 1 was evaluated. An appropriate amount of the prepared base film forming agent 2 was applied to the culture surface of the substrate so that the spot diameter was 400 μm and the spot center-to-center interval was 500 μm. It was dried in a constant temperature dryer at 70°C for 1 day. Affixed to a bottomless 6-well plate (manufactured by CES Tech) to prepare a substrate 2 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
 また同様にして、作製例1で作製した細胞の付着抑制能を有する基板の培養表面に、調製した下地膜形成剤2をスポット直径400μm、スポット中心間間隔500μmとなるように適量塗布した。室温で5分間乾燥後、再び塗布して重ね塗りを行った。70℃の恒温乾燥機で1日間乾燥させた。底なし6ウェルプレート(シーエステック社製)へ貼り付け、細胞凝集塊製造用基板3を調製した。ガンマ線を25kGy照射することで滅菌を行った。 Similarly, on the culture surface of the substrate having the ability to suppress adhesion of cells prepared in Preparation Example 1, an appropriate amount of the prepared base film forming agent 2 was applied so that the spot diameter was 400 μm and the spot center-to-center spacing was 500 μm. After drying for 5 minutes at room temperature, it was applied again to carry out overcoating. It was dried in a constant temperature dryer at 70°C for 1 day. Affixed to a bottomless 6-well plate (manufactured by CES Tech) to prepare a substrate 3 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
(播種・培養工程)
 ヒト人工多能性幹細胞(hiPS細胞:253G4株)から分化誘導された心筋細胞を純化精製後(Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama , et al. Stem Cell Reports 2017等参照)、凍結したストックを37℃に設定した水浴で解凍し、臨床用無血清培地であるAS301(味の素(株)製)に懸濁し、上記工程で得られた細胞凝集塊製造用基板2の各ウェルには4×10cells、細胞凝集塊製造用基板3の各ウェルには3×10cellsが播種されるように、細胞懸濁液をゆっくりと添加し、細胞が均等になるように手でゆっくり振とうした。その後、5%二酸化炭素濃度を保った状態で、37℃/COインキュベーター内にて静置した。72時間後、well全面の写真を撮影した。基板2及び3の結果をそれぞれ図4(A)及び(B)に示す。その後、AS301培地1mLをゆっくりと追加し、さらに培養を続け、播種してから96時間後にwell全面の写真を撮影した後、ピペッティングにより細胞を回収し、Cell3iMager duos((株)SCREENホールディングス製)を用いて細胞の直径を測定した。基板2及び3の結果をそれぞれ図5A及びBに示す。図4から明らかなように、播種後72時間後には、プレート底面からはがれて浮遊している部分もあるが、いずれのウェルにも均一な心筋細胞塊が形成されていることが観察された。また、播種の96時間後に回収した細胞は、いずれも直径150μm程度の心筋細胞球が形成されていた。
(Sowing/culturing process)
After purifying cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells: 253G4 strain) (Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017, etc.), thaw the frozen stock in a water bath set at 37 ° C, suspend it in AS301 (manufactured by Ajinomoto Co., Inc.), a clinical serum-free medium, and manufacture the cell aggregates obtained in the above process. The cell suspension was slowly added so that 4×10 6 cells were seeded in each well of the substrate 2 for producing cell aggregates, and 3×10 6 cells were seeded in each well of the substrate 3 for producing cell aggregates. It was gently shaken by hand to evenly distribute the mixture. After that, it was allowed to stand in a 37° C./CO 2 incubator while maintaining a carbon dioxide concentration of 5%. After 72 hours, the entire surface of the well was photographed. The results for substrates 2 and 3 are shown in FIGS. 4A and 4B, respectively. After that, 1 mL of AS301 medium was slowly added, and the culture was continued. After 96 hours from seeding, a photograph of the entire surface of the well was taken, and the cells were collected by pipetting. was used to measure cell diameter. The results for substrates 2 and 3 are shown in FIGS. 5A and B, respectively. As is clear from FIG. 4, 72 hours after seeding, some of the cardiomyocyte clusters were detached from the bottom of the plate and were floating, but uniform cardiomyocyte clusters were observed to be formed in all wells. Cardiomyocyte spheres with a diameter of about 150 μm were formed in all the cells collected 96 hours after seeding.
<実施例3>
(心筋細胞球に含まれる細胞の成熟度)
 上記と同様に凍結した心筋細胞ストックを37℃に設定した水浴で解凍し、臨床用無血清培地であるAS301(味の素(株)製)に懸濁し、上記工程で得られた細胞凝集塊製造用基板2及び3の各ウェルに、それぞれ4×10cellsが播種されるように、細胞懸濁液をゆっくりと添加し、細胞が均等になるように手でゆっくり振とうした。その後、5%二酸化炭素濃度を保った状態で、37℃/COインキュベーター内にて48時間、及び72時間静置した後、ピペッティングにより細胞を回収した。
