JP2690817B2 - Heat transfer tube with internal groove - Google Patents

Heat transfer tube with internal groove

Info

Publication number
JP2690817B2
JP2690817B2 JP2408474A JP40847490A JP2690817B2 JP 2690817 B2 JP2690817 B2 JP 2690817B2 JP 2408474 A JP2408474 A JP 2408474A JP 40847490 A JP40847490 A JP 40847490A JP 2690817 B2 JP2690817 B2 JP 2690817B2
Authority
JP
Japan
Prior art keywords
groove
heat transfer
transfer tube
main
main groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2408474A
Other languages
Japanese (ja)
Other versions
JPH04254192A (en
Inventor
清慥 桝川
俊緑 ▲すくも▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2408474A priority Critical patent/JP2690817B2/en
Publication of JPH04254192A publication Critical patent/JPH04254192A/en
Application granted granted Critical
Publication of JP2690817B2 publication Critical patent/JP2690817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器やヒートパイ
プ等に使用される伝熱管に係わり、特に、凝縮部として
使用した際の伝熱効率を高めるための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for a heat exchanger, a heat pipe, etc., and more particularly to an improvement for increasing heat transfer efficiency when used as a condenser.

【0002】[0002]

【従来の技術】従来から、銅製等の管体の内面に、転造
加工や引抜加工によって螺旋状または直線状の溝を多数
形成した伝熱管が知られており、このような溝を形成す
ることにより以下のような効果を得ている。
2. Description of the Related Art Conventionally, there has been known a heat transfer tube in which a large number of spiral or linear grooves are formed on the inner surface of a tubular body made of copper or the like by rolling or drawing. As a result, the following effects are obtained.

【0003】A.この伝熱管を凝縮管として使用した場
合には、凝縮管内を流れる熱媒体の蒸気を溝の間の突条
部により乱流にし、さらに突条部を凝縮核として熱媒体
蒸気の凝縮効果を高め、液化を促進する。また、凝縮し
た熱媒体液体を、溝内における表面張力によって効率的
に伝熱管の長手方向に流し、還流効果を増す。
A. When this heat transfer tube is used as a condensing tube, the steam of the heat medium flowing in the condensing tube is made turbulent by the ridges between the grooves, and the ridges serve as condensation nuclei to enhance the condensation effect of the heat medium vapor. , Promote liquefaction. In addition, the condensed heat medium liquid efficiently flows in the longitudinal direction of the heat transfer tube due to the surface tension in the groove, and the reflux effect is increased.

【0004】B.蒸発管として使用した場合には、蒸発
管の溝のエッジが気泡を発するための蒸発核となり、沸
騰を促進して、伝熱管内に供給される熱媒体液体の気化
効率が向上する。また、溝内における表面張力によっ
て、熱媒体液体が伝熱管の長手方向に流れ、伝熱管の内
面に均一に分散される。
B. When used as an evaporation tube, the edge of the groove of the evaporation tube serves as an evaporation nucleus for generating bubbles, promotes boiling, and improves the vaporization efficiency of the heat medium liquid supplied into the heat transfer tube. Further, due to the surface tension in the groove, the heat medium liquid flows in the longitudinal direction of the heat transfer tube and is uniformly dispersed on the inner surface of the heat transfer tube.

【0005】ところで、このような溝付き伝熱管の性能
を向上するには、溝の開口幅を狭めて、管状に近付ける
ことが有効であると考えられる。このような管状の溝に
よれば、例えば蒸発管として使用した場合に、溝の内部
に気泡が発生しやすく、この気泡が核となって熱媒体の
蒸発を促進し、気化効率がさらに高められる。また、溝
内での表面張力が向上されるため、表面張力による熱媒
体の輸送効率が増し、総合的な伝熱性能が向上すると考
えられる。
By the way, in order to improve the performance of such a heat transfer tube with a groove, it is considered effective to narrow the opening width of the groove so that it becomes closer to a tubular shape. According to such a tubular groove, when used as, for example, an evaporation tube, bubbles are likely to be generated inside the groove, and the bubbles serve as nuclei to promote evaporation of the heat medium and further improve vaporization efficiency. . Further, since the surface tension in the groove is improved, it is considered that the transport efficiency of the heat medium due to the surface tension is increased and the overall heat transfer performance is improved.

