JPH04116391A - Heat transferring tube and method for manufacturing heat transferring tube - Google Patents

Heat transferring tube and method for manufacturing heat transferring tube

Info

Publication number
JPH04116391A
JPH04116391A JP23535890A JP23535890A JPH04116391A JP H04116391 A JPH04116391 A JP H04116391A JP 23535890 A JP23535890 A JP 23535890A JP 23535890 A JP23535890 A JP 23535890A JP H04116391 A JPH04116391 A JP H04116391A
Authority
JP
Japan
Prior art keywords
sub
heat exchanger
groove
tube
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23535890A
Other languages
Japanese (ja)
Inventor
▲こう▼田 俊緑
Toshinori Kouda
Seizou Masukawa
桝川 清慥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP23535890A priority Critical patent/JPH04116391A/en
Publication of JPH04116391A publication Critical patent/JPH04116391A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

PURPOSE:To improve the efficiency of gasification and the efficiency of condensation by a method wherein an inner surface of a metallic pipe is provided with some projections, fins and sub-grooves, the opening width of a main groove between each of the projections is narrowed and formed as a tube part. CONSTITUTION:After on an inner surface of metallic pipe 1 some parallel projections 2 and fins 3 are helically formed at a specified angle in respect to its axial direction, some parallel sub-grooves 5 forming a specified angle are formed on them. Each of the projections 2 is deformed from the center line of the sub-groove 5 toward both sides at a part where each of the projections 2 is crossed with the sub-groove 5. With such an arrangement, the opening width of a main groove 4 between each of the projections 2 is narrowed at a part between each of the sub-grooves 5 so as to form a tubular part 6 having a fine opening. As a result, of the heat transferring tube is used at an evaporating part of a heat exchanger, some air bubbles may easily be formed at an inside part, an evaporation of the thermal medium is promoted and the efficiency of gasification is improved. When the tube is used as a condensing tube, even if the surface of the each of the projections is covered by a thin layer of condensed liquid by a surface tension, each of the fin extremity ends is kept at its exposed state and a heat exchanging efficiency with a thermal medium vapor is kept high, resulting in that a condensing efficiency can also be improved.

Description

【発明の詳細な説明】 1産業−1−の利用分野−1 本発明は、熱交換器等の蒸発管や凝縮管、ヒートバイブ
等として使用される伝熱管およびその製造方法に関ずろ
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-1-1 The present invention relates to a heat transfer tube used as an evaporation tube, condensation tube, heat vibrator, etc. of a heat exchanger, and a method for manufacturing the same.

「従来の技術」 従来から、銅製等の管体の内面に、転造加工や引抜加工
によって螺旋状または直線状の溝を多数形成しノこ伝熱
管が知られており、このような溝を形成橿ろことにより
、以下のような効果が得られる。
``Prior art'' Conventionally, saw heat transfer tubes have been known in which many spiral or linear grooves are formed on the inner surface of a tube body made of copper or the like by rolling or drawing. The following effects can be obtained by forming the funnel.

■ この伝熱管を凝縮管として使用した場合には、凝縮
管内を流れる熱媒体の蒸気を溝の間の突条部により乱流
にし、さらに突条部を凝縮核として熱媒蒸気の凝縮効果
を高め、液化を促進する。
■ When this heat transfer tube is used as a condensing tube, the heat medium vapor flowing inside the condensing tube is made into a turbulent flow by the ridges between the grooves, and the ridges serve as condensation nuclei to increase the condensation effect of the heat medium vapor. enhance and promote liquefaction.

また、凝縮した熱媒液体を、溝内における表面張力によ
って効率的に伝熱管の長手方向に流し、還流効果を増す
Furthermore, the condensed heat transfer liquid is efficiently flowed in the longitudinal direction of the heat transfer tube due to the surface tension within the grooves, increasing the reflux effect.

■ 蒸発管として使用した場合には、蒸発管の尚のエツ
ジが気泡を発するための蒸発核となり、沸騰を促進(7
て、伝熱管内に供給される熱媒液体の気化効率が向上す
る。
■ When used as an evaporator tube, the edges of the evaporator tube become evaporation nuclei for generating bubbles, promoting boiling (7
As a result, the vaporization efficiency of the heat medium liquid supplied into the heat transfer tubes is improved.

また、海内にお(〕る表面眼力によ−・て、熱媒液体が
伝熱管の長手方向に流れ、伝熱管の内面(ご均一に分散
される。
In addition, due to the surface forces in the ocean, the heat transfer liquid flows in the longitudinal direction of the heat transfer tube and is uniformly dispersed on the inner surface of the heat transfer tube.

I−発明が解決しようと6′る課題 jところで、この
ような溝イ・1き伝熱管の性能を向上するには、if+
¥の開[1幅を挟めて、管状に近側(−」ることが有効
であると考えられる。。
I-Problems to be solved by the invention jBy the way, in order to improve the performance of such a groove I-1 heat exchanger tube, if+
It is thought that it is effective to have the opening [1 width in between and the near side (-) in a tubular shape.

この、]−うな管状のif/?によれば、例えば蒸発管
として使用した場合、溝の内部に気泡が発生し\5すく
、この気泡が核となって熱媒体の蒸発を促進し、気化効
率がさらに高められる3、上た、11−1内での表面張
力が向上されるため、熱媒体の輸送効率が増し、総合的
な伝熱性能が向−1−14′ろと考えら石ろ3、しかし
、前述の機械加圧によりjll純金形成しまた伝熱管で
は、加工上の制約から溝の開り幅が底部の幅よりも大き
くならざるを得ず、iM’を管状に形成することは不i
1J能で、伝熱性能の向上に(」限界があった。
This,]-eel tubular if/? According to, for example, when used as an evaporation tube, air bubbles are generated inside the groove, and these air bubbles act as nuclei and promote the evaporation of the heat medium, further increasing the vaporization efficiency. Since the surface tension within the stone filter 11-1 is improved, the transport efficiency of the heat medium increases, and the overall heat transfer performance is expected to improve. In heat exchanger tubes, the opening width of the groove must be larger than the width of the bottom due to processing constraints, so it is impossible to form iM' into a tubular shape.
At 1J capacity, there was a limit to the improvement of heat transfer performance.

