JPH04116295A - Axial flow molecular pump - Google Patents

Axial flow molecular pump

Info

Publication number
JPH04116295A
JPH04116295A JP23632390A JP23632390A JPH04116295A JP H04116295 A JPH04116295 A JP H04116295A JP 23632390 A JP23632390 A JP 23632390A JP 23632390 A JP23632390 A JP 23632390A JP H04116295 A JPH04116295 A JP H04116295A
Authority
JP
Japan
Prior art keywords
gas
cooling pipe
axial flow
blades
molecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23632390A
Other languages
Japanese (ja)
Inventor
Kunichi Yamamoto
山本 勲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23632390A priority Critical patent/JPH04116295A/en
Publication of JPH04116295A publication Critical patent/JPH04116295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To maintain the high-vacuum state for a long period by feeding a freezing mixture to a cooling pipe to cool stationary blades, rotating rotary blades at a high speed to discharge the gas on the intake port side to the discharge port side, and condensing and exhausting at least the liquid component contained in the gas on the stationary blades. CONSTITUTION:A cooling pipe 33 penetrates peripheral sections of stationary blades 32 supported apart from a pump case 31, and a freezing mixture such as liquid He or liquid N2 fed from a bottle 36 connected to the cooling pipe 33 is fed into the cooling pipe 33 to cool the stationary blades 32. Rotary blades 21 are rotated at a high speed in an axial flow molecular pump, the freezing mixture is fed to the cooling pipe 33 to cool the stationary blades 33 to the extremely low temperature, thus the gas in a vacuum device is discharged to an exhaust port 35 from an intake port 34, and the liquid component such as steam and oil in the gas is condensed and discharged on the stationary blades 32. The axial flow molecular pump quickly discharges the gas containing the liquid component to the outside of a vacuum device and can generate the same clean vacuum as that generated by a cryopump.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造設備等において高真空を作り出す装置
、特に気体中の液体成分を速やかに排出できる軸流分子
ポンプに関し、 水蒸気等の液体成分を含む気体を速やかに真空装置の外
に排出すると共に、この高真空状態を長時間にわたって
維持できる軸流分子ポンプの提供を目的とし、 軸方向に交互に配列された複数の回転翼および固定翼と
、固定翼の周縁部を貫通させてなる冷却用配管を有し、
冷却用配管に寒剤を流して固定翼を冷却すると共に、回
転翼を高速回転させて吸気口側の気体を排気口側に排出
し、少なくとも気体中に含まれている液体成分を固定翼
に凝縮排気させるように構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a device that creates a high vacuum in semiconductor device manufacturing equipment, etc., especially an axial flow molecular pump that can quickly discharge liquid components in gas. The aim is to provide an axial flow molecular pump that can quickly discharge the air out of the vacuum device and maintain this high vacuum state for a long period of time. It has cooling piping that penetrates the peripheral part of the
A cryogen is poured into the cooling pipe to cool the fixed blades, and the rotor blades are rotated at high speed to discharge the gas from the intake port to the exhaust port, condensing at least the liquid component contained in the gas onto the fixed blades. Configure to exhaust air.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造設備等において高真空を作り
出す装置に係り、特に気体中の液体成分を速やかに排出
できる軸流分子ポンプに関する。
The present invention relates to a device for creating a high vacuum in semiconductor device manufacturing equipment, and more particularly to an axial flow molecular pump that can rapidly discharge liquid components in gas.

半導体装置の製造においてスパッタリング等の作業は高
真空中において行われるが、かかる真空装置に接続され
内部に高真空を作り出す装置は、水蒸気等の液体成分を
含む気体を速やかに真空装置の外に排出すると共に、こ
の高真空状態を長時間にわたって維持できるものでなけ
ればならない。
In the manufacture of semiconductor devices, operations such as sputtering are performed in a high vacuum, and devices that are connected to such vacuum equipment and create a high vacuum inside must quickly exhaust gases containing liquid components such as water vapor to the outside of the vacuum equipment. At the same time, it must be able to maintain this high vacuum state for a long period of time.

〔従来の技術〕[Conventional technology]

第2図はクライオポンプを示す側断面図、第3図は従来
の軸流分子ポンプを示す側断面図である。
FIG. 2 is a side sectional view showing a cryopump, and FIG. 3 is a side sectional view showing a conventional axial flow molecular pump.