 比較対象として、底面に小ディンプルを有する6穴培養プレート(Corning Elplasiaマルチウェルプレート cat.4440、以下「Elplasiaプレート」と称することがある)にも同様に心筋細胞を4×10個/wellとなるように播種し、上記と同様に48時間、及び2-3日ごとに半量培地交換しながら7日間培養した後ピペッティングにより細胞を回収した。本試験にはロットの異なる3種類の心筋凍結ストックを使用した(CM1、CM2、CM3とする)。細胞凝集塊製造用基板2の48時間後、及び72時間後の球の様子を図6Aに、またElplasiaプレートの48時間後及び7日後の球の様子を図6Bに示す。
 次に、回収した細胞塊からReliaPrepRNA Tissue Miniprep System(PROMEGA社製)を用いてtotal RNAを抽出し、Superscript first strand cDNA Synthesis kit(Invitrogen社製)を用いて逆転写したものを鋳型とし、TNNI1(Hs00913333、Thermo Fisher社製)、TNNI3(Hs165957、Thermo Fisher社製)、内在性コントロールとしてGAPDH(Hs02758991、Thermo Fisher社製)プライマーを用いて定量PCR解析をおこなった。各サンプルは比較Ct法で解析を行い、48時間培養したサンプルのTNNI3/TNNI1の比を1としたときの各サンプルの値をグラフ化した結果を図6Cに示す。48時間培養したサンプルとElplasiaプレートで7日間培養したサンプルではTNNI3/TNNI1の比がほぼ同じであったことから、細胞凝集塊製造用基板2及び3で作製した心筋球は短時間の培養で、Elplasiaプレートで7日間かけて作製した心筋球と同程度の成熟度であることが示された。
<Example 3>
(Maturity of cells contained in cardiomyocyte spheres)
The cardiomyocyte stock frozen in the same manner as above was thawed in a water bath set at 37°C, suspended in clinical serum-free medium AS301 (manufactured by Ajinomoto Co., Inc.), and used for the production of cell aggregates obtained in the above step. The cell suspension was slowly added to each well of Substrates 2 and 3 so that 4×10 6 cells were seeded, and the cells were gently shaken by hand to evenly spread the cells. After that, the cells were collected by pipetting after standing in a 37° C./CO 2 incubator for 48 hours and 72 hours while maintaining a carbon dioxide concentration of 5%.
For comparison, a 6-well culture plate with small dimples on the bottom (Corning Elplasia multiwell plate cat.4440, hereinafter sometimes referred to as "Elplasia plate") was also similarly plated with 4×10 6 cardiomyocytes/well. After culturing for 48 hours and for 7 days while exchanging half the medium every 2-3 days, the cells were collected by pipetting in the same manner as described above. Three different lots of myocardial frozen stocks were used in this test (referred to as CM1, CM2, and CM3). FIG. 6A shows the appearance of the spheres after 48 hours and 72 hours from the cell aggregate-producing substrate 2, and FIG. 6B shows the appearance of the spheres from the Elplasia plate after 48 hours and 7 days.
Next, total RNA was extracted from the collected cell mass using ReliaPrepRNA Tissue Miniprep System (manufactured by PROMEGA), reverse transcribed using Superscript first strand cDNA Synthesis kit (manufactured by Invitrogen) as a template, and TNNI1 ( Quantitative PCR analysis was performed using primers Hs00913333, Thermo Fisher), TNNI3 (Hs165957, Thermo Fisher), and GAPDH (Hs02758991, Thermo Fisher) as an endogenous control. Each sample was analyzed by the comparative Ct method, and the results of graphing the values of each sample when the TNNI3/TNNI1 ratio of the sample cultured for 48 hours was set to 1 are shown in FIG. 6C. The ratio of TNNI3/TNNI1 was almost the same between the sample cultured for 48 hours and the sample cultured on the Elplasia plate for 7 days. It was shown that the degree of maturity was similar to that of myocardial spheres prepared over 7 days on Elplasia plates.
<実施例4>
(下地膜形成工程)
 上記調製例2で得られた希釈用組成物1.00gに、滅菌水5.59g、iMatrix-221((株)マトリクソーム製)0.10gを加えて十分に攪拌し、下地膜形成剤3を調製した。インクジェット装置((株)マイクロジェット製、型番:LaboJet-600)、及びインクジェットヘッド(型番:IJHBS-1000)を用いて、作製例1で作製した細胞の付着抑制能を有する基板の培養表面に、上記で調製した下地膜形成剤2をスポット直径400μm、スポット中心間間隔500μmとなるように適量塗布した。70℃の恒温乾燥機で1日間乾燥させた。底なし6ウェルプレート(シーエステック社製)へ貼り付け、細胞凝集塊製造用基板4を調製した。ガンマ線を25kGy照射することで滅菌を行った。同様に下地膜形成剤3を塗布し、細胞凝集塊製造用基板5を調製した。ガンマ線を25kGy照射することで滅菌を行った。
<Example 4>
(Base film forming step)