そこで、本発明考らは以下のような製造方法による伝〃
1管を発案した。この方法(′:J、板条1詞の表面に
互いに交差する2種類のγt1¥をそれぞれ多数形成ず
ろことにより、先に形成した苛のIIRJ D幅を、後
に形成した溝との交差部分の両側において狭め、管状部
を形成する。次いで、この金属板条祠をliI¥形成面
を内側(こして丸め、電縫管方式により突き合わせた端
縁を溶接し、伝熱管を得る。
Therefore, the present invention contemplates a transmission method using the following manufacturing method.
He invented a tube. This method (':J, by forming a large number of two types of γt1\ that intersect with each other on the surface of a single plate strip), the width of the IIRJD of the groove formed earlier can be adjusted to Both sides are narrowed to form a tubular part. Next, this metal plate strip is rolled with the liI circle forming surface inside (straightened), and the abutted edges are welded using an electric resistance welding tube method to obtain a heat transfer tube.

こうして得られた伝熱管において(J1金属管の内面に
形成された個々の第1の溝の開U]幅が、第2のd寺と
の交差部分で狭められて開1コ幅の狭い管状部とされ、
このような管状部が第1溝の長手方向に間隔を空()て
多数形成されている。
In the thus obtained heat transfer tube, the width (the opening U of each first groove formed on the inner surface of the J1 metal tube) is narrowed at the intersection with the second d temple, so that it becomes a narrow tubular shape with a width of 1. Department,
A large number of such tubular portions are formed at intervals in the longitudinal direction of the first groove.

そのため、これら管状部の内部に気泡が発生しやすく、
ごの気泡が核となって熱媒体の蒸発を促進し、気化効率
が高められる。また、管状部内での表面張力が向上され
るから、熱媒体の輸送効率が増し、総合的ね゛伝熱性能
が向上する。
Therefore, air bubbles are likely to form inside these tubular parts.
The bubbles act as a core and promote the evaporation of the heat medium, increasing the evaporation efficiency. Furthermore, since the surface tension within the tubular portion is improved, the transport efficiency of the heat medium is increased, and the overall heat transfer performance is improved.

ところが、ごの伝熱管は、蒸発管として使用すれげ1ユ
記のように優れた蒸発促進効果を示すちのの、蒸発管で
はなく凝縮管と17で使用した場合には、製造=1スト
の割に熱媒体の凝縮効率(液化効率)が低く、内面にj
p純な螺旋溝を形成した伝熱管に対して、有利さに乏1
.いことが判明した。
However, although heat transfer tubes have an excellent evaporation promoting effect when used as evaporation tubes as described in 1.1, when used with condensation tubes instead of evaporation tubes, production = 1 stroke. The condensation efficiency (liquefaction efficiency) of the heat medium is relatively low, and
P Lack of advantage over heat exchanger tubes with pure spiral grooves1
.. It turned out that it was.

本発明省らがその原因を検問した結果、この伝熱管を凝
縮管として使用ずろ、と、内面にくまなく形成された交
差溝の優れた表面張力により、熱媒体が凝縮1.て生成
し7た凝縮液が伝熱管の内面で容体に広がり、伝熱管の
内面が全面に亙って薄い液体膜に覆われろ。このため、
金属面と熱媒蒸気との接触面積が減少し、熱媒蒸気から
金属面への伝熱効率が著しく低下して、熱媒蒸気の凝縮
効率が低下するということがわかった1、 「課題を解決するための手段 1 本発明は−に記課題を解決ケろためになされたちので、
金属管の内周面に、この金属管の軸線に対して傾斜した
方向に延び、断面が(Jぼ矩形状をなす多数の平行な突
条と、1)γf記全金属管内面から起立(7、前記突条
と平行に延ひるフィンと、iFj記突条およびフィンと
一定角度をなして交差ケる多数の・12行ね副)1!r
とが形成され、前記各突条と前記各副溝との交差部分で
各突条が各副溝の中心線から両側へ変形されることによ
り、各突条同士の間の上溝の開1」幅が狭められ、それ
ぞれ管状部とされていることを特徴と1−る。
The Ministry of Invention and others investigated the cause and found that the heat transfer tube was used as a condensing tube, and the heat medium condensed due to the excellent surface tension of the intersecting grooves formed throughout the inner surface. The condensate generated by this process spreads into the container on the inner surface of the heat exchanger tube, and the entire inner surface of the heat exchanger tube is covered with a thin liquid film. For this reason,
It was found that the contact area between the metal surface and the heat medium vapor decreases, the heat transfer efficiency from the heat medium vapor to the metal surface decreases significantly, and the condensation efficiency of the heat medium vapor decreases1. Means for Accomplishing 1 The present invention has been made to solve the problems set forth in -.
On the inner circumferential surface of the metal tube, there are a number of parallel protrusions extending in a direction oblique to the axis of the metal tube and having a rectangular cross section (1) γf standing up from the inner surface of the metal tube ( 7. A number of fins extending parallel to the protrusions, and a number of 12 rows intersecting the protrusions and fins at a constant angle (sub) 1! r
are formed, and each protrusion is deformed from the center line of each sub-groove to both sides at the intersection of each protrusion and each sub-groove, thereby creating an opening in the upper groove between each protrusion. The width is narrowed and each part is tubular.

なお、11汀記フインの先端は、断面が鋭角に形成され
ていることが望ましい。
Note that it is desirable that the tip of the fin No. 11 has an acute-angled cross section.

また、前記金属管の内面からのフィンの突出歯(」、突
条の突出歯、)−りも小さくてもよい。
Further, the protruding teeth of the fins from the inner surface of the metal tube may also be small.

−・方、本発明の製造方法は、一定幅の金属板条十Aの
表面に、多数の平行な断面矩形状の突条、およびこれら
突条と平行で突条よりも幅狭のフィンを圧延形成し、 これら突条およびフィンと一定角度で交差する多数の平
行な副溝を圧延形成することにより、これら副溝と交差
する部分において各突条の先端部を前記副溝の中心線か
ら両側へ変形し、各突条の間の下請νの開(]幅を、こ
れら変形部分で相対的に狭めた後、 このii+1′形成面を内側に向けた状態で、前記板条
材を管状に丸めて電縫船上し、伝熱管を成形4゛ろこと
を特徴とする。
- On the other hand, the manufacturing method of the present invention includes a number of parallel protrusions having a rectangular cross section and fins parallel to these protrusions and narrower than the protrusions on the surface of the metal plate strip 10A having a constant width. By rolling and forming a large number of parallel sub-grooves that intersect these protrusions and fins at a certain angle, the tip of each protrusion is moved away from the center line of the sub-groove at the part where it intersects with these sub-grooves. After deforming to both sides and relatively narrowing the width of the subcontract ν between each protrusion at these deformed parts, the plate material is shaped into a tubular shape with this ii+1' forming surface facing inward. It is characterized by the fact that it is rolled up and placed onboard an ERW ship, and the heat exchanger tube is formed with a 4-inch diameter.

ム゛お。副溝は断面■字状に形成正ることか望ましい3
、よソ、二突条と副′ri僅の交差ffJ度は20〜6
0゜ごあることが望ましい。
Mmm. It is preferable that the sub-grooves have a cross section shaped like a letter 3.
, Yoso, the slight intersection of the two ridges and the sub'ri has a degree of ffJ of 20 to 6
It is desirable that the angle is 0°.

(−作 用−1 本発明に係イつる伝熱管では、各主溝の長手方向に間隔
を空けて、開口幅が主114の内幅に比して狭い管状部
が多数形成されているため、この伝熱管を熱交換器等の
蒸発部に使用1.た場合に(」、各管状部の内部に気泡
が発生しやすく、これら気泡か蒸発部となって熱媒体の
蒸発を促進し、気化効イ(が格段に高められる。
(-Function-1) In the vine heat exchanger tube according to the present invention, a large number of tubular portions whose opening width is narrower than the inner width of the main groove 114 are formed at intervals in the longitudinal direction of each main groove. When this heat transfer tube is used in the evaporation part of a heat exchanger etc. (1), bubbles are likely to be generated inside each tubular part, and these bubbles become the evaporation part and promote the evaporation of the heat medium. The vaporization effect (is greatly increased).

また、この伝熱管によれば、各#:、ii’lt内に流
イ1込んだ熱媒液体は、管状部内にお(Jろ毛細管現象
により主溝に沿って速やかに輸送されろため、単純な溝
を形成した伝熱管の場合に比して、熱媒体の輸送効率も
向上する。
In addition, according to this heat transfer tube, the heat medium liquid flowing into each #:, ii'lt is quickly transported along the main groove by capillary phenomenon into the tubular part (J). The transport efficiency of the heat medium is also improved compared to the case of a heat exchanger tube with simple grooves formed therein.

方、この伝熱管を熱交換器の凝縮管として使用した場合
には、」二連の表面張力によって各突条の間の1:、溝
に液体が満たされ、各突条の表面が凝縮液の薄層に覆わ
れたとし2ても、伝熱管内面から起立した各フィンの先
端は液切れがよし)ため、凝縮液の表面から突出オろ1
、したがって、これらフィンの先端では金属面が露出し
た状態に保たれ、熱媒体蒸気との熱交換率が高く維持さ
れるから、従来の単純W/7 (ζjき伝熱管に比して
凝縮効率も大幅に高めることが可能である。
On the other hand, when this heat transfer tube is used as a condensing tube of a heat exchanger, the grooves between each protrusion are filled with liquid due to two series of surface tensions, and the surface of each protrusion is filled with condensate. Even if the heat transfer tube is covered with a thin layer of water, the tip of each fin that rises from the inner surface of the heat transfer tube can drain easily.
Therefore, the metal surface is kept exposed at the tips of these fins, and the heat exchange rate with the heat medium vapor is maintained high, resulting in a higher condensation efficiency than the conventional simple W/7 (ζj heat transfer tube). can also be significantly increased.

方、本発明に係わる伝熱管の製造方法によれば、従来は
製造が困難たった前記のよ−うな伝熱管を容易に製造で
きる。また、圧延−L程および電縫工程の2工程を連続
さ[゛るごとにより、長尺の伝熱管を連続的に効率良く
製造することができ、量産に適し、製造コストの低減が
図れる。
On the other hand, according to the method for manufacturing a heat exchanger tube according to the present invention, the above-mentioned heat exchanger tube, which has been difficult to manufacture in the past, can be easily manufactured. Furthermore, by continuously performing the two steps of rolling and electric resistance welding, long heat exchanger tubes can be manufactured continuously and efficiently, making it suitable for mass production and reducing manufacturing costs.

「実施例」 次に、第1図ない1.第15図を参照して、本発明に係
わる伝熱管の−・実施例を詳細に説明づ−る。
"Example" Next, 1. With reference to FIG. 15, an embodiment of the heat exchanger tube according to the present invention will be described in detail.

この実施例の伝熱管は、第1図および第2図に示すよう
に、断面円形の金属管Iの内面に、この金属管1の軸方
向に対U7て・定角度の螺旋状をなず多数の平行な突条
2およびフィン3を互いにski行に形成した後、前記
突条2およびフィン3のトに、これら突条2およびフィ
ン3と一定角度をなす多数の平行な副溝5を形成したも
のである3、突条2同士の間隔は、第1図に示すように
全て等しく、突条2の複数本(図では3本)毎に、フィ
ン3か1本づつ形成されている。
As shown in FIGS. 1 and 2, the heat transfer tube of this embodiment has a spiral shape formed at a constant angle to U7 in the axial direction of the metal tube 1 on the inner surface of the metal tube I having a circular cross section. After forming a large number of parallel protrusions 2 and fins 3 in ski rows, a large number of parallel sub-grooves 5 forming a constant angle with these protrusions 2 and fins 3 are formed on the edges of the protrusions 2 and fins 3. 3. The intervals between the protrusions 2 are all equal as shown in Figure 1, and three or one fin is formed for each of the plurality of protrusions 2 (three in the figure). .

そして第2図ないし第7図に示すように、各突条2と副
i?4’ 5とが交差する部分において、各突条2は副
溝5の中心線から両側へ変形されている。
As shown in FIGS. 2 to 7, each protrusion 2 and sub i? 4' and 5, each protrusion 2 is deformed from the center line of the sub-groove 5 to both sides.

これにより、各突条2の間の主溝4の開「]幅は、各側
iff 5の間の部分において狭められ、それぞれ細い
開口部を有する管状部6とされてし)ろ。
As a result, the opening width of the main groove 4 between each of the protrusions 2 is narrowed in the portion between each side 5, forming a tubular portion 6 having a narrow opening.

金属管1は、銅および銅合金、アルミニウム等の従来か
ら使用されている+1iで成形され、肉厚や径等は用途
に応して決められる。また、金属管Iの一周部の内面に
は、軸方向に延びる羽坦な帯状の溶接部IAか形成され
ている。
The metal tube 1 is formed from conventionally used +1i materials such as copper, copper alloy, and aluminum, and its wall thickness, diameter, etc. are determined depending on the application. Further, on the inner surface of one circumferential portion of the metal tube I, a flat band-shaped welded portion IA extending in the axial direction is formed.

突条2の断面形状は、第11図に示すように副溝5によ
る変形前において矩形状である。したが−7て、突条2
同士の間に形成される上溝4は、底部の断面角度が直角
に近し)断面U字状となっている。
The cross-sectional shape of the protrusion 2 is rectangular before being deformed by the sub-groove 5, as shown in FIG. But -7, protrusion 2
The upper groove 4 formed between them has a U-shaped cross section (the cross-sectional angle of the bottom portion is close to a right angle).

このようにU字形に近いほうが、主溝4の開1」幅を狭
めて管状に形成し易い。
In this way, the closer the U-shape is, the easier it is to narrow the opening width of the main groove 4 and form it into a tubular shape.

主7144の内幅W1は深さト11の40〜140%、
望ましくは80〜120とされる3、40%未満では、
副溝5の形成に上り主溝4が潰れ易くなるうえ、加工も
困難である。140%より人では管状部6の開1」幅を
ヒ勺狭めることができない。
The inner width W1 of the main 7144 is 40 to 140% of the depth T11,
If it is less than 3.40%, which is preferably 80 to 120,
The main groove 4 is likely to collapse when forming the sub-groove 5, and machining is also difficult. It is impossible for humans to narrow the opening width of the tubular portion 6 by more than 140%.

また、主溝4の間隔P1は、内幅W1の1.5〜3倍、
望ましくは18〜22倍とされる。15倍未満では副溝
5を形成すると突条2の倒れが生じて管状部6の形成が
困難になる。3倍より大で(J主W+¥4の形成密度が
小さくなり、伝熱性能を向上する効果が減少する。
In addition, the interval P1 between the main grooves 4 is 1.5 to 3 times the inner width W1,
Desirably it is 18 to 22 times. If it is less than 15 times, the protrusions 2 will fall down when the sub-grooves 5 are formed, making it difficult to form the tubular portions 6. If it is larger than 3 times (J main W + ¥4) the formation density becomes smaller and the effect of improving heat transfer performance is reduced.

具体的には、通常の伝熱管の場合、上溝4の深さI(l
 = 0 、2〜0 、3t+x、内幅W+、=0.2
−0 、 5 m7I、 P I−0、4〜]、5m7
I、底部の断面角度は75°以上程度が適当である。
Specifically, in the case of a normal heat exchanger tube, the depth I (l
= 0, 2~0, 3t+x, inner width W+, = 0.2
-0, 5 m7I, P I-0, 4~], 5m7
I. The appropriate cross-sectional angle of the bottom is about 75° or more.

力、フィン3の変形前の断面形状は鋭角二等辺三角形状
とされ、突条2よりら幅が狭く先i、Vjか尖っており
、金属管1の内面から直立している3゜フィン3の変形
前の高さT−(211、突条2の高さ’i−11の50
〜90%程度であることが望ましい4゜50%より低い
と液切れが悪化し2て凝縮効率が低下し、90%より高
いものは製造困Ntである。またフィン3の底幅は、副
)R5による変形を受1−jろ際にフィン3が破損しな
L11部の幅を有するごとが望ましい。
The cross-sectional shape of the fin 3 before deformation is an acute isosceles triangular shape, and the width is narrower than the protrusion 2, and the tips i and Vj are pointed, and the 3° fin 3 stands upright from the inner surface of the metal tube 1. Height before deformation T-(211, height 'i-11 of protrusion 2 50
It is desirable that it be about ~90%.If it is less than 4.50%, liquid drainage will deteriorate, resulting in a decrease in condensation efficiency, and if it is more than 90%, it will be difficult to manufacture. Further, it is desirable that the bottom width of the fin 3 has a width of L11 so that the fin 3 is not damaged when it is deformed by R5.

具体的には、通常の伝熱管の場合、高さI−1201〜
O,l5xz程度が好」;シい4、また、突条2からの
離間量W3は、フィン3からの凝縮液の液切れ性を高め
ろために、主′ti+’j 4の内幅W +よりも大き
いことが望よ(7い。
Specifically, in the case of a normal heat exchanger tube, the height is I-1201~
In addition, the distance W3 from the protrusion 2 is determined by the inner width W of the main 'ti+'j 4 in order to improve the drainage of condensate from the fin 3. I hope it's bigger than + (7).

一方、副溝5は断面v字状に形成されている。On the other hand, the sub-groove 5 is formed to have a V-shaped cross section.

副溝5の間隔P2は、第11図に示すように上溝4と同
等でよいが、必すしも主if+¥4と等しい必要はない
The interval P2 between the sub-grooves 5 may be equal to that of the upper groove 4, as shown in FIG. 11, but does not necessarily have to be equal to the main if+¥4.

副溝5の幅W 4は主溝4の開「j幅W2の10〜90
%、望ましく i:j: 50〜70%とさイする3、
10%未jjjljでは主溝4の開[71幅W2を十分
狭めることができ1゛、90%より人てけ主溝4の1j
iN [1部を閉じてしまうおそれがある。
The width W4 of the minor groove 5 is 10 to 90 of the width W2 of the main groove 4.
%, preferably i:j: 50-70% 3,
If it is less than 10%, the width W2 of the main groove 4 can be sufficiently narrowed to 1゛, and if it is less than 90%, the opening of the main groove 4
iN [There is a risk that one copy may be closed.

また、副溝5の深さDは、突条2の高さ((1の50〜
100%、望ましく il、180〜100%とされる
。50%未満では主溝4の開[]幅を十分狭めろことが
できす、100%より犬では主溝4を閉じて12ようお
それがある。
In addition, the depth D of the sub-groove 5 is the height of the protrusion 2 ((50~
100%, preferably il, 180-100%. If it is less than 50%, the opening width of the main groove 4 may be sufficiently narrowed, but if it is less than 100%, there is a risk that the main groove 4 may close and become 12.

具体的には、通常の伝熱管の場合、副溝5の深さI)〜
0.I5〜0 、3 vtm、間隔1) 2 = 0 
、4〜15Zりm、V字の断面角度1;I: 4.5〜
90’程度が好適である。
Specifically, in the case of a normal heat exchanger tube, the depth of the sub-groove 5 I) ~
0. I5~0, 3 vtm, interval 1) 2 = 0
, 4~15Z m, V-shaped cross-sectional angle 1; I: 4.5~
Approximately 90' is suitable.

なお、主’tR4と副溝5との交差角度αは20〜60
°、特に30〜40°であることが望ましし1゜20〜
60°の範囲を外れると、管状部6の形成が困難になる
。また、主溝4は金属管1の軸方向に対I、て30°以
内であることが望ましい。これより人で(j金属管1の
軸方向への熱媒液体の流通が悪くなる。
Note that the intersection angle α between the main 'tR4 and the minor groove 5 is 20 to 60.
°, especially preferably 30 to 40 °, preferably 1 ° to 20 °
Outside the 60° range, it becomes difficult to form the tubular portion 6. Further, it is desirable that the main groove 4 is within 30° relative to the axial direction of the metal tube 1. As a result, the flow of the heat medium liquid in the axial direction of the metal tube 1 becomes worse.

−1−1記のように副’rM 5を形成することにより
、管状部6の最小量[]幅は、主溝4の内幅W1の75
%以下に狭められる。75%より犬では気泡の発生効果
が低下し、従来の溝付き伝熱管に比し7ての伝熱性能向
上効果が低下する。
By forming the sub'rM 5 as described in -1-1, the minimum width [] of the tubular portion 6 is 75% of the inner width W1 of the main groove 4.
% or less. 75%, the bubble generation effect is reduced, and the heat transfer performance improvement effect is reduced compared to the conventional grooved heat transfer tube.

次に、この伝熱管の製造方法を説明する。j;ず、金属
管となる板条材1を、第8図に示すように第10−ル丁
(+および第20−ル丁え2で連続的にr;r−延し、
第10−ルR1により突条2とフィン3を、また第20
−ルR2により副溝5を順次形成局−る。
Next, a method for manufacturing this heat exchanger tube will be explained. First, as shown in FIG.
The ridge 2 and the fin 3 are connected by the 10th rule R1, and the 20th
- The sub-grooves 5 are sequentially formed by the rule R2.

第10−ルR1の外周面には、第9図に示゛4′ように
、突条2を形成4−るための断面口字状の凹lII¥1
、OAおよびフィン3を形成するためのV iM I 
IAが、それぞれ[ノールI’21の周方向に対(2て
・定角度傾斜して平行に多数形成されている。こJl、
 r、″より板条材1の表面には、第11図に示すよう
に長平方向に対し傾斜しで突条2およびフィン3が形成
される3、 一方、第21′l−ルR2の外周面には、第1()図に
示4−ように断面V字状の突条部I2が多数平行に形成
されている。これら突条部I2はロール1z2の周方向
に対して第10−ルR1とは逆の方向に仙斜(、ており
、このため板条材1には第11図に示すように、主溝4
お、1;びフィン3と一定角度αで交差する多数の平行
な断面V字状の副溝5が形成される。
On the outer circumferential surface of the tenth rule R1, as shown in FIG.
, V iM I for forming OA and fin 3
A large number of IAs are formed parallel to each other at a constant angle inclination in the circumferential direction of the node I'21.
As shown in FIG. 11, protrusions 2 and fins 3 are formed on the surface of the plate material 1 from r, ″3, with the protrusions 2 and fins 3 being formed at an angle with respect to the longitudinal direction. A large number of protrusions I2 having a V-shaped cross section are formed parallel to each other on the surface as shown in FIG. The main groove 4 is formed in the plate strip 1 in the opposite direction to the groove R1, as shown in Fig. 11.
A large number of parallel sub-grooves 5 having a V-shaped cross section are formed, intersecting the fins 3 at a constant angle α.

なお、第2 [7−ルI(2の突条部12の間は、第1
0図中−点鎖線14で示ずように曲面状としてもよい4
.こうすれば副溝の形成時に、曲面I2に沿−)で主i
i’t 4の側壁部が円滑に変形し、主’rtI¥4の
開t1幅を狭める効果が増す。また、各突条部I2の先
端には、袴号13に示すよう(こ幅の狭い)[シ坦部を
形成してもよい。
In addition, between the protrusions 12 of the second [7-ru I (2), the first
0 In Figure - It may be curved as shown by the dotted chain line 14 4
.. By doing this, when forming the minor groove, the main i
The side wall portion of i't4 deforms smoothly, increasing the effect of narrowing the width of the opening t1 of the main 'rtI\4. Further, a flat part (with a narrow width) may be formed at the tip of each protruding part I2 as shown in Hakama No. 13.

圧延が終イつったら、板条材1を溝形成面を内面側に向
(Jた状態て電縫装置に導入し、多段階に成形ロールの
1111を通(7て、板条材lを幅方向に丸ぬ、最終的
に板条材1の両側縁部を溶接して円管形に成形する。
After the rolling is completed, the plate strip 1 is introduced into the electric resistance welding machine with the grooved surface facing the inner surface (J), and the plate strip 1 is passed through the forming roll 1111 in multiple stages (7). Finally, both side edges of the strip material 1 are welded to form a round tube in the width direction.

「1j縫装置δ1としては通常使用されているものでよ
く、」]八へ縫条件も通常の加工と同じでよい。その後
、必ザに応じて管の外周面の溶接部を整形したうえ、U
ノール状に巻きとるか所定の長さて切断し、長尺の伝熱
管を得る。
``1j sewing device δ1 may be one that is commonly used.''] 8) The hem stitching conditions may also be the same as those for normal processing. After that, the welded part on the outer circumferential surface of the pipe is shaped as necessary, and the
Roll it up into a knot shape or cut it to a predetermined length to obtain a long heat exchanger tube.

」二足の構成からなる伝熱管によれば、各主溝4の長平
方向に断続的に間隔を空(すで、開[−]幅が’Ifi
;の内幅W+に比して相対的に狭い管状部6が多数形成
されてし)るため、特にこの伝熱管を熱交換器等の蒸発
部に使用した場合には、第16図に示す内面平滑な伝熱
管の場合や、第17図に小セη1純ifI¥例きの伝熱
管の場合に比して、第18図に示d゛ように各管状部6
の内部に気泡が発生しや4゛<、これら気泡が核となっ
て蒸発を促進し、熱媒液体(例えば)〔lンなと)の気
化効率が格段に高めら2′する。
According to the heat exchanger tube consisting of two legs, each main groove 4 is intermittently spaced in the longitudinal direction (the opening [-] width is 'Ifi').
; is formed with a large number of tubular portions 6 that are relatively narrow compared to the inner width W+ of the heat exchanger tube as shown in FIG. Compared to the case of a heat exchanger tube with a smooth inner surface or the case of a heat exchanger tube as shown in FIG. 17, each tubular part 6 is
When air bubbles are generated inside the liquid, these air bubbles act as nuclei and promote evaporation, and the vaporization efficiency of the heat transfer liquid (for example, L) is greatly increased.

また、管状部6が断続的に設()られているので、各主
溝4内に流れ込んだ熱媒液体は、管状部6の内向から表
面張力を受け、し細管現象により主溝4に沿って速やか
に輸送されろ。このため、熱媒液体の輸送効率が、Qi
純溝付き伝熱管の場合に比して向」二する。
Furthermore, since the tubular portions 6 are disposed intermittently, the heat medium liquid that has flowed into each main groove 4 is subjected to surface tension from the inward direction of the tubular portion 6, and is caused to flow along the main groove 4 due to the capillary phenomenon. Please transport it promptly. Therefore, the transport efficiency of the heat transfer liquid is Qi
Compared to the case of pure grooved heat exchanger tubes, the

一方、この伝熱管を熱交換器の凝縮管として使用(7だ
場合に(j1第19図に示すように、各突条2の間の主
f’f 4に液体が41またされ、各突条2が凝縮液の
薄JI!iに覆われたと(7ても、伝熱管内面から起立
した各フィン3の先端は液切れがよいため、液体の表面
から突出する。したがって各フィン3の先端で(J金属
面が露出した状態(こ保たれ、熱媒体蒸気との熱交換率
が高く維持されるから、従来の印線111¥(マ1き伝
熱管に比して凝縮効率も大幅に高めろことが可能である
On the other hand, when this heat transfer tube is used as a condensing tube of a heat exchanger (7), as shown in Fig. Even if the strip 2 is covered with a thin JI!i of condensed liquid (7), the tip of each fin 3 that stands up from the inner surface of the heat transfer tube protrudes from the surface of the liquid because it drains easily. Therefore, the tip of each fin 3 Since the J metal surface is kept exposed and the heat exchange rate with the heat medium vapor is maintained high, the condensation efficiency is also significantly higher than that of the conventional marked line heat exchanger tube. It is possible to increase it.

また、Ilt純溝(−=Iき伝熱管に比して伝熱管の内
面積が増すうえ、突条2およびフィン3のエツジが鋭利
であるため表[■i活性が高い。したかって、この点か
らも熱媒蒸気の凝縮を促進し、液化効率が高められる3
、 さらに、前記の製造方法では、圧延工程および電縫上程
の2王程を連続させることにより、長尺かっ細径の伝熱
管を効率良く得ることができ、量産が可能で、製造コス
トが低減できる利点を何する。
In addition, the inner area of the heat exchanger tube is larger than that of an Ilt pure groove (-=I) heat exchanger tube, and the edges of the protrusions 2 and fins 3 are sharp, so the activity is high. This also promotes condensation of heat medium vapor and increases liquefaction efficiency3.
Furthermore, in the above manufacturing method, by consecutively performing the two steps of rolling and electric resistance welding, a long and small diameter heat exchanger tube can be efficiently obtained, mass production is possible, and manufacturing costs are reduced. What benefits can you have?

なお、1″記実施例では、伝熱管の形状を断面円形とし
ていたが、本発明は円形に限ら「、断面楕円形や偏平管
状等としても実施11iJ能である。
In the embodiment 1'', the shape of the heat exchanger tube was circular in cross section, but the present invention is limited to a circular cross section, but it is also possible to implement the tube in an elliptical cross section, a flat tubular shape, etc.

また、上記実施例では伝熱管1木分の幅の板条材Iを用
いていたが、その代わりに、十分幅広の板条+4に突条
2、フィン3、副溝5を形成した後、スリッターにか(
Jて細幅の板条材に裁断し、これら板条材に電縫加工を
施して伝熱管と1.でもよい。
Further, in the above embodiment, the plate material I having the width of one heat exchanger tube was used, but instead, after forming the protrusions 2, fins 3, and sub-grooves 5 on a sufficiently wide plate material +4, In the slitter (
1. Cut the strips into narrow strips using J and apply electric resistance welding to these strips to form heat exchanger tubes. But that's fine.

その場合には、ざらに生産性を向上することができる。In that case, productivity can be greatly improved.

また、本発明の伝熱管の外周面に冷却フィンを取りイζ
](−」る場合には、各冷却フィンに挿通孔をj[と成
し、これら挿通孔に伝熱管を通し、さらに伝熱管の内部
にプラクを通して伝熱管の外径を拡大して、伝熱管に冷
却フィンを固定づ゛ればよい。
In addition, cooling fins are provided on the outer peripheral surface of the heat transfer tube of the present invention.
](-), make insertion holes in each cooling fin, pass the heat transfer tubes through these holes, and then insert a plaque inside the heat transfer tube to enlarge the outer diameter of the heat transfer tube. All you have to do is fix the cooling fins to the heat tube.

この場合、第20図に示すように、金属管lの内面から
のフィン3の突出量を、突条2の突出量よりも若干小さ
くしておくと、拡管プラクに接触しなくて済む。
In this case, as shown in FIG. 20, if the amount of protrusion of the fins 3 from the inner surface of the metal tube l is made slightly smaller than the amount of protrusion of the protrusions 2, the fins do not need to come into contact with the tube expansion plaque.

また、プラクによる伝熱管の拡管h1は伝pA管の外径
の10%以■、好ま1. < iJ: 7%以Fに設定
1)ることか望ましい。拡管世が10%を越えると管状
部6が閉じて蒸発効率が低下するおそれがある。
In addition, the expansion h1 of the heat transfer tube by plaque is preferably 10% or more of the outer diameter of the pA tube. < iJ: It is desirable to set it to 7% or more F1). If the tube expansion exceeds 10%, the tubular portion 6 may close and the evaporation efficiency may decrease.

このような拡管加工を行なうことにより、第20図に示
すように副1745の開[1幅が適度に押し広げられ、
主溝4の管状部6の開1]幅がさらに狭まって、管状部
6を一層管形状に近イ」けることができ、前述した気泡
形成作用を促進し、蒸発効率の向−[。
By carrying out such pipe expansion processing, as shown in FIG.
The width of the tubular portion 6 of the main groove 4 is further narrowed, making it possible to make the tubular portion 6 more similar to a tubular shape, promoting the above-mentioned bubble formation effect and improving evaporation efficiency.

か図れる。It can be planned.

「発明の効果」 以ト説明したように、本発明に係わる伝熱管では、各市
lfI¥の長手方向に間陥を空illて、開口幅が上溝
の内幅に比して狭い管状部が多数形成されてし)るため
、ごの伝熱管を熱交換器等の蒸発部に使用した場合には
、各管状部の内部に気泡が発生しゃ引く、これら気泡が
蒸発部となって熱媒体の蒸発を促進し、気化効率が格段
に高められる。
"Effects of the Invention" As explained above, in the heat exchanger tube according to the present invention, there are many tubular portions in which the opening width is narrower than the inner width of the upper groove, with gaps in the longitudinal direction of each city. Therefore, when heat exchanger tubes are used in the evaporation section of a heat exchanger, air bubbles are generated inside each tubular section, and these bubbles become the evaporation section and cause the heat medium to evaporate. It promotes evaporation and greatly increases vaporization efficiency.

また、この伝熱管によれば、各主溝内に流れ込んだ熱媒
液体は、管状部内にお(」る毛細管現象により主dI¥
に’/I+’fっで速やかに輸送されるため、j、lG
純な溝を形成した伝熱管の場合に比して、熱媒体の輸送
効率6向上する。
In addition, according to this heat transfer tube, the heat medium liquid that has flowed into each main groove is caused by the capillary phenomenon within the tubular portion to the main dI
Since it is quickly transported by '/I+'f, j, lG
Compared to the case of a heat exchanger tube with pure grooves formed therein, the heat medium transport efficiency is improved by 6.

−・方、この伝熱管を熱交換器の凝縮管とと7で使用(
、た場合には、上述の表面I馬力によへて各突条の間の
上溝に液体が満たされ、各突条の表面が凝縮液の薄層に
覆われたとしご(9、伝熱管内面から起立した各フィン
の先端は液切れがよいため、凝縮液の表面から突出する
。1−2たがって、5これらフィンの先端では金属面が
産出した状態に保たれ、熱媒体蒸気との熱交換率が高<
1イ(持されるから、従来のm純金1勺き伝熱管に比し
2て凝縮効>pも大幅に高めろことが可能である。
-, this heat transfer tube is used with the condensing tube of the heat exchanger and 7 (
, the upper groove between each protrusion is filled with liquid due to the above-mentioned surface I horsepower, and the surface of each protrusion is covered with a thin layer of condensate (9, heat transfer tube). The tip of each fin that stands up from the inner surface protrudes from the surface of the condensate because it drains well.1-2 Therefore, at the tips of these fins, the metal surface is kept in a state of being produced, and there is no contact with the heat medium vapor. High heat exchange rate
1), it is possible to greatly increase the condensing efficiency>p compared to the conventional pure gold heat exchanger tube.

一方、本発明に係わる伝熱管の製造方法によりば、従来
は製造が困難だった1if7記のよう!3伝熱管を容易
に製造できる。また、圧延工程および電縫工程の2工程
を連続させることにより、長尺の伝熱管を連続的に効率
良く製Jja−,J−ることができ、量産に適し、製ノ
浩コストの低減が図れるという利点を有する。
On the other hand, according to the method for manufacturing a heat exchanger tube according to the present invention, it is possible to produce a heat exchanger tube as described in 1if7, which was previously difficult to manufacture. 3. Heat exchanger tubes can be manufactured easily. In addition, by continuously performing the rolling process and the electric resistance welding process, long heat exchanger tubes can be manufactured continuously and efficiently, making it suitable for mass production and reducing manufacturing costs. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる伝熱管の一実施例の断而□・図
、第2図は伝熱管の内面の拡大図、第3図ないし第7図
はIn −ITJないし■−■l線視断線図断面図図(
j聞伝熱管の製造方法を示す説明図、第9図は第10−
ルの断面を示」゛説明図、第10図は第20−ルの断面
を示す説明図、第11図ないし第15図は本発明の伝熱
管の製造方法の一実施例の説明図、第16図ない1.第
19図は本発明の効果を示す説明図、第20図は前記伝
熱管を拡径(7た状態を示す断面の拡大図である。 1・金属管、1△ 溶接部、2・突条、3 フィン、4
 主溝、5 副溝、 6 管状部、R1第10−ル、 R2第20−ル、I7  凝縮液。
Fig. 1 is a diagram of an embodiment of the heat exchanger tube according to the present invention, Fig. 2 is an enlarged view of the inner surface of the heat exchanger tube, and Figs. 3 to 7 are In-ITJ to ■-■l lines. Viewed line diagram Cross section diagram (
An explanatory diagram showing the manufacturing method of J-shaped heat transfer tubes, Fig. 9 is similar to Fig. 10-
FIG. 10 is an explanatory diagram showing a cross section of the 20-ru tube, and FIGS. 16 figures 1. Fig. 19 is an explanatory diagram showing the effect of the present invention, and Fig. 20 is an enlarged cross-sectional view showing the state in which the heat exchanger tube is expanded in diameter. 1. Metal tube, 1△ welded part, 2. Protrusion , 3 fin, 4
Main groove, 5 Minor groove, 6 Tubular part, R1 10th line, R2 20th line, I7 Condensate.

Claims (6)

【特許請求の範囲】[Claims] (1)金属管の内周面に、 この金属管の軸線に対して傾斜した方向に延び、断面が
ほぼ矩形状をなす多数の平行な突条と、前記金属管の内
面から起立し、前記突条と平行に延びるフィンと、 前記突条およびフィンと一定角度をなして交差する多数
の平行な副溝とが形成され、 前記各突条と前記各副溝との交差部分で各突条が各副溝
の中心線から両側へ変形されることにより、各突条同士
の間の主溝の開口幅が狭められ、それぞれ管状部とされ
ていることを特徴とする伝熱管。
(1) On the inner circumferential surface of the metal tube, a large number of parallel protrusions extending in a direction oblique to the axis of the metal tube and having a substantially rectangular cross section, and erecting from the inner surface of the metal tube, Fins extending parallel to the protrusions and a large number of parallel sub-grooves intersecting the protrusions and the fins at a certain angle are formed, and each protrusion is formed at the intersection of each protrusion and each sub-groove. is deformed from the center line of each sub-groove to both sides, thereby narrowing the opening width of the main groove between each of the protrusions to form a tubular portion.
(2)前記フィンの先端は、断面が鋭角に尖って形成さ
れていることを特徴とする請求項1記載の伝熱管。
(2) The heat exchanger tube according to claim 1, wherein the tip of the fin is formed to have an acutely pointed cross section.
(3)前記金属管の内面からの前記フィンの突出量は、
前記突条の突出量よりも小さいことを特徴とする請求項
1または2記載の伝熱管。
(3) The amount of protrusion of the fins from the inner surface of the metal tube is:
The heat exchanger tube according to claim 1 or 2, characterized in that the amount of protrusion is smaller than the amount of protrusion of the protrusion.
(4)一定幅の金属板条材の表面に、多数の平行な断面
矩形状の突条、およびこれら突条と平行で突条よりも幅
狭のフィンを圧延形成し、 これら突条およびフィンと一定角度で交差する多数の平
行な副溝を圧延形成することにより、これら副溝と交差
する部分において各突条の先端部を副溝の中心線から両
側へ変形させ、各突条の間の主溝の開口幅を、これら変
形部分で相対的に狭めた後、 この溝形成面を内側に向けた状態で、前記板条材を管状
に丸めて電縫加工し、伝熱管を成形することを特徴とす
る伝熱管の製造方法。
(4) A large number of parallel protrusions with a rectangular cross section and fins parallel to these protrusions and narrower than the protrusions are formed by rolling on the surface of a metal plate strip of a constant width, and these protrusions and fins are formed by rolling. By rolling a large number of parallel sub-grooves that intersect with the sub-grooves at a certain angle, the tip of each protrusion is deformed from the center line of the sub-groove to both sides at the portions that intersect with these sub-grooves. After relatively narrowing the opening width of the main groove at these deformed parts, with the groove forming surface facing inward, the plate material is rolled into a tubular shape and subjected to electric resistance welding to form a heat exchanger tube. A method for manufacturing a heat exchanger tube, characterized in that:
(5)前記副溝は断面V字状に形成することを特徴とす
る請求項4記載の伝熱管の製造方法。
(5) The method for manufacturing a heat exchanger tube according to claim 4, wherein the sub-groove is formed to have a V-shaped cross section.
(6)前記突条と前記副溝の交差角度は20〜60゜で
あることを特徴とする請求項4または5記載の伝熱管の
製造方法。
(6) The method for manufacturing a heat exchanger tube according to claim 4 or 5, wherein the intersecting angle between the protrusions and the sub-grooves is 20 to 60 degrees.
JP23535890A 1990-09-05 1990-09-05 Heat transferring tube and method for manufacturing heat transferring tube Pending JPH04116391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23535890A JPH04116391A (en) 1990-09-05 1990-09-05 Heat transferring tube and method for manufacturing heat transferring tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23535890A JPH04116391A (en) 1990-09-05 1990-09-05 Heat transferring tube and method for manufacturing heat transferring tube

Publications (1)

Publication Number Publication Date
JPH04116391A true JPH04116391A (en) 1992-04-16

Family

ID=16984905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23535890A Pending JPH04116391A (en) 1990-09-05 1990-09-05 Heat transferring tube and method for manufacturing heat transferring tube

Country Status (1)

Country Link
JP (1) JPH04116391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692560A (en) * 1993-06-07 1997-12-02 Trefimetaux Grooved tubes for heat exchangers in air conditioning equipment and refrigerating equipment, and corresponding exchangers
FR2893124A1 (en) * 2005-11-09 2007-05-11 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS HAVING IMPROVED EXPANSION RESISTANCE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692560A (en) * 1993-06-07 1997-12-02 Trefimetaux Grooved tubes for heat exchangers in air conditioning equipment and refrigerating equipment, and corresponding exchangers
FR2893124A1 (en) * 2005-11-09 2007-05-11 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS HAVING IMPROVED EXPANSION RESISTANCE
WO2007054642A1 (en) * 2005-11-09 2007-05-18 Trefimetaux Grooved tubes for heat exchangers with better resistance to expansion

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
US6167950B1 (en) Heat transfer tube
US4938282A (en) High performance heat transfer tube for heat exchanger
US6457516B2 (en) Heat transfer tube for evaporation with variable pore sizes
AU722999B2 (en) A heat transfer tube and method of manufacturing same
US5010643A (en) High performance heat transfer tube for heat exchanger
US5933953A (en) Method of manufacturing a heat transfer tube
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH04116391A (en) Heat transferring tube and method for manufacturing heat transferring tube
JP2701956B2 (en) ERW pipe for heat transfer
JPS6011800B2 (en) Manufacturing method for condensing heat exchanger tubes
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JPH085278A (en) Heat transfer tube with inner surface grooves
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2701957B2 (en) Manufacturing method of ERW pipe for heat transfer
KR940010977B1 (en) Heat pipe using heat exchanger
JP3130964B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JP2690817B2 (en) Heat transfer tube with internal groove
JP2731624B2 (en) Heat exchange equipment
JPS61114092A (en) Heat exchanger
JP3226182B2 (en) Heat exchanger tubes for heat exchangers
JP2758567B2 (en) Heat transfer tube with internal groove