半導体装置の製造等において真空装置の内部に高真空を
作り出す装置として、一般に第2図に示すクライオポン
プや第3図に示す軸流分子ポンプが用いられているが、
クライオポンプは第2図に示す如くポンプケース11に
内装されてなるシールド部12と、シールド部12の内
部に塔状に装着されてなる複数段のクライオパネル13
と、シールド部12の吸気口側を塞ぐように設けられた
バッフル14を有し、小型冷却機15およびボンベI6
から供給される液体Heや液体N2等寒剤の作用によっ
て、シールド部12、クライオパネル13、およびバッ
フル14は20〜100Kの極低温に冷却されている。
Cryopumps shown in Figure 2 and axial flow molecular pumps shown in Figure 3 are generally used as devices for creating high vacuum inside vacuum equipment in the manufacture of semiconductor devices, etc.
As shown in FIG. 2, the cryopump includes a shield part 12 housed in a pump case 11, and a multi-stage cryopanel 13 mounted in a tower shape inside the shield part 12.
It has a baffle 14 provided to block the intake port side of the shield part 12, and a small cooler 15 and a cylinder I6.
The shield part 12, the cryopanel 13, and the baffle 14 are cooled to an extremely low temperature of 20 to 100 K by the action of a cryogen such as liquid He or liquid N2 supplied from the cooling agent.

水蒸気やそれより蒸気圧の高い気体は入り口のバッフル
14等に凝縮排気され、水蒸気より蒸気圧の低い窒素、
酸素、アルゴン、ヘリウム、水素等の気体は、極低温に
冷却されたシールド部12やクライオパネル13に捕獲
される。かかるクライオポンプは水蒸気等の液体成分を
含む気体を速やかに排出でき、ポンプ内に油を使用して
いないため本質的に清浄な真空が得られることから、清
浄な真空を必要とする装置の主排気ポンプとして数多く
使用されている。
Water vapor and gases with a higher vapor pressure are condensed and exhausted to the baffle 14 at the entrance, and nitrogen, which has a lower vapor pressure than water vapor,
Gases such as oxygen, argon, helium, and hydrogen are captured by the shield section 12 and cryopanel 13 that are cooled to an extremely low temperature. Such cryopumps can quickly discharge gases containing liquid components such as water vapor, and because they do not use oil in the pump, they provide an essentially clean vacuum, making them ideal for equipment that requires a clean vacuum. It is widely used as an exhaust pump.

また従来の細流分子ポンプは第3図に示す如く高速度で
回転する複数の回転翼21と、ポンプケース22に固定
された複数の固定翼23が軸方向に交互に配設され、回
転翼21は内蔵された駆動モータ25のモータシャフト
24に固定されている。回転翼21を高速回転させると
図示省略された真空装置内の気体は、吸気口26側から
排気口27に排出され真空装置内に高真空が作り出され
る。
Further, as shown in FIG. 3, the conventional trickle-flow molecular pump has a plurality of rotary blades 21 rotating at high speed and a plurality of fixed blades 23 fixed to a pump case 22 which are arranged alternately in the axial direction. is fixed to the motor shaft 24 of a built-in drive motor 25. When the rotary blade 21 is rotated at high speed, gas in the vacuum device (not shown) is discharged from the intake port 26 side to the exhaust port 27, and a high vacuum is created in the vacuum device.

かかる軸流分子ポンプは気体を速やかに排出してクライ
オポンプに近い高真空を作り出し、しかもその真空状態
を長時間にわたって維持できることから、高真空を必要
とする装置の主排気ポンプとして数多く使用されている
Such axial flow molecular pumps quickly discharge gas and create a high vacuum similar to that of cryopumps, and because they can maintain this vacuum state for long periods of time, they are often used as the main exhaust pump for devices that require high vacuum. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし気体を捕獲し高真空を作り出す溜め込み弐のクラ
イオポンプは、運転時間が長くなるに伴って気体を捕獲
する能力が低下し真空度が低下する。したがって例えば
10日に1回運転を中止して再生を図る必要があり、再
生に要する時間と作業可能状態に戻すまでの時間を加算
すると8時間程度になって、その間このクライオポンプ
で高真空を作り出している真空装置は使用できない。
However, as the storage cryopump, which captures gas and creates a high vacuum, increases the operating time, its ability to capture gas decreases and the degree of vacuum decreases. Therefore, for example, it is necessary to stop operation once every 10 days for regeneration, and if you add the time required for regeneration and the time to return to a working state, it will take about 8 hours, during which time the cryopump will operate under high vacuum. The vacuum equipment that is producing it cannot be used.