To 1.00 g of the composition for dilution obtained in Preparation Example 2 above, 5.59 g of sterilized water and 0.10 g of iMatrix-221 (manufactured by Matrixome Co., Ltd.) were added and thoroughly stirred. prepared. Using an inkjet device (manufactured by Microjet Co., Ltd., model number: LaboJet-600) and an inkjet head (model number: IJHBS-1000), on the culture surface of the substrate having the ability to suppress adhesion of cells prepared in Preparation Example 1, An appropriate amount of the base film forming agent 2 prepared above was applied so that the spot diameter was 400 μm and the center-to-center interval of the spots was 500 μm. It was dried in a constant temperature dryer at 70°C for 1 day. Affixed to a bottomless 6-well plate (manufactured by CES Tech) to prepare a substrate 4 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays. A base film-forming agent 3 was applied in the same manner to prepare a substrate 5 for producing cell aggregates. Sterilization was performed by irradiating 25 kGy of gamma rays.
(播種・培養工程)
 ヒト人工多能性幹細胞(hiPS細胞:253G4株)から分化誘導された心筋細胞を純化精製後(Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama , et al. Stem Cell Reports 2017等参照)、凍結したストックを37℃に設定した水浴で解凍し、臨床用無血清培地であるAS301(味の素(株)製)に懸濁し、上記工程で得られた細胞凝集塊製造用基板4の各ウェルには4×10cellsと、3×10cellsが播種されるように、細胞凝集塊製造用基板5の各ウェルにも4×10cellsと、3×10cellsが播種されるように、細胞懸濁液をゆっくりと添加し、細胞が均等になるように手でゆっくり振とうした。その後、5%二酸化炭素濃度を保った状態で、37℃/COインキュベーター内にて静置した。72時間後、well全面の写真を撮影した。基板4及び5の細胞播種量ごとの結果をそれぞれ図7A乃至Dに示す。その後、AS301培地1mLをゆっくりと追加し、さらに培養を続け、播種してから96時間後にwell全面の写真を撮影した後、ピペッティングにより細胞を回収し、Cell3iMager duos((株)SCREENホールディングス製)を用いて細胞の直径を測定した。基板4及び5の細胞播種量ごとの結果をそれぞれ図8A乃至Dに示す。図7から明らかなように、播種後72時間後には、プレート底面からはがれて浮遊している部分もあるが、いずれのウェルにも均一な心筋細胞塊が形成されていることが観察された。また、播種の96時間後に回収した細胞は、いずれも直径120~160μm程度の心筋細胞球が形成されていた(図8)。
(Sowing/culturing process)
After purifying cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells: 253G4 strain) (Tohyama, et al. Cell Stem Cell 2013, Tohyama, et al. Cell Metabolism 2016, Tohyama, et al. Stem Cell Reports 2017, etc.), thaw the frozen stock in a water bath set at 37 ° C, suspend it in AS301 (manufactured by Ajinomoto Co., Inc.), a clinical serum-free medium, and manufacture the cell aggregates obtained in the above process. 4×10 6 cells and 3×10 6 cells are seeded in each well of the substrate 4 for producing cell aggregates, and 4×10 6 cells and 3×10 6 cells are seeded in each well of the substrate 5 for producing cell aggregates. The cell suspension was added slowly so that the cells were seeded and gently shaken by hand to evenly distribute the cells. After that, it was allowed to stand in a 37° C./CO 2 incubator while maintaining a carbon dioxide concentration of 5%. After 72 hours, the entire surface of the well was photographed. The results for each cell seeding amount for substrates 4 and 5 are shown in FIGS. 7A to 7D, respectively. After that, 1 mL of AS301 medium was slowly added, and the culture was continued. After 96 hours from seeding, a photograph of the entire surface of the well was taken, and the cells were collected by pipetting and Cell3iMager duos (manufactured by SCREEN Holdings Co., Ltd.). was used to measure cell diameter. The results for each cell seeding amount for Substrates 4 and 5 are shown in FIGS. 8A to 8D, respectively. As is clear from FIG. 7, 72 hours after seeding, some cells were separated from the bottom of the plate and were floating, but uniform cardiomyocyte clusters were observed to be formed in all wells. Cardiomyocyte spheres with a diameter of about 120 to 160 μm were formed in all the cells collected 96 hours after seeding (FIG. 8).
 本発明のhiPS細胞由来の心筋細胞凝集塊の製造方法により、動物由来の血清不含の培養条件であっても、心筋細胞の均一な接着を実現し、それに引き続き細胞凝集塊を製造できる。これより、再生医療分野で用いられる均質で高品質な心筋細胞凝集塊の量産化を達成できる。 According to the method for producing hiPS cell-derived cardiomyocyte aggregates of the present invention, uniform adhesion of cardiomyocytes can be achieved even under animal-derived serum-free culture conditions, and cell aggregates can be produced subsequently. As a result, mass production of homogeneous and high-quality cardiomyocyte aggregates for use in the field of regenerative medicine can be achieved.