【0006】そこで本発明者らは、金属管の内面に、互
いに交差する2種の螺旋溝を順次形成することにより、
これら溝の交差部相互の間に、開口幅が相対的に狭めら
れた管状部が形成できるのではないかとの観点から実験
を行ない、その結果、上記のように交差溝を形成する
と、初めに形成した溝(主溝)が次に形成した溝(副溝)に
より間欠的に開口幅が狭められ、前述したような管状部
が形成できることを見出だした。
Therefore, the inventors of the present invention successively form two kinds of spiral grooves intersecting with each other on the inner surface of the metal tube,
Experiments were conducted from the viewpoint that a tubular part with a relatively narrow opening width could be formed between the intersections of these grooves, and as a result, when the intersection grooves were formed as described above, It has been found that the formed groove (main groove) is intermittently narrowed in opening width by the groove (sub groove) formed next, and the tubular portion as described above can be formed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな交差溝および管状部を形成した伝熱管では、前記管
状部の断面が他の部分に比して狭まっているために、管
状部の毛細管力による液体輸送効率は良好であるもの
の、伝熱管の内面に沿う流液抵抗は、必然的に大きくな
る。このため、伝熱管内での熱媒液体の移送速度が大き
い場合には、伝熱管の内面近傍での流速が、伝熱管の中
心付近での流速に比べてかなり遅くなり、伝熱管全体と
しての圧力損失が無視できず、この圧力損失に起因する
伝熱効率の低下を招くおそれがあった。
However, in the heat transfer tube having the cross groove and the tubular portion, the cross-section of the tubular portion is narrower than the other portions, so that the capillary force of the tubular portion is increased. Although the liquid transport efficiency by the method is good, the liquid resistance along the inner surface of the heat transfer tube is inevitably large. Therefore, when the transfer speed of the heat transfer liquid in the heat transfer tube is high, the flow velocity near the inner surface of the heat transfer tube becomes considerably slower than the flow velocity near the center of the heat transfer tube, and the heat transfer tube as a whole does not The pressure loss cannot be ignored, and the heat transfer efficiency may be reduced due to the pressure loss.

【0008】また、この伝熱管を凝縮部として使用した
場合には、管状部の優れた毛細管作用により、生成した
液体が伝熱管の内面全面に広がるため、液体量が交差溝
内だけで保持しきれない量に達すると、溝から液体が溢
れて金属面の全面が液膜により覆われる結果となる。そ
してこの液膜により、伝熱管と熱媒蒸気との伝熱効率が
低下し、凝縮効率が低下する問題もあった。
When the heat transfer tube is used as a condenser, the produced liquid spreads over the entire inner surface of the heat transfer tube due to the excellent capillary action of the tubular portion, so that the amount of liquid is retained only in the intersecting groove. When the amount exceeds the limit, the liquid overflows from the groove and the entire metal surface is covered with the liquid film. Further, due to this liquid film, there is a problem that the heat transfer efficiency between the heat transfer tube and the heat medium vapor is reduced, and the condensation efficiency is reduced.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、金属管の内周面に、この金
属管の軸線方向に対し傾斜した方向に延びる多数の互い
に平行な主溝と、これら主溝と一定角度をなす多数の互
いに平行な断面V字状の副溝とが順に形成され、前記主
溝と前記副溝との各交差部の間には、前記各主溝に沿っ
て、開口幅が前記主溝の内幅よりも狭められた管状部が
形成されるとともに、同一の主溝に沿って並ぶ前記管状
部同士の間には、管状部の開口幅よりも大きい開口幅を
有する部分が形成され、さらに、前記金属管の内面に
は、前記軸線方向に延び、前記主溝および副溝のいずれ
とも交差する流液溝が形成されていることを特徴とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a plurality of parallel to each other extending in a direction inclined with respect to the axial direction of the metal pipe is provided on the inner peripheral surface of the metal pipe. A main groove and a large number of sub-grooves having a V-shaped cross section which are parallel to each other and form a constant angle with the main groove are sequentially formed, and the main grooves are provided between the intersections of the main grooves and the sub-grooves. Along the groove, a tubular portion whose opening width is narrower than the inner width of the main groove is formed, and between the tubular portions arranged along the same main groove, the opening width of the tubular portion is smaller than that of the tubular portion. And a liquid flow groove extending in the axial direction and intersecting both the main groove and the sub groove is formed on the inner surface of the metal pipe. To do.

【0010】[0010]

【作用】この内面溝付き伝熱管によれば、交差溝によっ
て形成される管状部により、良好な蒸発促進作用および
表面張力による液体輸送効率の向上が図れる一方、伝熱
管内での熱媒液体の流速が速い場合にも、これら液体は
主に軸線方向に向けて延びる流液溝に集中して効率良く
流れるため、管状部による伝熱管の内面近傍での流液抵
抗の増加を緩和し、流液抵抗に起因する圧力損失の増加
および伝熱効率の低下を防ぐことができる。
According to this heat transfer tube with an inner groove, the tubular portion formed by the intersecting groove can achieve a good evaporation promoting effect and an improvement in the liquid transport efficiency due to the surface tension, while the heat transfer liquid in the heat transfer tube is prevented. Even when the flow velocity is high, these liquids mainly concentrate in the liquid flow grooves that extend in the axial direction and flow efficiently, so that the increase in liquid flow resistance near the inner surface of the heat transfer tube due to the tubular portion is mitigated, It is possible to prevent an increase in pressure loss and a decrease in heat transfer efficiency due to the liquid resistance.

【0011】また、この伝熱管は、凝縮部として使用し
た場合にも、流液溝によって主溝および副溝が分断され
ているので、主溝および副溝に沿う熱媒液体の広がりが
流液溝によって阻止され、伝熱管の内面全面に液膜が広
がって金属面全面が覆われることがない。したがって、
液膜の広がりによる伝熱管と熱媒蒸気との伝熱効率の低
下が防止でき、常に良好な熱交換能力を維持することが
可能である。
Further, even when this heat transfer tube is used as a condenser, since the main groove and the sub groove are divided by the liquid flow groove, the spread of the heat medium liquid along the main groove and the sub groove will flow. The groove prevents the liquid film from spreading on the entire inner surface of the heat transfer tube and covering the entire metal surface. Therefore,
It is possible to prevent a decrease in heat transfer efficiency between the heat transfer tube and the heating medium vapor due to the spread of the liquid film, and it is possible to always maintain a good heat exchange capacity.

【0012】[0012]

【実施例】以下、図1ないし図11を参照して、本発明
に係わる伝熱管の一実施例を詳細に説明する。この実施
例の伝熱管は、図1および図2に示すように、断面円形
の金属管1の内面に、この金属管1の軸方向に対して一
定角度をなす多数の平行な螺旋状の主溝2と、これら主
溝2と一定角度で交差する多数の平行な螺旋状の副溝3
が形成されるとともに、金属管1の軸線方向に向けて延
びる流液溝5が複数本(この例では4本)形成されたもの
である。金属管1の材質は、銅および銅合金、アルミニ
ウム等の従来から使用されているいずれの材質でもよ
く、その肉厚や径等は、伝熱管の用途に応じて決められ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heat transfer tube according to the present invention will be described in detail below with reference to FIGS. As shown in FIG. 1 and FIG. 2, the heat transfer tube of this embodiment has a large number of parallel spiral-shaped main pipes formed on the inner surface of the metal tube 1 having a circular cross section at an angle to the axial direction of the metal tube 1. Groove 2 and a number of parallel spiral sub-grooves 3 that intersect these main grooves 2 at a constant angle.
And a plurality of liquid flow grooves 5 (four in this example) extending in the axial direction of the metal tube 1 are formed. The material of the metal tube 1 may be any conventionally used material such as copper, copper alloy, and aluminum, and the thickness and diameter thereof are determined according to the application of the heat transfer tube.

【0013】各主溝2の両側壁は、図2、図3ないし図
7に示すように、主溝2と副溝3の各交差部の間におい
て主溝2の内側にそれぞれ傾けられ、主溝2の開口幅が
狭められて断面が台形状の管状部4になっている。ま
た、金属管1の内面の一部には、図1に示すように軸線
方向に延びる帯状の溶接部1Aが1本形成されている。
As shown in FIGS. 2 and 3 to 7, the both side walls of each main groove 2 are inclined to the inside of the main groove 2 between the intersections of the main groove 2 and the sub groove 3, respectively. The opening width of the groove 2 is narrowed to form a tubular portion 4 having a trapezoidal cross section. In addition, as shown in FIG. 1, one band-shaped welded portion 1A extending in the axial direction is formed on a part of the inner surface of the metal tube 1.

【0014】主溝2は、副溝3を形成する前の状態で、
図11に示すように底部の断面角度が直角に近い断面コ
字状とされている。コ字形に近い方が主溝2の開口幅を
狭めて管状に形成し易い。主溝2の内幅W1は、深さD
1の40〜140%、望ましくは80〜120%とされ
る。40%未満では、副溝3の形成により主溝2が潰れ
易くなるうえ、加工も困難である。また、140%より
大では管状部4の開口幅を十分狭めることができない。
The main groove 2 is in a state before the sub groove 3 is formed.
As shown in FIG. 11, the cross-sectional angle of the bottom portion is a substantially U-shaped cross section. The closer to the U-shape, the narrower the opening width of the main groove 2 and the easier it is to form a tubular shape. The inner width W1 of the main groove 2 is the depth D
1 to 40 to 140%, preferably 80 to 120%. If it is less than 40%, the main groove 2 is likely to be crushed due to the formation of the sub groove 3, and the processing is also difficult. Further, if it is larger than 140%, the opening width of the tubular portion 4 cannot be narrowed sufficiently.

【0015】主溝2の間隔P1は、内幅W1の1.5〜
3倍、望ましくは1.8〜2.2倍とされる。1.5倍
未満では副溝3を形成すると主溝2間の突条部の倒れが
生じて管状部4の形成が困難になる。また、3倍より大
では主溝2の形成密度が小さくなり、伝熱性能を向上す
る効果が減少する。具体的には、通常の伝熱管の場合、
主溝2の深さD1=0.2〜0.3 、幅W1=0.2〜
0.5 、P1=0.4〜1.5 、底部の断面角度は
75°以上程度が適当である。
The interval P1 between the main grooves 2 is 1.5 to the inner width W1.
3 times, and preferably 1.8 to 2.2 times. If it is less than 1.5 times, when the sub-groove 3 is formed, the projecting ridge portion between the main grooves 2 collapses and it becomes difficult to form the tubular portion 4. On the other hand, if it is more than 3 times, the formation density of the main grooves 2 becomes small, and the effect of improving the heat transfer performance decreases. Specifically, in the case of a normal heat transfer tube,
The depth D1 of the main groove 2 is 0.2 to 0.3 and the width W1 is 0.2 to
0.5, P1 = 0.4 to 1.5, and the cross-sectional angle of the bottom is preferably about 75 ° or more.

【0016】一方、副溝3は断面V字状に形成されてい
る。副溝3の間隔P2は主溝2の間隔P1と同等でよい
が、必ずしも主溝2と等しい必要はない。副溝3の幅W
2は主溝の開口幅W3の25〜90%、望ましくは50
〜70%とされる。25%未満では管状部4の開口幅を
十分狭めることができず、90%より大では管状部4の
開口部を閉じてしまうおそれがある。また、副溝3の深
さD2は主溝深さD1の50〜100%、望ましくは8
0〜100%とされる。50%未満では管状部4の開口
幅を十分狭めることができず、100%より大では管状
部4の開口部を閉じてしまうおそれがある。具体的に
は、通常の伝熱管の場合、副溝3の深さD2=0.15
〜0.3 、間隔P2=0.4〜1.5 、V字の断面角
度は45〜90°程度が好適である。
On the other hand, the sub groove 3 has a V-shaped cross section. The distance P2 between the sub-grooves 3 may be equal to the distance P1 between the main grooves 2, but does not necessarily have to be equal to the main groove 2. Width W of sub groove 3
2 is 25 to 90% of the opening width W3 of the main groove, preferably 50
~ 70%. If it is less than 25%, the opening width of the tubular portion 4 cannot be sufficiently narrowed, and if it is more than 90%, the opening portion of the tubular portion 4 may be closed. Further, the depth D2 of the sub groove 3 is 50 to 100% of the depth D1 of the main groove, preferably 8
It is set to 0 to 100%. If it is less than 50%, the opening width of the tubular portion 4 cannot be narrowed sufficiently, and if it is more than 100%, the opening portion of the tubular portion 4 may be closed. Specifically, in the case of a normal heat transfer tube, the depth D2 of the auxiliary groove 3 is 0.15.
˜0.3, the interval P2 = 0.4 to 1.5, and the V-shaped cross-section angle is preferably about 45 to 90 °.

【0017】主溝2と副溝3の交差角度αは20〜60
°、特に30〜40°であることが望ましい。20〜6
0°の範囲を外れると、管状部4の形成が困難になる。
また、主溝2は金属管1の軸方向に対して30°以内で
あることが望ましい。これより大では金属管1の軸方向
への熱媒液体の流通が悪くなる。
The intersection angle α between the main groove 2 and the sub groove 3 is 20 to 60.
It is desirable that the angle is 0 °, particularly 30 to 40 °. 20-6
If it goes out of the range of 0 °, it becomes difficult to form the tubular portion 4.
Further, the main groove 2 is preferably within 30 ° with respect to the axial direction of the metal tube 1. If it is larger than this, the flow of the heat medium liquid in the axial direction of the metal tube 1 becomes poor.

【0018】上記のような主溝2と副溝3を形成するこ
とにより、管状部4の最小開口幅は、主溝2の幅W1の
75%以下に狭められている。これが75%より大では
気泡の発生効果が低下し、従来の溝付き伝熱管に比して
の伝熱性能向上効果が低下する。
By forming the main groove 2 and the sub groove 3 as described above, the minimum opening width of the tubular portion 4 is narrowed to 75% or less of the width W1 of the main groove 2. If it is more than 75%, the effect of generating bubbles is lowered, and the effect of improving heat transfer performance is lower than that of the conventional grooved heat transfer tube.

【0019】一方、流液溝5は、金属管1の内面の周方
向に、間隔を空けて複数形成されている。図の例では流
液溝5が周方向等間隔に形成されているが、本発明はそ
れに限定されず、互いに異なる間隔で流液溝5を形成し
てもよい。
On the other hand, a plurality of liquid flow grooves 5 are formed at intervals in the circumferential direction of the inner surface of the metal pipe 1. In the illustrated example, the liquid flow grooves 5 are formed at equal intervals in the circumferential direction, but the present invention is not limited thereto, and the liquid flow grooves 5 may be formed at different intervals.

【0020】流液溝5の本数は、図では4本に設定され
ているが、1〜3本でも、5本以上でもよい。ただし、
数が多すぎるとその分、管状部4の分布密度が低下する
ため、実際には4〜8本程度が好ましい。また、流液溝
5の幅W4および深さD3は、伝熱管の外径や用途、熱
媒の種類に応じて決定されるべきである。
Although the number of the liquid flow grooves 5 is set to four in the figure, it may be one to three or five or more. However,
If the number is too large, the distribution density of the tubular portion 4 is correspondingly reduced, so in practice about 4 to 8 pieces are preferable. In addition, the width W4 and the depth D3 of the liquid flow groove 5 should be determined according to the outer diameter and application of the heat transfer tube and the type of heat medium.

【0021】ただし具体的には、前記通常寸法の伝熱管
において、流液溝5の幅W4が主溝2の幅W1の1〜2
倍程度、深さD3は主溝2の深さD1の0.8〜1倍程
度とされることが望ましい。幅W4が幅W1の1倍未満
では液拡散防止効果が低下し、2倍より大きくてもそれ
以上の液拡散防止効果は得られず、相対的に管状部4の
分布密度が低下するため無駄である。また、深さD3が
深さD1の0.8倍未満では液拡散防止効果が低下し、
1倍より大きくてもそれ以上の液拡散防止効果は得られ
ず、金属管1の強度を低下させるため、好ましくない。
Specifically, in the heat transfer tube of the normal size, the width W4 of the liquid flow groove 5 is 1 to 2 of the width W1 of the main groove 2.
It is desirable that the depth D3 is about double and the depth D3 is about 0.8 to 1 times the depth D1 of the main groove 2. If the width W4 is less than 1 time the width W1, the liquid diffusion preventing effect is reduced, and if it is more than 2 times the liquid diffusion preventing effect is not obtained, and the distribution density of the tubular portion 4 is relatively reduced, which is wasteful. Is. Further, when the depth D3 is less than 0.8 times the depth D1, the liquid diffusion preventing effect decreases,
Even if it is more than 1 time, a further liquid diffusion preventing effect cannot be obtained, and the strength of the metal tube 1 is lowered, which is not preferable.

【0022】次に、この伝熱管の製造方法を説明する。
まず、板条材1を図8に示すように、主溝形成ロールR
1、副溝形成ロールR2、および拡散防止溝形成ロール
R3で順次連続的に圧延し、主溝2、副溝3、流液溝5
をこの順序で形成する。
Next, a method of manufacturing this heat transfer tube will be described.
First of all, as shown in FIG.
1, the auxiliary groove forming roll R2, and the diffusion preventing groove forming roll R3 are successively and continuously rolled to obtain the main groove 2, the auxiliary groove 3, and the liquid flowing groove 5.
Are formed in this order.

【0023】主溝形成ロールR1の外周面には、図9に
示すように断面コ字状の突条部10が、ロールR1の周
方向に対して一定角度傾斜して平行に多数形成されてお
り、これにより板条材1の表面には、図11に示すよう
に長手方向に対し傾斜した断面コ字状の主溝2が形成さ
れる。
On the outer peripheral surface of the main groove forming roll R1, as shown in FIG. 9, a large number of projecting ridges 10 having a U-shaped cross section are formed in parallel with each other while being inclined at a constant angle with respect to the circumferential direction of the roll R1. As a result, a main groove 2 having a U-shaped cross section that is inclined with respect to the longitudinal direction is formed on the surface of the plate material 1 as shown in FIG.

【0024】また、副溝形成ロールR2の外周面には、
図10に示すように断面V字状の突条部11が多数平行
に形成されている。これら突条部11はロールR2の周
方向に対して主溝形成ロールR1とは逆の方向に傾斜し
ており、このため板条材1には図11に示すように、主
溝2と一定角度αで交差する多数の平行な断面V字状の
副溝3が形成される。
Further, on the outer peripheral surface of the auxiliary groove forming roll R2,
As shown in FIG. 10, a large number of protrusions 11 having a V-shaped cross section are formed in parallel. These ridges 11 are inclined in the direction opposite to the main groove forming roll R1 with respect to the circumferential direction of the roll R2, and therefore the plate material 1 is fixed to the main groove 2 as shown in FIG. A large number of parallel sub-grooves 3 having a V-shaped cross section are formed so as to intersect at an angle α.

【0025】一方、流液溝形成ロールR3の外周面に
は、図示していないが外周面の周方向に向けて、流液溝
5と相補的な形状をなす突条が複数形成されており、こ
れら突条により、主溝2および副溝3が形成された表面
上にさらに各流液溝5が形成される。
On the other hand, on the outer peripheral surface of the liquid flow groove forming roll R3, a plurality of protrusions (not shown) having a shape complementary to the liquid flow groove 5 are formed in the circumferential direction of the outer peripheral surface. By these ridges, each liquid flow groove 5 is further formed on the surface where the main groove 2 and the sub groove 3 are formed.

【0026】次いで、各溝2,3,5の圧延が終わった
ら、板条材1を溝形成面を内面側に向けた状態で電縫装
置にセットし、多段階に成形ロールの間を通して板条材
1を幅方向に丸めていき、最終的に板条材の両側縁部を
溶接して円管形に成形する。電縫装置としては通常使用
されているものでよく、また電縫条件も通常の加工と同
じでよい。その後、必要に応じて管の外周面の溶接部を
整形したうえ、ロール状に巻きとるか所定の長さで切断
し、長尺の伝熱管を得る。
Next, after the rolling of the grooves 2, 3, 5 is completed, the plate material 1 is set in the electric sewing machine with the groove forming surface facing the inner surface side, and the plate material is passed between the forming rolls in multiple stages. The strip 1 is rolled in the width direction, and finally both side edges of the strip are welded to form a circular pipe shape. A commonly used ERW device may be used, and the ERW conditions may be the same as those of normal processing. Thereafter, if necessary, the welded portion on the outer peripheral surface of the tube is shaped and then wound into a roll or cut at a predetermined length to obtain a long heat transfer tube.

【0027】上記の構成からなる伝熱管によれば、交差
溝(主溝2および副溝3)によって形成された管状部4に
より、良好な蒸発促進作用および表面張力による液体輸
送効率の向上が図れる一方、伝熱管内での熱媒液体の流
速が速い場合にも、これら液体は主に軸線方向に向けて
延びる流液溝5に集中して効率良く流れるため、管状部
4による伝熱管の内面近傍での流液抵抗の増加を緩和
し、流液抵抗に起因する圧力損失の増加および伝熱効率
の低下を防ぐことができる。
According to the heat transfer tube having the above structure, the tubular portion 4 formed by the cross groove (the main groove 2 and the sub groove 3) can improve the liquid transport efficiency by the favorable evaporation promoting action and the surface tension. On the other hand, even when the flow velocity of the heat transfer liquid in the heat transfer tube is high, these liquids mainly concentrate in the liquid flow groove 5 extending in the axial direction and efficiently flow, so that the inner surface of the heat transfer tube by the tubular portion 4 It is possible to mitigate the increase in the liquid flow resistance in the vicinity, and prevent an increase in pressure loss and a decrease in heat transfer efficiency due to the liquid flow resistance.

【0028】また、この伝熱管は凝縮部として使用され
た場合にも、各流液溝5によって主溝2および副溝3が
複数箇所で分断されているので、主溝2および副溝3に
沿う熱媒液体の広がりが流液溝5によって阻止され、伝
熱管の内面全面に液膜が広がって金属面全面が覆われる
ことがない。したがって、液膜の広がりによる伝熱管と
熱媒蒸気との伝熱効率低下が防止でき、常に良好な熱交
換能力を維持することが可能である。
Further, even when this heat transfer tube is used as a condenser, since the main groove 2 and the sub groove 3 are divided at a plurality of points by each liquid flow groove 5, the main groove 2 and the sub groove 3 are separated from each other. The flow of the heat medium liquid along the liquid flow groove 5 is prevented, and the liquid film does not spread over the entire inner surface of the heat transfer tube to cover the entire metal surface. Therefore, it is possible to prevent a decrease in heat transfer efficiency between the heat transfer tube and the heat transfer medium vapor due to the spread of the liquid film, and it is possible to always maintain a good heat exchange capacity.

【0029】なお、この伝熱管の外周面に冷却フィンを
取り付ける場合には、冷却フィンの挿通孔に伝熱管を通
したうえ、伝熱管の内部にプラグを通して伝熱管の外径
を拡大させ、冷却フィンを固定すればよい。その際、本
発明の伝熱管では、プラグによる伝熱管の拡管量を外径
の10%以下、好ましくは7%以下に設定することが望
ましい。拡管量が10%を越えると管状部4が閉じて蒸
発効率が低下するおそれがある。適正な拡管加工を行な
うと、副溝3の開口幅が適度に押し広げられ、主溝2の
管状部4の開口幅が狭まって、より管形状に近付けるこ
とができ、前述した気泡形成作用を促進し、蒸発効率を
向上することが可能である。
When the cooling fin is attached to the outer peripheral surface of the heat transfer tube, the heat transfer tube is passed through the insertion hole of the cooling fin, and then the plug is inserted inside the heat transfer tube to increase the outer diameter of the heat transfer tube. Just fix the fins. At that time, in the heat transfer tube of the present invention, it is desirable to set the expansion amount of the heat transfer tube by the plug to 10% or less of the outer diameter, preferably 7% or less. If the expansion amount exceeds 10%, the tubular portion 4 may be closed and the evaporation efficiency may be reduced. When proper pipe expansion processing is performed, the opening width of the sub-groove 3 is appropriately widened, the opening width of the tubular portion 4 of the main groove 2 is narrowed, and the tube shape can be made closer to the above-mentioned bubble forming action. It is possible to promote and improve the evaporation efficiency.

【0030】なお、上記実施例では、伝熱管の形状を断
面円形としていたが、本発明は円形に限らず、断面楕円
形や偏平管状等としても実施可能である。また、上記の
製造方法では、流液溝5をロールR3により形成してい
たが、ロールR3による圧延の代わりに、電縫加工を終
えた管体に溝形成用プラグを通して、流液溝5を形成し
てもよい。
In the above embodiment, the heat transfer tube has a circular cross section. However, the present invention is not limited to a circular shape, and may be an elliptical cross section or a flat tubular section. Further, in the above-described manufacturing method, the liquid flow groove 5 is formed by the roll R3, but instead of rolling by the roll R3, the liquid flow groove 5 is formed by passing the groove forming plug through the tubular body that has been subjected to the electric resistance sewing process. You may form.

【0031】[0031]

【発明の効果】以上説明したように、本発明に係る内面
溝付き管によれば、蒸発管として使用した場合に、主溝
と副溝との各交差部の間に形成される管状部内で気泡が
盛んに発生し、しかもこれら気泡が管状部内に滞ること
なく、速やかに管状部の開口端から放出されるため、良
好な蒸発促進作用が得られるとともに、断続的に並ぶ管
状部を形成したことにより、表面張力による液体輸送効
率の向上が図れる一方、伝熱管内での熱媒液体の流速が
速い場合にも、これら液体は主に軸線方向に延びる流液
溝に集中して効率よく流れるため、管状部による伝熱管
の内面近傍での流液抵抗の増加を緩和し、流液抵抗に起
因する圧力損失の増加および伝熱効率の低下を防ぐこと
ができる。
As described above, according to the inner grooved tube of the present invention, when it is used as an evaporation tube, inside the tubular portion formed between the intersections of the main groove and the auxiliary groove. Bubbles are generated vigorously, and these bubbles are quickly discharged from the open end of the tubular portion without remaining in the tubular portion, so that a good evaporation promoting action is obtained and the tubular portions are intermittently arranged. As a result, liquid transport efficiency due to surface tension can be improved, and even when the flow velocity of the heat transfer liquid in the heat transfer tube is high, these liquids mainly concentrate in the liquid flow grooves extending in the axial direction and efficiently flow. Therefore, it is possible to mitigate the increase in the liquid flow resistance in the vicinity of the inner surface of the heat transfer tube due to the tubular portion, and to prevent the increase in pressure loss and the decrease in heat transfer efficiency due to the liquid flow resistance.

【0032】また、この伝熱管は、凝縮部として使用し
た場合にも、流液溝によって主溝および副溝が分断され
ているので、主溝および副溝に沿う熱媒液体の広がりが
流液溝によって阻止され、伝熱管の内面全面に液膜が広
がって金属面全面が覆われることがない。したがって、
液膜の広がりによる伝熱管と熱媒蒸気との伝熱効率低下
が防止でき、常に良好な熱交換能力を維持することが可
能である。
Further, even when this heat transfer tube is used as a condenser, since the main groove and the sub groove are divided by the liquid flow groove, the spread of the heat medium liquid along the main groove and the sub groove flows. The groove prevents the liquid film from spreading on the entire inner surface of the heat transfer tube and covering the entire metal surface. Therefore,
It is possible to prevent a decrease in heat transfer efficiency between the heat transfer tube and the heating medium vapor due to the spread of the liquid film, and it is possible to always maintain a good heat exchange capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内面溝付き伝熱管の一実施例を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a heat transfer tube with an inner groove of the present invention.

【図2】上記実施例の内面性状を示す拡大図である。FIG. 2 is an enlarged view showing an inner surface property of the above embodiment.

【図3】図2中のA−A線断面の拡大図である。3 is an enlarged view of a cross section taken along the line AA in FIG.

【図4】図2中のB−B線断面の拡大図である。FIG. 4 is an enlarged view of a cross section taken along the line BB in FIG.

【図5】図2中のC−C線断面の拡大図である。5 is an enlarged view of a cross section taken along the line C-C in FIG. 2.

【図6】図2中のD−D線断面の拡大図である。FIG. 6 is an enlarged view of a cross section taken along line DD in FIG.

【図7】図2中のE−E線断面の拡大図である。FIG. 7 is an enlarged view of a cross section taken along line EE in FIG.

【図8】上記実施例の製造方法を示す概略図である。FIG. 8 is a schematic view showing a manufacturing method of the above-mentioned embodiment.

【図9】上記製造方法に使用される主溝形成ロールの断
面図である。
FIG. 9 is a cross-sectional view of a main groove forming roll used in the above manufacturing method.

【図10】上記製造方法に使用される副溝形成ロールの
断面図である。
FIG. 10 is a cross-sectional view of a sub groove forming roll used in the above manufacturing method.

【図11】主溝と副溝のそれぞれの形成状態を示す説明
図である。
FIG. 11 is an explanatory diagram showing a formation state of each of a main groove and a sub groove.

【符号の説明】[Explanation of symbols]

1 金属管 2 主溝 3 副溝 4 管状部 5 流液溝 1 Metal Pipe 2 Main Groove 3 Sub Groove 4 Tubular Section 5 Flow Liquid Groove

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属管の内周面に、この金属管の軸線方
向に対し傾斜した方向に延びる多数の互いに平行な主溝
と、これら主溝と一定角度をなす多数の互いに平行な
面V字状の副溝とが順に形成され、前記主溝と前記副溝
との各交差部の間には、前記各主溝に沿って、開口幅が
前記主溝の内幅よりも狭められた管状部が形成されると
ともに、同一の主溝に沿って並ぶ前記管状部同士の間に
は、管状部の開口幅よりも大きい開口幅を有する部分が
形成され、さらに、前記金属管の内面には、前記軸線方
向に延び、前記主溝および副溝のいずれとも交差する流
液溝が形成されていることを特徴とする内面溝付き伝熱
管。
1. A large number of parallel main grooves extending in a direction inclined with respect to the axial direction of the metal tube and a large number of parallel cuts forming a constant angle with the main groove on the inner peripheral surface of the metal tube.
A surface V-shaped sub-groove is sequentially formed, and an opening width is narrower than an inner width of the main groove along each of the main grooves between each intersection of the main groove and the sub-groove. Between the tubular portions formed along the same main groove as the tubular portion formed is formed.
Is a part with an opening width larger than the opening width of the tubular part.
A heat transfer tube with an inner surface groove, wherein the inner surface of the metal tube is formed with a liquid flow groove extending in the axial direction and intersecting both the main groove and the sub groove.
JP2408474A 1990-12-27 1990-12-27 Heat transfer tube with internal groove Expired - Fee Related JP2690817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408474A JP2690817B2 (en) 1990-12-27 1990-12-27 Heat transfer tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408474A JP2690817B2 (en) 1990-12-27 1990-12-27 Heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH04254192A JPH04254192A (en) 1992-09-09
JP2690817B2 true JP2690817B2 (en) 1997-12-17

Family

ID=18517925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408474A Expired - Fee Related JP2690817B2 (en) 1990-12-27 1990-12-27 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP2690817B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628712B2 (en) * 1988-09-12 1997-07-09 古河電気工業株式会社 Method of forming heat transfer surface
JPH0297896A (en) * 1988-09-30 1990-04-10 Matsushita Refrig Co Ltd Manufacture of heat exchanger
JPH0824952B2 (en) * 1988-11-15 1996-03-13 日立電線株式会社 Heat transfer tube for condensation in tube and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04254192A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
KR0153177B1 (en) Heat transfer tube
JP2721309B2 (en) Heat transfer tube
US6067712A (en) Heat exchange tube with embossed enhancement
US6167950B1 (en) Heat transfer tube
JPH05106990A (en) Heat transfer tube with inner surface groove and manufacture thereof
JPH109789A (en) Heat exchanger tube
AU722999B2 (en) A heat transfer tube and method of manufacturing same
US5933953A (en) Method of manufacturing a heat transfer tube
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP2690817B2 (en) Heat transfer tube with internal groove
JP2701956B2 (en) ERW pipe for heat transfer
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP2000121272A (en) Heat exchanger tube with internal groove and heat exchanger
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JP2701957B2 (en) Manufacturing method of ERW pipe for heat transfer
JP2731624B2 (en) Heat exchange equipment
JPS62102093A (en) Heat transfer tube equipped with internal grooves
JPH0579782A (en) Heat transfer tube with inner surface groove
JP3130964B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
US20230341193A1 (en) Metal heat exchanger tube
JPH06101986A (en) Heat exchanger tube with grooved internal wall
US20230400264A1 (en) Metal heat exchanger tube
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JPH04116391A (en) Heat transferring tube and method for manufacturing heat transferring tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805

LAPS Cancellation because of no payment of annual fees