JPH05308953A - Cell culture membrane - Google Patents

Cell culture membrane

Info

Publication number
JPH05308953A
JPH05308953A JP14689492A JP14689492A JPH05308953A JP H05308953 A JPH05308953 A JP H05308953A JP 14689492 A JP14689492 A JP 14689492A JP 14689492 A JP14689492 A JP 14689492A JP H05308953 A JPH05308953 A JP H05308953A
Authority
JP
Japan
Prior art keywords
hollow fiber
culture
coating layer
cells
hydrophilic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14689492A
Other languages
Japanese (ja)
Inventor
Hajime Yoshida
一 吉田
Norio Inema
徳生 稲摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP14689492A priority Critical patent/JPH05308953A/en
Publication of JPH05308953A publication Critical patent/JPH05308953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a porous cell culture membrane capable of readily culturing a large amount of high-density attachment cells demanding substrate function in culture. CONSTITUTION:The surface of a porous synthetic substrate is provided with a basic functional group having >=4.0pKa and a hydrophilic coating layer substantially covering the substrate to give a cell culture membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細胞培養に好適な多孔
質の細胞培養膜及びそれを用いた細胞培養器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous cell culture membrane suitable for cell culture and a cell incubator using the same.

【0002】[0002]

【従来技術とその問題点】近年遺伝子工学の進歩に伴
い、工業的に動物細胞を大量培養する必要性が急速に高
まっている。動物細胞の大量培養法としてはタンク培養
法、ローラーボトル法など種々の方法が利用されてい
る。この中で特にナゼーク(R.A.Knazek、S
cience,178:65,1972)らによる中空
糸を用いた細胞培養法の報告以来、中空糸を用いた細胞
培養(以下中空糸培養法と称す)が、優れた大量培養法
として注目されている。
2. Description of the Related Art With the recent advances in genetic engineering, the need for industrial large-scale culture of animal cells is rapidly increasing. Various methods such as a tank culture method and a roller bottle method are used as a large-scale culture method for animal cells. Among these, especially Nazek (RA Knazek, S
Science, 178: 65, 1972) et al., reported cell culture method using hollow fibers (hereinafter referred to as hollow fiber culture method) as an excellent large-scale culture method. ..

【0003】中空糸培養法は、限られた容積中に物質交
換に優れた透水性の膜表面を多く確保でき、よって栄養
素や酵素の供給並びに生成物や老廃物除去を、極めて効
果的に行えるのである。ここで用いられる中空糸膜は付
着細胞の培養においては、物質交換と同時に細胞の増殖
の足場としての基質としての役割も果たす必要がある。
そのため中空糸培養用中空糸膜には、大量且つ高密度に
増殖した細胞に対して十分な量の栄養素を供給して老廃
物を除去し得る高い透液性に加えて、細胞の生育の場と
しての優れた基質機能が要求される。
The hollow fiber culture method can secure a large amount of a water-permeable membrane surface excellent in substance exchange in a limited volume, and thus can very effectively supply nutrients and enzymes and remove products and waste products. Of. In the culture of adherent cells, the hollow fiber membranes used here need to play a role as a substrate as a scaffold for cell proliferation as well as substance exchange.
Therefore, the hollow fiber membrane for hollow fiber culture has a high liquid permeability capable of removing a waste product by supplying a sufficient amount of nutrients to a large number and high density of grown cells, and also a place for cell growth. Excellent substrate function is required.

【0004】中空糸培養法にこれまで利用されてきた中
空糸膜としては、ポリスルフォン製中空糸、セルロース
製中空糸、ポリオレフィン製の多孔質合成支持体表面に
親水性被覆層を有する中空糸等が知られている。しかし
これらの中空糸は細胞の接着・増殖の場としての基質機
能が低く、細胞の接着・増殖性に優れた、基質機能の高
い中空糸が求められている。
Hollow fiber membranes that have been used in the hollow fiber culture method so far include polysulfone hollow fibers, cellulose hollow fibers, and hollow fibers having a hydrophilic coating layer on the surface of a polyolefin porous synthetic support. It has been known. However, these hollow fibers have a low substrate function as a place for cell adhesion / proliferation, and there is a demand for hollow fibers having excellent cell adhesion / proliferation properties and high substrate functions.

【0005】ところでタンク培養用架橋デキストラン製
ビーズについては、3級或いは4級アミノ基などの陽性
荷電を有する官能基を保持させることによって、基質機
能が高められることが知られている(特開53−628
89)。これらの研究によると基質として好適な荷電容
量は、0.01以上0.45meq/ml以下である
(膨潤率を実施例のセファデックスG−50と同様10
ml/gとして計算)。
By the way, it is known that the crosslinked dextran beads for tank culture have a substrate function enhanced by retaining a functional group having a positive charge such as a tertiary or quaternary amino group (JP-A-53). -628
89). According to these studies, the charge capacity suitable as a substrate is 0.01 or more and 0.45 meq / ml or less (the swelling rate is 10 as in the case of Sephadex G-50).
Calculated as ml / g).

【0006】表面に親水性被覆層を有するポリオレフィ
ン製中空糸膜は、透液性が高く、このため増殖に基質を
必要としない浮遊性の細胞では非常に高い増殖性能を示
すこと、ポリスルホン等の表面が疎水性の中空糸膜と異
なり、培養に先立っての中空糸の湿潤化が容易である等
の長所を有している。細胞生育の基質としての機能につ
いても子宮頸癌細胞などいくつかの細胞で優れた機能を
発揮することが知られている。ところがこの基質として
の機能は、他の中空糸素材に比べて勝ってはいるもの
の、現在培養されている種々のいずれの細胞に対しても
優れた基質機能を示すものではなかった。特に遺伝子工
学に多く利用されているチャイニーズハムスター細胞
(CHO細胞)の高密度培養はできなかった。
A polyolefin hollow fiber membrane having a hydrophilic coating layer on its surface has a high liquid permeability, and therefore exhibits extremely high growth performance in floating cells that do not require a substrate for growth. Unlike a hollow fiber membrane whose surface is hydrophobic, it has advantages such as easy moistening of the hollow fiber prior to culturing. Regarding the function as a substrate for cell growth, it is known that some cells such as cervical cancer cells exhibit excellent functions. However, although its function as a substrate is superior to that of other hollow fiber materials, it did not show an excellent substrate function for any of various cells currently cultured. Especially, high density culture of Chinese hamster cells (CHO cells), which are widely used in genetic engineering, could not be performed.

【0007】[0007]

【問題点を解決しようとする手段】本発明者等は親水性
被覆層を有するポリオレフィン等の中空糸の機能を高め
るべく研究した結果、本発明を成すにいたった。即ち、
多孔質の疎水性支持体表面に親水性被覆層と、pKaが
4.0以上の塩基性官能基を0.5以上50μeq/m
l以下有する事を特徴とする細胞培養中空糸膜である。
The present inventors have completed the present invention as a result of researches for enhancing the function of a hollow fiber such as polyolefin having a hydrophilic coating layer. That is,
A hydrophilic coating layer on the surface of the porous hydrophobic support and a basic functional group having a pKa of 4.0 or more, 0.5 or more and 50 μeq / m
A cell culture hollow fiber membrane characterized by having 1 or less.

【0008】本発明で言う中空糸の基質機能は、架橋デ
キストラン製ビーズで言う、ビーズへの培養細胞の接着
性或いはビーズ上での培養細胞の伸展性としても示せる
が、中空糸培養法では特に接着依存性細胞が立体的に、
且つ高密度に培養できる機能が重要である。本発明者ら
はチャイニーズハムスター由来CHO細胞を用いて、公
知の中空糸培養法にて培養するとき、細胞の生育空間当
たりの細胞密度が1×107 細胞/mlで培養を開始
し、14日後に1×108 細胞/mlに到達し得る時、
基質機能が良好であるとした。
The substrate function of the hollow fiber referred to in the present invention can be shown also as the adhesion of the cultured cells to the beads or the extensibility of the cultured cells on the beads, which is referred to as the crosslinked dextran beads. The adhesion-dependent cells are three-dimensional,
In addition, the function of high-density culture is important. The present inventors started culturing Chinese hamster-derived CHO cells by a known hollow fiber culturing method at a cell density of 1 × 10 7 cells / ml per growth space, and cultivated for 14 days. Later when 1 × 10 8 cells / ml can be reached,
The substrate function was considered good.

【0009】本発明で言う多孔質合成支持体とは、合成
高分子材料からなる中空糸状の多孔質膜であって、湿式
相転換法、溶融相分離法、溶融紡糸延伸開孔法など公知
の方法により得られる。この中で結晶性高分子を中空糸
状に成形した後、冷延伸により結晶ラメラ間を開裂さ
せ、更に熱延伸により孔径を拡大させて得られるスタッ
クドラメラとミクロフィブリルとからなる多孔質構造と
する延伸開孔法が、合成高分子材料に溶剤その他の添加
物を用いないため、残留溶剤などの問題が無く好まし
い。
The porous synthetic support referred to in the present invention is a hollow fiber-like porous membrane made of a synthetic polymer material, which is known in the art such as a wet phase inversion method, a melt phase separation method, a melt spinning drawing and opening method. Obtained by the method. After forming the crystalline polymer into a hollow fiber shape in this, the crystalline lamella is cleaved by cold drawing, and the pore size is expanded by hot drawing to obtain a porous structure composed of stacked lamellae and microfibrils. The stretch-opening method is preferable because it does not use a solvent or other additives in the synthetic polymer material and thus does not have a problem of residual solvent.

【0010】多孔質合成支持体に用いられる合成高分子
材料には、ポリエチレン、ポリプロピレン等のポリオレ
フィン、ポリメチルメタアクリレート等のアクリル系高
分子材料、ポリスチレン、ポリスルホン、テフロン等が
例示できる。この中で特にポリオレフィンが延伸開孔法
で目的とする孔径が容易に得られ、好ましい。
Examples of synthetic polymer materials used for the porous synthetic support include polyolefins such as polyethylene and polypropylene, acrylic polymer materials such as polymethylmethacrylate, polystyrene, polysulfone, and Teflon. Of these, polyolefin is particularly preferable because the desired pore size can be easily obtained by the stretch opening method.

【0011】本多孔質合成支持体の表面に有する塩基性
官能基とは、溶液中で陽性電荷を示す官能基を言い、含
窒素官能基が好ましい。これにはアミン類、及びアミン
誘導体等が含まれ、3級及び4級アミノ基があげられる
が、好ましくはpKaが4.0以上のものがよい。特に
好ましくは次式(イ)で現わされるものである。
The basic functional group on the surface of the present porous synthetic support means a functional group which exhibits a positive charge in a solution, and a nitrogen-containing functional group is preferable. These include amines, amine derivatives and the like, and examples thereof include tertiary and quaternary amino groups, but those having a pKa of 4.0 or more are preferred. Particularly preferably, it is represented by the following formula (a).

【0012】[0012]

【化1】 [Chemical 1]

【0013】置換基であるR1、R2、R3に特に制限
は無く、任意の置換基を与えることができるが、どこか
の置換基が重合の主鎖と共有結合によって接続されてい
るものである。例えば水素、メチル基、エチル基、プロ
ピル基、フェニル基、ベンジル基などの炭化水素置換基
であっても良いし、メチロール、エチロールなどの異核
種の原子を含んだ置換基でも良く、結果として塩基性官
能基のpKaが4.0以上となっていれば良い。R1、
R2、R3は2つ以上で環状となっているものでもよ
く、例えばピリジン、イミダゾール、ピペリジン、ピロ
ール、ピリミジンなどがこれに相当する。
There is no particular limitation on the substituents R1, R2 and R3, and any substituent can be provided, but any substituent is connected to the main chain of polymerization by a covalent bond. .. For example, it may be a hydrocarbon substituent such as hydrogen, a methyl group, an ethyl group, a propyl group, a phenyl group, and a benzyl group, or a substituent containing an atom of a heteronuclide such as methylol and ethylol, resulting in a base. It is sufficient that the pKa of the sexual functional group is 4.0 or more. R1,
Two or more R2 and R3 may be cyclic, and examples thereof include pyridine, imidazole, piperidine, pyrrole, and pyrimidine.

【0014】塩基性官能基は、支持体或いは親水性被覆
層を構成する高分子鎖の側鎖に存在する必要は必ずしも
なく、主鎖を形成するものでも良い。しかし、親水性被
覆層に塩基性官能基を側鎖として導入する方が製造法上
容易である。塩基性官能基の具体例をモノマー単位で表
現してあげると、アリルアミン、ジアリルアミン、N,
N−ジメチルアリルアミン、N,N−ジアリルペピラジ
ン、N,N−ジアリルアニリン、N,N−ジアリルメラ
ミン、アミノスチレン、N,N−ジメチルアミノスチレ
ン、N,N−ジエチルアミノスチレン、ビニルベンジル
アミン、ビニルフェネチルアミン、N,N−ジメチルビ
ニルフェネチルアミン、N,N−ジエチルビニルフェネ
チルアミン、N−プロピルビニルフェネチルアミン、ビ
ニルピリジン、2−メチル−5−ビニルピリジン、2−
エチル−5−ビニルピリジン、2−ビニルキノリン、2
−ビニルイミダゾール、4−ビニルイミダゾール、ビニ
ルピラゾリン、ビニルピラジン、4−ビニルピリミジ
ン、ビニルアミン、ビニルカルバゾール、エチレンイミ
ン、N−フェニルエチレンイミン、N,N−ジエチル−
N−ビニルフェネチルアミン等があり、これらのオリゴ
マー或いはポリマーでも良い。この中で、理由は定かで
はないが、特にジメチルアミノ基、ジエチルアミノ基、
トリメチルアミノ基、トリエチルアミノ基を成す物が特
に好ましい結果が得られた。
The basic functional group does not necessarily have to be present on the side chain of the polymer chain constituting the support or the hydrophilic coating layer, and may form the main chain. However, it is easier in terms of production method to introduce a basic functional group as a side chain into the hydrophilic coating layer. Specific examples of the basic functional group are represented by monomer units: allylamine, diallylamine, N,
N-dimethylallylamine, N, N-diallylpepyrazine, N, N-diallylaniline, N, N-diallylmelamine, aminostyrene, N, N-dimethylaminostyrene, N, N-diethylaminostyrene, vinylbenzylamine, vinyl Phenethylamine, N, N-dimethylvinylphenethylamine, N, N-diethylvinylphenethylamine, N-propylvinylphenethylamine, vinylpyridine, 2-methyl-5-vinylpyridine, 2-
Ethyl-5-vinyl pyridine, 2-vinyl quinoline, 2
-Vinylimidazole, 4-vinylimidazole, vinylpyrazoline, vinylpyrazine, 4-vinylpyrimidine, vinylamine, vinylcarbazole, ethyleneimine, N-phenylethyleneimine, N, N-diethyl-
There are N-vinylphenethylamine and the like, and oligomers or polymers thereof may be used. Of these, the reason is not clear, but especially dimethylamino group, diethylamino group,
Particularly preferable results have been obtained with a product having a trimethylamino group or a triethylamino group.

【0015】上記塩基性官能基は、支持体或いは親水性
被覆層に放射線或いは電子線などによるグラフト法によ
って導入する方法、支持体或いは親水性被覆層が有す
る、活性水素を有する求核反応基と置換及び/または付
加反応できる活性基と、或いは支持体或いは親水性被覆
層に化学的に導入した活性基と、化学的に共有結合させ
ることによって導入する方法、或いは塩基性官能基を有
する重合性化合物と親水性の重合性化合物とを含む共重
合体を被覆することにより、得られる。このうち特に親
水性被覆層に塩基性官能基をグラフトする方法、親水性
被覆層に導入した活性基と化学的に共有結合させる方法
が、親水性被覆層表面におそらく外向きに塩基性官能基
が得られるためより好ましい。導入する塩基性官能基量
は中性塩分解法で測定する時、中空糸膜の細孔容積を含
む膜容積当たり0.5以上50μeq/ml以下である
ことが好ましい。更に、特に好ましい範囲として1以上
10μeq/ml以下の範囲があげられる。
The above-mentioned basic functional group is a method in which it is introduced into the support or the hydrophilic coating layer by a grafting method such as radiation or electron beam, and a nucleophilic reactive group having an active hydrogen in the support or the hydrophilic coating layer. A method in which an active group capable of substitutional and / or addition reaction or an active group chemically introduced into a support or a hydrophilic coating layer is chemically covalently bonded, or a polymerizable functional group having a basic functional group is introduced. It is obtained by coating a copolymer containing a compound and a hydrophilic polymerizable compound. Of these, the method of grafting a basic functional group onto the hydrophilic coating layer and the method of chemically covalently bonding with an active group introduced into the hydrophilic coating layer are probably the basic functional groups outwardly facing the hydrophilic coating layer. Is more preferable because The amount of the basic functional group to be introduced is preferably 0.5 or more and 50 μeq / ml or less per membrane volume including the pore volume of the hollow fiber membrane when measured by the neutral salt decomposition method. Further, a particularly preferable range is a range of 1 or more and 10 μeq / ml or less.

【0016】本発明でいう親水性被覆層とは、水溶液と
の親和性をよくするために、親水性の重合体からなる被
覆層を、支持体の表面に有していることをいう。細胞培
養膜は、膜の細孔に気泡が残ることによって本来細胞培
養膜が有する培養液の透過性が発揮されない危険性と、
培養液中の蛋白質が非特異的に吸着して細胞に十分に供
給されない危険性とを避けるために必要である。この親
水性被覆層の親水性の程度は、これらの危険性が避けら
れる程度で有れば良く、あえて親水性の特に好ましい範
囲を示せば、水中におけるシート状或いはフィルム状に
した個体表面上の空気泡の25℃での接触角で110度
以下である。
The hydrophilic coating layer in the present invention means that the surface of the support has a coating layer made of a hydrophilic polymer in order to improve the affinity with an aqueous solution. The cell culture membrane has a risk that the permeability of the culture solution originally possessed by the cell culture membrane is not exhibited due to the presence of air bubbles in the pores of the membrane,
It is necessary to avoid the risk that the protein in the culture solution will be nonspecifically adsorbed and not sufficiently supplied to cells. The hydrophilicity of the hydrophilic coating layer may be such that these dangers can be avoided, and if a particularly preferable range of hydrophilicity is shown, air bubbles on the solid surface of a sheet or film in water are shown. The contact angle at 25 ° C. is 110 degrees or less.

【0017】親水性被覆層は培養中の剥離を防ぐために
重合体であることが望ましい。親水性被覆層の具体例を
上げると、重合体単位を単量体としての名前で例示すれ
ば、ヒドロキシスチレン、ヒドロキシメチルスチレン、
ビニルアルコール、2−ヒドロキシエチルアクリレー
ト、2−ヒドロキシエチルメタクリレート、ビニルアミ
ン、ジエチルアミノエチルスチレン、ジエチルアミノエ
チルメタクリレート、メトキシトリエチレングリコール
メタクリレート、ジメチルアミノエチル(メタ)アクリ
レートセグメント化ポリウレタン、セグメント化ポリエ
ステル等のブロック共重合体、ポリエチレンオキサイド
鎖を有する単量体と他の重合単量体のようなグラフト共
重合体、エチレン−ビニルアルコール、ポリエステル、
ポリエチレングリコール、等が例示できる。特に重合体
中にヒドロキシル基を有していることが好ましい。ヒド
ロキシル基の重合体中における結合様式に特に制限はな
い。これらの内エチレン−ビニルアルコール、ポリエチ
レングリコール、メトキシトリエチレングリコールメタ
クリレートが親水性の効果の点で好ましく、特にエチレ
ン−ビニルアルコールが塩基性官能基の導入に際して活
性基を導入し易く、且つ塩基性官能基導入時に剥離によ
る親水性の低下が少ないためより好ましい。
The hydrophilic coating layer is preferably a polymer in order to prevent peeling during culture. As specific examples of the hydrophilic coating layer, if the polymer unit is exemplified by the name as a monomer, hydroxystyrene, hydroxymethylstyrene,
Block copolymerization of vinyl alcohol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, vinylamine, diethylaminoethylstyrene, diethylaminoethyl methacrylate, methoxytriethylene glycol methacrylate, dimethylaminoethyl (meth) acrylate segmented polyurethane, segmented polyester, etc. Polymers, graft copolymers such as monomers having polyethylene oxide chains and other polymerized monomers, ethylene-vinyl alcohol, polyester,
Examples thereof include polyethylene glycol. In particular, it is preferable that the polymer has a hydroxyl group. There is no particular limitation on the bonding mode of the hydroxyl group in the polymer. Of these, ethylene-vinyl alcohol, polyethylene glycol, and methoxytriethylene glycol methacrylate are preferable from the viewpoint of hydrophilicity, and particularly ethylene-vinyl alcohol is a functional group that easily introduces an active group when a basic functional group is introduced. It is more preferable because the hydrophilicity is less likely to decrease due to peeling when introducing a group.

【0018】親水性被覆層は、上記重合体単位の単独重
合体であってもよく、或いは2つ以上の共重合体であっ
ても良く、線状重合体、グラフト重合体、架橋重合体な
どの重合形態には特に関係は無い。
The hydrophilic coating layer may be a homopolymer of the above-mentioned polymer units, or may be a copolymer of two or more units, such as a linear polymer, a graft polymer or a crosslinked polymer. There is no particular relation to the polymerization form of.

【0019】親水性被覆層を得る方法には、被覆層を形
成する化合物を溶解した液中に浸漬、或いは該液を噴霧
することによってコーティングする方法、放射線や電子
線を用いたグラフト法により多孔質合成支持体表面に共
有結合する方法、或いは化学的方法により多孔質合成支
持体表面の官能基を介して共有結合する方法などがあ
る。この中で特にコーティングする方法が工業的に容易
に行え、有利である。ここで言うコーティング法は、被
覆層を形成する化合物中に重合性化合物も共存させ、コ
ーティング後に架橋させるものであっても良い。こうし
て得られた被覆層の量、即ち被覆率は、細胞培養膜乾燥
重量あたりの被覆層の重量の割合で現す時、0.1%以
上20%以下であることが好ましい。特に好ましくは2
%以上15%以下である。
The hydrophilic coating layer can be obtained by dipping in a liquid in which the compound forming the coating layer is dissolved or by spraying the liquid, or by a grafting method using radiation or electron beam. There is a method of covalently bonding to the surface of the porous synthetic support or a method of covalently bonding via a functional group on the surface of the porous synthetic support by a chemical method. Among them, the coating method is particularly advantageous because it can be easily carried out industrially. The coating method referred to here may be a method in which a polymerizable compound is also allowed to coexist in the compound forming the coating layer and crosslinking is performed after coating. The amount of the coating layer thus obtained, that is, the coating rate, is preferably 0.1% or more and 20% or less when expressed by the ratio of the weight of the coating layer to the dry weight of the cell culture membrane. Particularly preferably 2
% Or more and 15% or less.

【0020】本発明で言う塩基性官能基と親水性被覆層
とを表面に有する多孔質合成支持体からなる中空糸膜
は、バブルポイント法によって求められる最大孔径が
0.01μm以上10μm以下、より好ましくは0.0
5μm以上1μm以下であり、且つ/または水銀圧入法
により求められる平均孔径が0.001μm以上1μm
以下のものをいう。膜構造中に占める空孔部の容積の割
合、即ち空孔率は10%以上90%以下のものが好まし
く、特に40%以上80%以下のものが優れている。更
に湿潤状態の中空糸内部から外部への蒸留水の透過性、
即ち透水性は0.05L/hr・m2 ・mmHg以上で
あり、好ましくは0.5L/hr・m2 ・mmHg以
上、更に好ましくは2L/hr・m2 ・mmHg以上で
ある。この時、透水性の上限は特に制限する必要はない
が、特に高い透水性を有する場合、膜強度の低下を引き
起こす可能性があることより、30L/hr・m2 ・m
mHg以下が取扱い上好ましい。本発明の中空糸膜表面
の親水性は、湿潤状態の該中空糸の透水性を100%と
した時の、乾燥状態の該中空糸の蒸留水の透過性の割合
(%)、即ち親水化度によって示され、5%以上である
ことが好ましい。
The hollow fiber membrane composed of a porous synthetic support having a basic functional group and a hydrophilic coating layer on the surface, as referred to in the present invention, has a maximum pore size determined by the bubble point method of 0.01 μm or more and 10 μm or less Preferably 0.0
5 μm or more and 1 μm or less, and / or the average pore size determined by mercury porosimetry is 0.001 μm or more and 1 μm
Refers to the following: The volume ratio of the pores in the film structure, that is, the porosity is preferably 10% or more and 90% or less, and particularly preferably 40% or more and 80% or less. Furthermore, the permeability of distilled water from the inside of the hollow fiber in the wet state to the outside,
That water permeability is at 0.05L / hr · m 2 · mmHg or more, preferably 0.5L / hr · m 2 · mmHg or more, more preferably 2L / hr · m 2 · mmHg or more. At this time, the upper limit of the water permeability does not have to be particularly limited, but when it has a particularly high water permeability, it may cause a decrease in the film strength. Therefore, 30 L / hr · m 2 · m.
It is preferably mHg or less for handling. The hydrophilicity of the surface of the hollow fiber membrane of the present invention is the ratio (%) of the permeability of distilled water of the hollow fiber in the dry state, that is, the hydrophilicity, when the water permeability of the hollow fiber in the wet state is 100%. It is indicated by the degree and is preferably 5% or more.

【0021】本発明で言う中空糸を充填した培養器と
は、培養器内が中空糸膜によって、少なくとも1つ以上
の細胞の生育する空間と、少なくとも1つ以上の培養液
の流動する空間とに仕切られており、それぞれの空間に
各々1つ以上の空間内容物の取り出し及び/または取り
入れ口を有するものをいう。これら中空糸を充填した培
養器のうち、培養器の総内容積に対する中空糸外容積の
割合が20%以上80%以下のものが好ましく、より好
ましい範囲をあえてあげると30%以上70%以下が特
に優れている。
The incubator filled with hollow fibers as referred to in the present invention means a space in which at least one or more cells grow and a space in which at least one or more culture fluid flows, due to the hollow fiber membrane in the incubator. And each of the spaces has one or more space contents withdrawal and / or intake ports. Among the incubators filled with these hollow fibers, those having a ratio of the outer volume of the hollow fibers to the total inner volume of the incubator of 20% or more and 80% or less are preferable, and 30% or more and 70% or less are given in a more preferable range. Especially excellent.

【0022】[0022]

【発明の効果】本発明である多孔質合成支持体表面に、
塩基性官能基と該支持体を実質的に被覆する親水性被覆
層とを有する事を特徴とする細胞培養用中空糸膜、及び
該中空糸膜を充填した培養器によって、培養において基
質機能を要求する付着性細胞を高密度に且つ容易に大量
培養することができるようになる。
EFFECT OF THE INVENTION On the surface of the porous synthetic support of the present invention,
A hollow fiber membrane for cell culture characterized by having a basic functional group and a hydrophilic coating layer that substantially coats the support, and a culture vessel filled with the hollow fiber membrane have a substrate function in culture. The required adherent cells can be easily mass-cultured in high density.

【0023】[0023]

【実施例】【Example】

対照例 高密度ポリエチレン(密度0.968、MI値5.5、
商品名ハイゼックス2208J)を円形2重紡口を用い
て紡口温度150℃で紡糸し、得られた中空糸を延伸し
て開孔して中空糸状ポリエチレン多孔質構造の支持膜を
得た。この支持膜を、エチレン含量29モル%のエチレ
ン・ビニルアルコール共重合体を75容量%のエタノー
ル水溶液に1.0重量%溶解した液に浸漬し、エチレン
・ビニルアルコール共重合体の親水性被覆層を有するポ
リエチレン中空糸を得た。このポリエチレン中空糸は、
内径330μm、膜厚50μm、バブルポイント法によ
る平均孔径が0.20μm、透水性12L/hr・m2
・mmHg、親水化度83%、浸漬処理前後での重量変
化より求めた被覆層の量は3.2×10-3g/m2 であ
った。
Control Example High-density polyethylene (density 0.968, MI value 5.5,
The product name Hi-Zex 2208J) was spun at a spinneret temperature of 150 ° C. using a circular double spinneret, and the obtained hollow fiber was stretched and opened to obtain a support membrane having a hollow fiber-like polyethylene porous structure. This support membrane was immersed in a solution in which an ethylene / vinyl alcohol copolymer having an ethylene content of 29 mol% was dissolved in a 75% by volume aqueous ethanol solution at 1.0% by weight to obtain a hydrophilic coating layer of the ethylene / vinyl alcohol copolymer. A polyethylene hollow fiber having This polyethylene hollow fiber
Inner diameter 330 μm, film thickness 50 μm, average pore size by bubble point method 0.20 μm, water permeability 12 L / hr · m 2
The amount of the coating layer was 3.2 × 10 −3 g / m 2 , which was determined by mmHg, the degree of hydrophilicity was 83%, and the weight change before and after the immersion treatment.

【0024】[0024]

【実施例1】対照例で得られた親水性被覆層を有するポ
リエチレン中空糸(10cm、800本)を、ジメチル
スルフォキサイド5容、エピクロルヒドリン4容、10
N水酸化ナトリウム水溶液1容の混合液100ml中
で、40℃、2時間反応してエポキシ基を導入した。次
に10%ジエチルアミン水溶液中で、40℃、4時間反
応して陽性荷電を導入した。この時導入できた荷電容量
は中性塩分解法で16.5μeq/mlと測定できた。
また透水性は11.8L/hr・m2 ・mmHg、親水
化度73%であった。
Example 1 A polyethylene hollow fiber (10 cm, 800 fibers) having a hydrophilic coating layer obtained in the control example was mixed with 5 volumes of dimethyl sulfoxide and 4 volumes of epichlorohydrin.
In 100 ml of a mixed solution of 1 volume of N sodium hydroxide aqueous solution, reaction was carried out at 40 ° C. for 2 hours to introduce an epoxy group. Then, in a 10% aqueous solution of diethylamine, the mixture was reacted at 40 ° C. for 4 hours to introduce a positive charge. The charge capacity that could be introduced at this time could be measured as 16.5 μeq / ml by the neutral salt decomposition method.
The water permeability was 11.8 L / hr · m 2 · mmHg and the degree of hydrophilicity was 73%.

【0025】[0025]

【実施例2】対照例で得られた親水性被覆層を有するポ
リエチレン中空糸(10cm、800本)を、5%ジメ
チルアミノエチルメタクリレートを含む10%エタノー
ル水溶液中に浸漬し、25kGyのγ線を照射してグラ
フト法により、共有結合した。得られた中空糸膜の荷電
容量は中性塩分解法で8.5μeq/mlであった。ま
た透水性は11.8L/hr・m2 ・mmHg、親水化
度78%であった。
Example 2 A polyethylene hollow fiber (10 cm, 800 fibers) having a hydrophilic coating layer obtained in the control example was immersed in a 10% ethanol aqueous solution containing 5% dimethylaminoethyl methacrylate, and 25 kGy of γ-ray was applied. Irradiated and covalently bonded by the graft method. The charge capacity of the obtained hollow fiber membrane was 8.5 μeq / ml by the neutral salt decomposition method. The water permeability was 11.8 L / hr · m 2 · mmHg and the degree of hydrophilicity was 78%.

【0026】培養例 対照例、実施例1、実施例2で得られたそれぞれの中空
糸膜を、側面に細胞の注入/取り出し口を設けた内径8
mm、長さ10cmのポリカーボネート製容器に、ポッ
ティング剤にウレタン接着剤を用いて固定化し、培養器
を作成した。培養は、図1に示すとおり培養器を接続
し、CHO細胞を用いて添加細胞数1×107 細胞/m
lにて、通常の中空糸培養法と同様の手技にて、実施し
た。この時培養液にはイーグルMEM培養液(大日本製
薬社製)に牛胎児血清を10%濃度に加えたものを用い
た。培養結果を図2に示す。培養開始後14日目の各培
養器の細胞密度は、対照例が3.2×107 細胞/ml
であったのに対して、実施例1及び2はそれぞれ1.1
×108 細胞/ml、1.8×108 細胞/mlと、い
ずれも1×108 細胞/ml以上であり、優れた基質機
能を示した。
Culture Example Each of the hollow fiber membranes obtained in the control example, the example 1 and the example 2 had an inner diameter of 8 with a cell inlet / outlet port on the side surface.
An incubator was prepared by immobilizing a potting agent with a urethane adhesive in a polycarbonate container having a size of 10 mm and a length of 10 cm. Culture was performed by connecting a culture vessel as shown in FIG. 1 and using CHO cells, the number of added cells was 1 × 10 7 cells / m 2.
The procedure was the same as that of the ordinary hollow fiber culture method in Example 1. At this time, as the culture medium, an Eagle MEM culture medium (manufactured by Dainippon Pharmaceutical Co., Ltd.) to which fetal bovine serum was added at a concentration of 10% was used. The culture results are shown in FIG. The cell density of each incubator 14 days after the start of culture was 3.2 × 10 7 cells / ml in the control example.
In contrast, in Examples 1 and 2, each was 1.1.
× and 10 8 cells /Ml,1.8×10 8 cells / ml, both also at 1 × 10 8 cells / ml or more showed excellent substrate function.

【図面の簡単な説明】[Brief description of drawings]

【図1】細胞培養器を用いた培養システムの1例であ
る。
FIG. 1 is an example of a culture system using a cell culture device.

【図2】培養例で得られた増殖曲線で、Aが対照例、B
が実施例1、Cが実施例2で得られた細胞培養膜を充填
した細胞培養器によるものである。
FIG. 2 is a growth curve obtained in the culture example, in which A is a control example and B is a control example.
Shows the results obtained in Example 1 and C in the cell incubator filled with the cell culture membrane obtained in Example 2.

【符号の説明】[Explanation of symbols]

1 ポリカーボネート製容器 2 細胞培養膜 3 細胞注入/取り出し口 4 培養液溜 5 しごきポンプ 6 しごきチューブ 7 シリコンチューブ 1 Polycarbonate container 2 Cell culture membrane 3 Cell inlet / outlet port 4 Culture fluid reservoir 5 Ironing pump 6 Ironing tube 7 Silicon tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質合成支持体表面に、pKaが4.
0以上の塩基性官能基と、該支持体を実質的に被覆する
親水性被覆層とを有する事を特徴とする細胞培養膜。
1. A pKa of 4. on the surface of a porous synthetic support.
A cell culture membrane having 0 or more basic functional groups and a hydrophilic coating layer that substantially coats the support.
JP14689492A 1992-05-13 1992-05-13 Cell culture membrane Pending JPH05308953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14689492A JPH05308953A (en) 1992-05-13 1992-05-13 Cell culture membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14689492A JPH05308953A (en) 1992-05-13 1992-05-13 Cell culture membrane

Publications (1)

Publication Number Publication Date
JPH05308953A true JPH05308953A (en) 1993-11-22

Family

ID=15417984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14689492A Pending JPH05308953A (en) 1992-05-13 1992-05-13 Cell culture membrane

Country Status (1)

Country Link
JP (1) JPH05308953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000100A (en) * 2007-05-23 2009-01-08 Mitsubishi Rayon Co Ltd Scaffold material for cell culture, method for producing the same and module for cell culture
JP2013507143A (en) * 2009-10-12 2013-03-04 テルモ ビーシーティー、インコーポレーテッド Method for assembling hollow fiber bioreactor
JP2013138622A (en) * 2011-12-28 2013-07-18 Dainippon Printing Co Ltd Method for producing surface hydrophilic substrate
JP2013532966A (en) * 2010-06-11 2013-08-22 セルアーティス アーベー Three-dimensional scaffold to improve differentiation of pluripotent stem cells into hepatocytes
JP2014087344A (en) * 2008-09-25 2014-05-15 Gambro Lundia Ab Irradiated membrane for cell expansion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000100A (en) * 2007-05-23 2009-01-08 Mitsubishi Rayon Co Ltd Scaffold material for cell culture, method for producing the same and module for cell culture
JP2014087344A (en) * 2008-09-25 2014-05-15 Gambro Lundia Ab Irradiated membrane for cell expansion
JP2013507143A (en) * 2009-10-12 2013-03-04 テルモ ビーシーティー、インコーポレーテッド Method for assembling hollow fiber bioreactor
JP2013532966A (en) * 2010-06-11 2013-08-22 セルアーティス アーベー Three-dimensional scaffold to improve differentiation of pluripotent stem cells into hepatocytes
JP2013138622A (en) * 2011-12-28 2013-07-18 Dainippon Printing Co Ltd Method for producing surface hydrophilic substrate

Similar Documents

Publication Publication Date Title
US4424311A (en) Antithrombogenic biomedical material
EP1390087B1 (en) Crosslinked multipolymer coating
EP0614923B1 (en) Hydrophilic material and semipermeable membrane made therefrom
US20060151374A1 (en) Charged membrane
JP7315652B2 (en) Cell culture substrate
JP7319349B2 (en) Cell culture substrate
JP7315653B2 (en) Cell culture substrate
Kim et al. Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation‐induced grafting
US20110091512A1 (en) Highly porous, large polymeric particles and methods of preparation and use
EP0402272B1 (en) Cell-culturing substrate, cell-culturing substrate unit bioreactor and extracorporeal circulation type therapeutic apparatus
JPH05308953A (en) Cell culture membrane
US20040188351A1 (en) Method for reducing an adsorption tendency of molecules or biological cells on a material surface
JPH0311787B2 (en)
JP2021023928A (en) Separation membrane and method for manufacture thereof
JP7348280B2 (en) Cell culture substrate
CN112588132A (en) Hollow fiber membrane and preparation method thereof
JP7348281B2 (en) Cell culture substrate
Dabrovska et al. Transport properties of hydrolyzed polyacrylonitrile
JPH0523820B2 (en)
JPH0216972A (en) Method for culturing cell
JP2005162926A (en) Method for producing temperature-responsive polymer material
JPH0414033B2 (en)
JP2023072702A (en) Cell culture substrate
JP2004189915A (en) Material composed of acrylic polymer having functional group and method for producing the same
CN101544776A (en) Preparation method and use of high-density glycosylated polypropylene affinity membranes