Claims (9)

  1.  細胞の付着抑制能を有する基板上に、下記式(I):
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表されるモノマーから誘導される繰り返し単位を含むポリマー及び細胞接着性物質を含む、心筋細胞培養の下地膜を形成する工程、次いで心筋細胞を播種する工程を含む、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法。
    The following formula (I):
    Figure JPOXMLDOC01-appb-C000001

    [In the formula,
    U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. A method for producing cardiomyocyte aggregates derived from human induced pluripotent stem cells (hiPS cells), comprising the steps of forming a basement membrane and then seeding cardiomyocytes.
  2.  前記心筋細胞が、無血清培地中で培養される工程を含む、請求項1に記載の心筋細胞凝集塊の製造方法。 The method for producing cardiomyocyte aggregates according to claim 1, comprising a step of culturing the cardiomyocytes in a serum-free medium.
  3.  前記心筋細胞培養の下地膜が、前記基板上にスポット状に形成されている、請求項1又は2に記載の心筋細胞凝集塊の製造方法。 The method for producing a cardiomyocyte aggregate according to claim 1 or 2, wherein the basement membrane for culture of the cardiomyocytes is formed in the form of spots on the substrate.
  4.  前記スポットの直径が、50~5000μmである、請求項3に記載の心筋細胞凝集塊の製造方法。 The method for producing cardiomyocyte aggregates according to claim 3, wherein the spots have a diameter of 50 to 5000 μm.
  5.  上記ポリマーが、さらに式(II):
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     Rは、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表す]で表されるモノマーから誘導される繰り返し単位を含む、請求項1~4何れか1項に記載の心筋細胞凝集塊の製造方法。
    The polymer further has formula (II):
    Figure JPOXMLDOC01-appb-C000002

    [In the formula,
    R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms]. A method for producing cell aggregates.
  6.  前記ポリマーと、細胞接着性物質の重量比が、100:0.1~100:100である、請求項1~5何れか1項に記載の心筋細胞凝集塊の製造方法。 The method for producing cardiomyocyte aggregates according to any one of claims 1 to 5, wherein the weight ratio of the polymer to the cell adhesive substance is 100:0.1 to 100:100.
  7.  前記細胞接着性物質が、糖タンパク質を含む、請求項1~6何れか1項に記載の心筋細胞凝集塊の製造方法。 The method for producing cardiomyocyte aggregates according to any one of claims 1 to 6, wherein the cell adhesive substance contains glycoprotein.
  8.  細胞の付着抑制能を有する基板上に、下記式(Ia):
    Figure JPOXMLDOC01-appb-C000003

    [式中、
     Ua1及びUa2は、それぞれ独立して、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra1は、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表し、Ra2は、炭素原子数1~5の直鎖若しくは分岐アルキレン基を表す]で表される繰り返し単位を含むポリマー及び細胞接着性物質を含む、心筋細胞培養の下地膜を備える細胞凝集塊製造用基板に、心筋細胞を播種する工程を含む、ヒト人工多能性幹細胞(hiPS細胞)由来の心筋細胞凝集塊の製造方法。
    The following formula (Ia):
    Figure JPOXMLDOC01-appb-C000003

    [In the formula,
    U a1 and U a2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R a1 is a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms and R a2 represents a linear or branched alkylene group having 1 to 5 carbon atoms]. A method for producing a human induced pluripotent stem cell (hiPS cell)-derived cardiomyocyte aggregate, comprising the step of seeding cardiomyocytes on an aggregate-producing substrate.
  9.  上記ポリマーが、さらに式(IIa):
    Figure JPOXMLDOC01-appb-C000004