また従来の軸流分子ポンプは長時間にわたって真空状態
を維持できるが、クライオポンプと比較すると水蒸気等
液体成分の排出速度が遅く、しかも回転部分に潤滑材と
して使用している油が逆に真空装置内に拡散するという
問題があった。
In addition, conventional axial flow molecular pumps can maintain a vacuum state for long periods of time, but compared to cryopumps, the discharge rate of liquid components such as water vapor is slow, and the oil used as a lubricant for the rotating parts can adversely affect vacuum equipment. There was a problem of internal spread.

本発明の目的は水蒸気等の液体成分を含む気体を速やか
に真空装置の外に排出すると共に、この高真空状態を長
時間にわたって維持できる軸流分子ポンプを提供するこ
とにある。
An object of the present invention is to provide an axial flow molecular pump that can quickly discharge gas containing liquid components such as water vapor out of a vacuum device and maintain this high vacuum state for a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明になる軸流分子ポンプを示す側断面図で
ある。なお全図を通し同じ対象物は同一記号で表してい
る。
FIG. 1 is a side sectional view showing an axial flow molecular pump according to the present invention. The same objects are represented by the same symbols throughout the figures.

上記課題は軸方向に交互に配列された複数の回転翼21
および固定翼32と、固定翼32の周縁部を貫通させて
なる冷却用配管33を有し、冷却用配管33に寒剤を流
して固定翼32を冷却すると共に、回転翼21を高速回
転させて吸気口34側の気体を排気口35側に排出し、
少なくとも気体中に含まれている液体成分を固定翼32
に、凝縮排気させるよう構成されてなる本発明の軸流分
子ポンプによって達成される。
The above problem involves a plurality of rotary blades 21 arranged alternately in the axial direction.
It has a fixed blade 32 and a cooling pipe 33 that penetrates the peripheral edge of the fixed blade 32, and cools the fixed blade 32 by flowing a refrigerant through the cooling pipe 33, and rotates the rotary blade 21 at high speed. The gas on the intake port 34 side is discharged to the exhaust port 35 side,
At least the liquid component contained in the gas is removed from the fixed wing 32.
This is achieved by the axial flow molecular pump of the present invention, which is configured to perform condensation and exhaust.

〔作 用〕 第1図において軸方向に交互に配列された複数の回転翼
および固定翼と、固定翼の周縁部を貫通させてなる冷却
用配管を有し、冷却用配管に寒剤を流して固定翼を冷却
すると共に、回転翼を高速回転させて吸気口側の気体を
排気口側に排出し、少なくとも気体中に含まれている液
体成分を固定翼に凝縮排気させるよう構成することによ
って、水蒸気等の液体成分を含む気体を速やかに真空装
置の外に排出すると共に、この高真空状態を長時間にわ
たって維持できる軸流分子ポンプを実現することができ
る。
[Function] As shown in Fig. 1, it has a plurality of rotary blades and fixed blades arranged alternately in the axial direction, and a cooling pipe that penetrates the peripheral edge of the fixed blade. By cooling the fixed blades, rotating the rotary blades at high speed to discharge gas from the intake port side to the exhaust port side, and condensing and exhausting at least the liquid component contained in the gas to the fixed blades, It is possible to realize an axial flow molecular pump that can quickly discharge gas containing liquid components such as water vapor to the outside of the vacuum device and maintain this high vacuum state for a long time.

〔実施例〕〔Example〕

以下第1図により本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to FIG.

本発明になる軸流分子ポンプは第1図に示す如く高速度
で回転する複数の回転翼21と、ポンプケース31によ
って支持された複数の固定翼32が軸方向に交互に配設
され、モータシャフト24に固定された回転翼21は駆
動モータ25によって駆動される。
As shown in FIG. 1, the axial flow molecular pump according to the present invention has a plurality of rotary blades 21 rotating at high speed and a plurality of fixed blades 32 supported by a pump case 31, which are arranged alternately in the axial direction. The rotary blade 21 fixed to the shaft 24 is driven by a drive motor 25.

ポンプケース31から離して支持された固定翼32の周
縁部を冷却用配管33が貫通しており、冷却用配管33
に接続されたボンベ36から供給される液体Heや液体
N2等の寒剤が、冷却用配管33の内部に流されて固定
翼32を冷却するよう構成されている。
A cooling pipe 33 passes through the peripheral edge of the fixed blade 32 that is supported apart from the pump case 31.
A cryogen, such as liquid He or liquid N2, supplied from a cylinder 36 connected to the fixed blade 32 is configured to flow into the cooling pipe 33 to cool the fixed blade 32.

かかる軸流分子ポンプにおいて回転翼21を高速回転さ
せると共に、冷却用配管33に寒剤を流して固定翼32
を極低温に冷却することによって、図示省略された真空
装置中の気体は吸気口34から排気口35に排出され、
気体中の水蒸気や油等の液体成分は固定翼32に凝縮排
気される。即ち、軸流分子ポンプでありながら液体成分
を含む気体を速やかに真空装置の外に排出し、しかもク
ライオポンプと同等の清浄な真空を作り出すことができ
る。
In such an axial flow molecular pump, the rotary blades 21 are rotated at high speed, and a refrigerant is flowed through the cooling pipe 33 to cool the fixed blades 32.
By cooling to an extremely low temperature, the gas in the vacuum device (not shown) is discharged from the intake port 34 to the exhaust port 35,
Liquid components such as water vapor and oil in the gas are condensed to the fixed blades 32 and exhausted. That is, even though it is an axial flow molecular pump, it can quickly exhaust gas containing liquid components to the outside of the vacuum device and create a clean vacuum equivalent to that of a cryopump.

なお本発明になる軸流分子ポンプの液体成分を凝縮排気
する能力は、クライオポンプの場合と同様に運転時間が
長くなるに伴って低下するため、固定翼32に凝縮排気
された液体成分を放出し再生しなければならない。しか
しこの固定翼32の再生は冷媒の供給を絶つことによっ
て容易に行われ、しかもその間は通常の軸流分子ポンプ
として作動するため真空装置の処理を中断する必要はな
い。
Note that the ability of the axial flow molecular pump according to the present invention to condense and exhaust the liquid component decreases as the operating time increases, as in the case of cryopumps, so the ability to condense and exhaust the liquid component to the fixed blade 32 is reduced. and must be regenerated. However, this regeneration of the fixed blades 32 is easily carried out by cutting off the supply of refrigerant, and during this period it operates as a normal axial flow molecular pump, so there is no need to interrupt the processing of the vacuum device.

即ち、水蒸気等の液体成分を含む気体を速やかに真空装
置の外に排出すると共に、この高真空状態を長時間にわ
たって維持できる軸流分子ポンプを実現することができ
る。
That is, it is possible to realize an axial flow molecular pump that can quickly discharge gas containing liquid components such as water vapor to the outside of the vacuum device and maintain this high vacuum state for a long period of time.

をそれぞれ表す。respectively.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明によれば水蒸気等の液体成分を含む気
体を速やかに排出すると共に、この高真空状態を長時間
にわたって維持できる軸流分子ポンプを提供することが
できる。
As described above, according to the present invention, it is possible to provide an axial flow molecular pump that can quickly discharge gas containing liquid components such as water vapor and maintain this high vacuum state for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる軸流分子ポンプを示す側断面図、 第2図はクライオポンプを示す側断面図、第3図は従来
の軸流分子ポンプを示す側断面図、である。図において 21は回転翼、   24はモータシャフト、25は駆
動モータ、 31はポンプケース、32は固定翼、  
 33は冷却用配管、34は吸気口、   35は排気
口、 36はボンベ、 杢発8用呵ケ1済ゲ子不°ンブE示■則灯爪升暑薯 1
 口 フライオポン7°乞示1り眸面ト] 薯 2 図
FIG. 1 is a side sectional view showing an axial flow molecular pump according to the present invention, FIG. 2 is a side sectional view showing a cryopump, and FIG. 3 is a side sectional view showing a conventional axial flow molecular pump. In the figure, 21 is a rotary blade, 24 is a motor shaft, 25 is a drive motor, 31 is a pump case, 32 is a fixed blade,
33 is the cooling pipe, 34 is the intake port, 35 is the exhaust port, 36 is the cylinder, 1.
Mouth fry opon 7° begging 1 look] 薯 2 fig.

Claims (1)

【特許請求の範囲】 軸方向に交互に配列された複数の回転翼(21)および
固定翼(32)と、該固定翼(32)の周縁部を貫通さ
せてなる冷却用配管(33)を有し、 該冷却用配管(33)に寒剤を流して該固定翼(32)
を冷却すると共に、該回転翼(21)を高速回転させて
吸気口(34)側の気体を排気口(35)側に排出し、
少なくとも該気体中に含まれている液体成分を該固定翼
(32)に、凝縮排気させるよう構成されてなることを
特徴とする軸流分子ポンプ。
[Claims] A plurality of rotary blades (21) and fixed blades (32) alternately arranged in the axial direction, and a cooling pipe (33) that penetrates the peripheral edge of the fixed blades (32). the fixed blade (32) by flowing a refrigerant into the cooling pipe (33);
at the same time as rotating the rotor blade (21) at high speed to discharge gas from the intake port (34) side to the exhaust port (35) side,
An axial flow molecular pump characterized in that it is configured to condense and exhaust at least a liquid component contained in the gas to the fixed vane (32).
JP23632390A 1990-09-06 1990-09-06 Axial flow molecular pump Pending JPH04116295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23632390A JPH04116295A (en) 1990-09-06 1990-09-06 Axial flow molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23632390A JPH04116295A (en) 1990-09-06 1990-09-06 Axial flow molecular pump

Publications (1)

Publication Number Publication Date
JPH04116295A true JPH04116295A (en) 1992-04-16

Family

ID=16999106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23632390A Pending JPH04116295A (en) 1990-09-06 1990-09-06 Axial flow molecular pump

Country Status (1)

Country Link
JP (1) JPH04116295A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731278A1 (en) * 1995-03-10 1996-09-11 Balzers-Pfeiffer GmbH Molecular vacuum pump with cooling gas device
JP2001032789A (en) * 1999-07-23 2001-02-06 Anelva Corp Molecular pump
JP2015031153A (en) * 2013-07-31 2015-02-16 エドワーズ株式会社 Vacuum pump
CN104948475A (en) * 2014-03-28 2015-09-30 株式会社岛津制作所 Vacuum pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731278A1 (en) * 1995-03-10 1996-09-11 Balzers-Pfeiffer GmbH Molecular vacuum pump with cooling gas device
US5707213A (en) * 1995-03-10 1998-01-13 Balzers-Pfeiffer Gmbh Molecular vacuum pump with a gas-cooled rotor
JP2001032789A (en) * 1999-07-23 2001-02-06 Anelva Corp Molecular pump
JP4504476B2 (en) * 1999-07-23 2010-07-14 キヤノンアネルバ株式会社 Molecular pump
JP2015031153A (en) * 2013-07-31 2015-02-16 エドワーズ株式会社 Vacuum pump
US10954962B2 (en) 2013-07-31 2021-03-23 Edwards Japan Limited Vacuum pump
CN104948475A (en) * 2014-03-28 2015-09-30 株式会社岛津制作所 Vacuum pump
CN104948475B (en) * 2014-03-28 2017-09-12 株式会社岛津制作所 Vavuum pump

Similar Documents

Publication Publication Date Title
EP0397051B1 (en) Evacuation apparatus and evacuation method
KR20130050488A (en) Multistage dry vaccum pump
JPH04116295A (en) Axial flow molecular pump
JPH04252887A (en) Oil-free screw compressor system
JP4102856B2 (en) Cold trap with built-in gate valve
JP5242916B2 (en) Vacuum pump discharge system
JP2001032789A (en) Molecular pump
JP3386202B2 (en) Two-stage oil rotary vacuum pump
JP2005171766A (en) Dry pump and operating method of dry pump
JP2574810B2 (en) Vacuum pump
USRE36610E (en) Evacuation apparatus and evacuation method
JPH05118290A (en) Cooling device for multi-stage vacuum pump
JP2503267B2 (en) Turbo molecular pump and its operating method
JPH01253590A (en) High-vacuum pump
JPH10238462A (en) Vacuum evacuation device and maintenance method therefor
CN211537131U (en) Recovery purification device and system thereof
JPH0658291A (en) Cryotrap for turbomolecular pump
JPS61182486A (en) Root's blower for high compression
JP2004076708A (en) Vacuum pump
JP2652614B2 (en) Gas recovery device
JPH0646483Y2 (en) Moisture trap for evacuation of turbo molecular pump
JPH0719634A (en) Compressor unit
JP3309228B2 (en) Cryopump device with turbo molecular pump
JP2568364B2 (en) Turbo pump with trap panel
JP2656199B2 (en) Opening method of vacuum chamber and PVD apparatus