    [式中、
     Rは、水素原子又は炭素原子数1~5の直鎖若しくは分岐アルキル基を表す]で表される繰り返し単位を含む、請求項8に記載の心筋細胞凝集塊の製造方法。
    The polymer further has the formula (IIa):
    Figure JPOXMLDOC01-appb-C000004

    [In the formula,
    R b represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms].
PCT/JP2022/026773 2021-07-05 2022-07-05 Cell culture method WO2023282273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533156A JPWO2023282273A1 (en) 2021-07-05 2022-07-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111759 2021-07-05
JP2021-111759 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282273A1 true WO2023282273A1 (en) 2023-01-12

Family

ID=84801741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026773 WO2023282273A1 (en) 2021-07-05 2022-07-05 Cell culture method

Country Status (2)

Country Link
JP (1) JPWO2023282273A1 (en)
WO (1) WO2023282273A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292957A (en) * 1992-04-21 1993-11-09 Kurabo Ind Ltd Coating composition for culturing adhesive cell
JP2014162865A (en) * 2013-02-26 2014-09-08 National Cerebral & Cardiovascular Center Production method of temperature-responsive polymer, temperature-responsive polymer, production method of cell culture vessel, and cell culture vessel
WO2014196650A1 (en) * 2013-06-07 2014-12-11 日産化学工業株式会社 Ion complex material having function of inhibiting adhesion of biological matter and production method for same
JP2017055744A (en) * 2015-09-18 2017-03-23 国立研究開発法人国立循環器病研究センター Method for producing encapsulated cell structure, and encapsulated cell structure
WO2020040247A1 (en) * 2018-08-24 2020-02-27 日産化学株式会社 Method for producing polymer used for cell culture base film, and cell culture vessel
JP2021091872A (en) * 2019-10-17 2021-06-17 東洋インキScホールディングス株式会社 Biocompatible resin, culture medium additive for cells, culture medium for cell culture, and coating agent for cell culture including the same, and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292957A (en) * 1992-04-21 1993-11-09 Kurabo Ind Ltd Coating composition for culturing adhesive cell
JP2014162865A (en) * 2013-02-26 2014-09-08 National Cerebral & Cardiovascular Center Production method of temperature-responsive polymer, temperature-responsive polymer, production method of cell culture vessel, and cell culture vessel
WO2014196650A1 (en) * 2013-06-07 2014-12-11 日産化学工業株式会社 Ion complex material having function of inhibiting adhesion of biological matter and production method for same
JP2017055744A (en) * 2015-09-18 2017-03-23 国立研究開発法人国立循環器病研究センター Method for producing encapsulated cell structure, and encapsulated cell structure
WO2020040247A1 (en) * 2018-08-24 2020-02-27 日産化学株式会社 Method for producing polymer used for cell culture base film, and cell culture vessel
JP2021091872A (en) * 2019-10-17 2021-06-17 東洋インキScホールディングス株式会社 Biocompatible resin, culture medium additive for cells, culture medium for cell culture, and coating agent for cell culture including the same, and use thereof

Also Published As

Publication number Publication date
JPWO2023282273A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2020040247A1 (en) Method for producing polymer used for cell culture base film, and cell culture vessel
US11441120B2 (en) Cell culture substrate
US11499136B2 (en) Cell culture substrate
JP6447787B2 (en) Cell culture substrate
EP3719113A1 (en) Cell culture container capable of long-term culture, and method for manufacturing same
WO2023282273A1 (en) Cell culture method
US20230093822A1 (en) Cell culture container capable of controlling cell aggregation rate
WO2023282253A1 (en) Cell culture base material for serum-free medium
WO2023027079A1 (en) Cell structure production device
JP2023008746A (en) Basement material for cell culture in serum-free medium
WO2022259998A1 (en) Composition for forming coating film, coating film and cell culture container
US20230116517A1 (en) Method for producing cell aggregates
JP5674255B2 (en) Cell culture substrate evaluation method
WO2023027050A1 (en) Cell structure production container, manufacturing method for cell structure production container, cell structure production method, and base material for use in cell structure production container
WO2020166605A1 (en) Method for producing polymer compatible with biomaterials
US20230242869A1 (en) Coating film having compatibility with biological substance containing block copolymer
TW202216987A (en) Method for producing cartilage tissue
TW201602260A (en) Ion complex material having function for preventing adherence to biological material
JP6229503B2 (en) Temperature-responsive cell culture substrate and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533156

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE