JPH04116285A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH04116285A
JPH04116285A JP23680490A JP23680490A JPH04116285A JP H04116285 A JPH04116285 A JP H04116285A JP 23680490 A JP23680490 A JP 23680490A JP 23680490 A JP23680490 A JP 23680490A JP H04116285 A JPH04116285 A JP H04116285A
Authority
JP
Japan
Prior art keywords
vane
pressure
cylinder
thickness
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23680490A
Other languages
Japanese (ja)
Inventor
Hideji Ogawara
秀治 小川原
Takao Yoshimura
多佳雄 吉村
Ichiro Morita
一郎 森田
Takashi Koyama
隆 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP23680490A priority Critical patent/JPH04116285A/en
Publication of JPH04116285A publication Critical patent/JPH04116285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To improve the volume efficiency and improve the performance index by providing an intermediate pressure system controlling the pressure in a back pressure chamber at the intermediate pressure between the low pressure and the high pressure, and setting the thickness of a vane to the thickness determined by the preset equation. CONSTITUTION:A vane 24, a back pressure chamber 25 surrounded by the back face of the vane 24 and the main bearing and auxiliary bearing of a cylinder 21, and an intermediate pressure system controlling the pressure in the back pressure chamber 25 at the intermediate pressure Pd' between the low pressure Ps and the high pressure Pd are provided, and the thickness T of the vane 24 is set to the thickness determined by the equation I. The thickness T of the vane 24 is made thicker, the pressure in the back pressure chamber 25 is decreased, the pressing force on the back face of the vane 24 is made equal to that in the past, the leakage from the end face of the vane 24 is decreased by the increased quantity of the thickness T of the vane 24, and the volume efficiency is improved. The contact load between the vane 24 and a roller 8 is equal to that in the past, the volume efficiency is improved, thus the performance index can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に、体積効率向上及び性能向上に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to improved volumetric efficiency and performance.

従来の技術 従来の構成を第5図から第7図を用いて説明する。Conventional technology A conventional configuration will be explained using FIGS. 5 to 7.

1は回転式圧縮機であ夛、密閉ケーシング2゜電動機部
3.圧縮機部4とから構成され、これら電動機部3と圧
縮機部4とはシャフト6を介して連結されている。シャ
フト6は、主軸5a、副軸sb、クランク6cとからな
υ、主軸5aの一端には、電動機部3のロータeが接続
されている。
1 is a rotary compressor with a sealed casing 2. electric motor section 3. The electric motor section 3 and the compressor section 4 are connected via a shaft 6. The shaft 6 consists of a main shaft 5a, a sub-shaft sb, and a crank 6c, and a rotor e of the electric motor section 3 is connected to one end of the main shaft 5a.

まだ、圧縮機部4は、シリンダ7、ローラ8.ベーン9
.主軸受1o、副軸受11とにより構成されている。ベ
ーン9は、シリンダ7の溝7a内をローラ8の動きに連
動して往復運動する。12はベーン背面に設けられたヌ
プリングである。13は圧縮部であシ、シリンダ7内で
、主軸受10゜副軸受11により構成されている。さら
に圧縮部13は、シャフト6のクランク5Cに嵌合され
偏心回転するローラ8と、ローラ8に当接するべ〜ン9
とにより吸入室13aと圧縮室13bに仕切られている
The compressor section 4 still includes a cylinder 7, rollers 8 . Vane 9
.. It is composed of a main bearing 1o and a sub-bearing 11. The vane 9 reciprocates within the groove 7a of the cylinder 7 in conjunction with the movement of the roller 8. 12 is a nupling provided on the back side of the vane. Reference numeral 13 denotes a compression section, which is located within the cylinder 7 and is composed of a main bearing 10° and a sub-bearing 11. Furthermore, the compression section 13 includes a roller 8 that is fitted into the crank 5C of the shaft 6 and rotates eccentrically, and a vane 9 that comes into contact with the roller 8.
It is partitioned into a suction chamber 13a and a compression chamber 13b.

14は吸入管、16は吐出管であり、吸入管14は副軸
受11を介してシリンダ7の吸入孔16と連通し、まだ
吐出管16は密閉ケーシング2内に開放している。また
17は吐出孔であシ、吐出弁18を介して圧縮室13b
と密閉ケーシング2内を連通ずる。19は密閉ケーシン
グ下部に設けられた潤滑油である。
14 is a suction pipe, and 16 is a discharge pipe. The suction pipe 14 communicates with the suction hole 16 of the cylinder 7 via the sub-bearing 11, and the discharge pipe 16 is still open into the sealed casing 2. Further, 17 is a discharge hole, and a compression chamber 13b is connected via a discharge valve 18.
The inside of the sealed casing 2 is communicated with the inside of the sealed casing 2. Reference numeral 19 denotes lubricating oil provided at the bottom of the sealed casing.

以上のように構成された圧縮機について、以下その動作
を冷媒ガスの流れについて説明する。
The operation of the compressor configured as above will be described below with respect to the flow of refrigerant gas.

冷却システム(図示せず)からの低温低圧の冷媒ガスは
、吸入管14.吸入孔16より導かれシリンダT内の吸
入室13aに至る。吸入室13aに至った冷媒ガスは、
電動機部3の回転に伴うシャフト5の回転運動により漸
次圧縮されながら、吸入孔16から吐出孔17へ連続的
に送られる。
A low temperature, low pressure refrigerant gas from a refrigeration system (not shown) is transferred to suction pipe 14. It is guided through the suction hole 16 and reaches the suction chamber 13a inside the cylinder T. The refrigerant gas that has reached the suction chamber 13a is
The air is gradually compressed by the rotational movement of the shaft 5 as the electric motor unit 3 rotates, and is continuously sent from the suction hole 16 to the discharge hole 17.

圧縮された冷媒ガスは、吐出孔17.吐出弁18を経て
吐出される。吐出された高温高圧の冷媒ガスは、密閉ケ
ーシング2内を満たし、吐出管13を介して冷却システ
ムに吐出される。
The compressed refrigerant gas is discharged through the discharge hole 17. It is discharged through the discharge valve 18. The discharged high-temperature, high-pressure refrigerant gas fills the sealed casing 2 and is discharged to the cooling system via the discharge pipe 13.

ここで、シリンダ7内を吸入室13aと圧縮室13bと
に仕切るベーン9の背面の圧力は、密閉ケーシング内に
開放されていることから吐出圧力と同じ高圧となり、ベ
ーン9の先端はこのシリンダ7内外の圧力差で、シャフ
ト6によりシリンダ7内を偏心回転するローラ8の外周
に当接している。
Here, the pressure on the back side of the vane 9 that partitions the inside of the cylinder 7 into the suction chamber 13a and the compression chamber 13b is the same high pressure as the discharge pressure because it is opened in the sealed casing, and the tip of the vane 9 is placed in the cylinder 7. Due to the pressure difference between the inside and outside, it comes into contact with the outer periphery of a roller 8 that rotates eccentrically in a cylinder 7 by a shaft 6.

第7図に発明者の実験によるベーン厚と性能の関係を示
す。第7図よりベーン9端面からの漏れを低減し体積効
率の向上を図るためにベーン幅を厚くすれば、ベーン背
面からの押付力が増大しベーンとローラの接触荷重が大
きくなり、摺動損失が増加し入力が増大する。また、摺
動損失を低減するために、ベーンの厚みを薄くすれば、
ベーン端面からの漏れが増加し、体積効率が悪化する。
FIG. 7 shows the relationship between vane thickness and performance based on experiments conducted by the inventor. Figure 7 shows that if the width of the vane is increased in order to reduce leakage from the end face of the vane 9 and improve volumetric efficiency, the pressing force from the rear surface of the vane will increase, the contact load between the vane and the roller will increase, and the sliding loss will occur. increases and the input increases. Also, in order to reduce sliding loss, if the thickness of the vane is made thinner,
Leakage from the vane end faces increases and volumetric efficiency deteriorates.

このため、冷凍冷蔵用の回転式圧縮機では、これらの特
性の最適値をとシ、ベーン厚を3Mm近傍に設定してい
るのが現状である。
For this reason, in rotary compressors for refrigeration and refrigeration, the optimum values of these characteristics are currently set, and the vane thickness is set to around 3 mm.

性能向上のためには、ベーン背圧荷重を増加させずにベ
ーン厚を厚くしていくことが考えられる。
In order to improve performance, it is possible to increase the thickness of the vane without increasing the vane back pressure load.

発明が解決しようとする課題 上記のような構成では、体積効率も向上するために、ベ
ーンを厚くすると、ベーン背面で受ける背圧荷重が大き
くなシ、ベーンとローラ間の摺動損失が増加し、性能向
上が難しいという課題があった。
Problems to be Solved by the Invention In the above configuration, in order to improve the volumetric efficiency, if the vanes are made thicker, the back pressure load received on the back surface of the vanes becomes larger, and the sliding loss between the vanes and the rollers increases. However, the problem was that it was difficult to improve performance.

本発明は上記問題点を解決するものであシ、ベーンを厚
くすることによシ、体積効率を向上し、かつ性能指数を
向上することを目的とする。
The present invention is intended to solve the above problems, and aims to improve the volumetric efficiency and the performance index by increasing the thickness of the vanes.

課題を解決するだめの手段 上記課題を解決するために本発明の回転式圧縮機は、密
閉ケーシングと、密閉ケーシング内に収納されたシリン
ダと、シリンダの両端に固定された主軸受および副軸受
と主軸受と副軸受内に回転自在に収納されクランクを有
するシャフトと、シャフトのクランクに嵌められシリン
ダ内を偏心回転するローラと、シリンダの溝内を往復運
動しローラと当接することによりシリンダ内を吸入室と
圧縮室に分割するベーンと、ベーンの背面とシリンダと
主軸受と副軸受とに囲まれた背圧室と、背圧室内の圧力
を低圧圧力P8と高圧圧力Pdの中間圧力Pd′に制御
する中間圧機構とを備え、ベーンの厚みTを 但し、3≦T0≦3.2〔酊〕 としている。
Means for Solving the Problems In order to solve the above problems, the rotary compressor of the present invention includes a sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub bearing fixed to both ends of the cylinder. A shaft that is rotatably housed in a main bearing and a sub-bearing and has a crank; a roller that is fitted into the crank of the shaft and rotates eccentrically within the cylinder; and a roller that moves reciprocally within the groove of the cylinder and comes into contact with the roller to rotate the inside of the cylinder. A vane that is divided into a suction chamber and a compression chamber, a back pressure chamber surrounded by the back of the vane, a cylinder, a main bearing, and a sub bearing, and the pressure inside the back pressure chamber is set to an intermediate pressure Pd' between a low pressure P8 and a high pressure Pd. The vane has a thickness T of 3≦T0≦3.2 [drunk].

作  用 本発明は上記した構成によって、ベーンの厚みTを厚く
しても、背圧室内の圧力を下げることにより、ベーン背
面の押付力を従来と同等にでき、ベーン厚みを厚くした
分だけベーン端面からの漏れが減少し、体積効率を向上
することができる。
Effect The present invention has the above-described configuration, so that even if the thickness T of the vane is increased, the pressing force on the rear surface of the vane can be made equal to that of the conventional one by lowering the pressure in the back pressure chamber. Leakage from the end faces is reduced and volumetric efficiency can be improved.

よって、ベーンとローラの接触荷重は従来と同等で、体
積効率が向上することから性能指数の向上を図ることが
できる。
Therefore, the contact load between the vane and the roller is the same as in the conventional case, and the volumetric efficiency is improved, so that the figure of merit can be improved.

実施例 以下本発明の一実施例を第1図と第2図を参照にして説
明する。なお、従来例と→−蘂→慰同−部分は同一符号
を付し詳細な説明を省略する。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 2. Incidentally, the same reference numerals as in the conventional example and the →-leg →comfort-parts are given the same reference numerals, and detailed explanations will be omitted.

2oは中間圧機構であり、シリンダ21と主軸受22.
副軸受23.ペー724とにょシ構成されておシヘ25
はベーン24の背面に設けられた背圧室である。さらに
、中間圧機構を構成するために、主軸受22には第1油
通路22a及び第3油通路22bが設けられると共に、
ベーン24にも第2油通路24aが設けられている。こ
れらの油通路22a、22b、24aは、第3図に示す
様にベーン24がクランク回転角度θ=0や2πの上死
点Aの近傍にあるときには、全てが連通し、第4図に示
す様にベーン24がクランク回転角度θ=πの下死点B
の近傍にあるときは全てが連通しない様に開孔されてい
る。
2o is an intermediate pressure mechanism, which includes a cylinder 21 and a main bearing 22.
Secondary bearing 23. It is composed of page 724 and page 25
is a back pressure chamber provided on the back surface of the vane 24. Furthermore, in order to constitute an intermediate pressure mechanism, the main bearing 22 is provided with a first oil passage 22a and a third oil passage 22b, and
The vane 24 is also provided with a second oil passage 24a. These oil passages 22a, 22b, and 24a are all in communication when the vane 24 is near the top dead center A of the crank rotation angle θ=0 or 2π as shown in FIG. 4, and as shown in FIG. As shown, the vane 24 is at the bottom dead center B of the crank rotation angle θ=π
When the hole is near the hole, the hole is opened so that there is no communication between all the holes.

また、ベーンの厚みTは、低圧圧力(吸入圧力)PR2
高圧圧力(吐出圧力)Pd、背圧室26内の圧力をPd
2とすると、 3くTo<、3.2(鰭〕 となっている。
In addition, the thickness T of the vane is the low pressure (suction pressure) PR2
High pressure (discharge pressure) Pd, pressure inside the back pressure chamber 26 Pd
If it is 2, then 3kuTo<, 3.2 (fin).

以上のように構成された回転式圧縮機において、以下そ
の動作を説明する。
The operation of the rotary compressor configured as above will be described below.

冷却システムからの低温低圧の冷媒ガヌは、従来と同様
に吸入管14.吸入孔16を経てシリンダ21内の吸入
室13aに至る。冷媒ガヌは従来と同様に圧縮され吐出
管16によυシステムへ吐出される。
The low-temperature, low-pressure refrigerant from the cooling system is passed through the suction pipe 14 as before. The suction chamber 13a in the cylinder 21 is reached through the suction hole 16. The refrigerant GANU is conventionally compressed and discharged to the υ system via discharge pipe 16.

また、中間圧機構20について説明するとベーン24が
上死点にきたとき、密閉ケーシング2下部の潤滑油19
部と背圧室26が油通路22&。
Also, to explain the intermediate pressure mechanism 20, when the vane 24 reaches the top dead center, the lubricating oil 19 at the bottom of the sealed casing 2
The back pressure chamber 26 is connected to the oil passage 22&.

22b、24aを介して連通し背圧室26内に高圧の潤
滑油19が流入する。そしてベーン24が往復摺動する
間に、吸入室13a、圧縮室13bへと漏れベーン24
とシリンダ21間に潤滑すると共にシールしている。
High-pressure lubricating oil 19 flows into the back pressure chamber 26 through communication via 22b and 24a. While the vane 24 is sliding back and forth, the vane 24 leaks into the suction chamber 13a and the compression chamber 13b.
It lubricates and seals between the cylinder 21 and the cylinder 21.

上死点A近傍で高圧の潤滑油を吸入した後、ベーン24
が上死点A→下死点Bに動く間は、背圧室25と密閉ケ
ーシング2下部の潤滑油19とは連通せず又背圧室25
の容積が増加するため背圧室25の圧力が低下し、高圧
圧力Pdと低圧圧力P8の中間値PMとなり、次に下死
点B→上死点Aに動く間は同じく潤滑油19とは連通せ
ず又背圧室26の容積が減少するため背圧室25の圧力
が再度上昇し高圧圧力となる。
After inhaling high-pressure lubricating oil near top dead center A, vane 24
While the back pressure chamber 25 moves from top dead center A to bottom dead center B, the back pressure chamber 25 does not communicate with the lubricating oil 19 at the bottom of the sealed casing 2, and the back pressure chamber 25
, the pressure in the back pressure chamber 25 decreases and becomes an intermediate value PM between the high pressure Pd and the low pressure P8, and then during the movement from bottom dead center B to top dead center A, the lubricating oil 19 also Since there is no communication and the volume of the back pressure chamber 26 decreases, the pressure in the back pressure chamber 25 rises again and becomes high pressure.

従って、背圧室26の平均中間圧力Pd′は、高圧圧力
Pdと中間値PMの間の値となる。
Therefore, the average intermediate pressure Pd' of the back pressure chamber 26 is a value between the high pressure Pd and the intermediate value PM.

ベーン24の背面の圧力を中間圧機構20により下げる
ことができるので、ベーン24の厚みTを厚くしてもベ
ーン24背面の押付力を従来と同等に制御でき、摺動損
失も従来と同等となシ、ベーンの厚みを従来より増した
分だけベーン24端面からの漏れが減少し体積効率を向
上することができる。したがって回転式圧縮機の性能指
数の向上を図ることができる。
Since the pressure on the back surface of the vane 24 can be lowered by the intermediate pressure mechanism 20, even if the thickness T of the vane 24 is increased, the pressing force on the back surface of the vane 24 can be controlled to the same level as before, and the sliding loss is also the same as before. Moreover, the leakage from the end face of the vane 24 is reduced by the increase in thickness of the vane compared to the conventional one, and the volumetric efficiency can be improved. Therefore, it is possible to improve the performance index of the rotary compressor.

尚、本実施例において、中間圧機構は、特開昭61−1
06992号公報を用いたが、その他どんな方法でもよ
い。
In this embodiment, the intermediate pressure mechanism is disclosed in Japanese Patent Application Laid-Open No. 61-1
No. 06992 was used, but any other method may be used.

発明の効果 以上のように本発明は、密閉ケーシングと、密閉ケーシ
ング内に収納されたシリンダと、シリンダの両端に固定
された主軸受および副軸受と主軸受と副軸受内に回転自
在に収納されクランクを有するシャフトと、シャフトの
クランクに嵌められシリンダ内を偏心回転するローラと
、シリンダの溝内を往復運動しローラと当接することに
ょシシリンダ内を吸入室と圧縮室に分割するベーンと、
ベーンの背面とシリンダと主軸受と副軸受とに囲まれた
背圧室と、背圧室内の圧力を低圧圧力Psと高圧圧力P
、の中間圧力Pd′に制御する中間圧機構とを備え、ベ
ーンの厚みTを P d−P 。
Effects of the Invention As described above, the present invention includes a sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub-bearing fixed to both ends of the cylinder, and a main bearing and a sub-bearing rotatably housed in the main bearing and sub-bearing. a shaft having a crank; a roller that is fitted into the crank of the shaft and rotates eccentrically within the cylinder; a vane that reciprocates within a groove of the cylinder and comes into contact with the roller, dividing the inside of the cylinder into a suction chamber and a compression chamber;
A back pressure chamber surrounded by the back side of the vane, the cylinder, the main bearing, and the sub bearing, and the pressure inside the back pressure chamber are defined as low pressure Ps and high pressure Ps.
, and an intermediate pressure mechanism that controls the vane thickness T to an intermediate pressure Pd' of Pd-P.

T = −一一一一−xT P d/ −P 、   0 但し、3≦T0≦3.2〔絹〕 としたものであるから、ベーンの肉厚を厚くシてもベー
ン背面から受ける荷重を増加させることなく、中間圧機
構により従来と同等にでき、ローラとベーン間の摺動損
失も従来と同等にでき、ベーンの肉厚を厚くした分だけ
ベーン端面からの漏れが減少し体積効率を向上すること
ができ、さらに性能指数の向上が図れる優れた圧縮機を
実現できるものである。
T = -1111-xT P d/ -P , 0 However, since 3≦T0≦3.2 [silk], even if the thickness of the vane is made thick, the load received from the back of the vane can be reduced. The intermediate pressure mechanism allows the same pressure as before, and the sliding loss between the roller and vane is also the same as before, and the thicker wall thickness of the vane reduces leakage from the end face of the vane, improving volumetric efficiency. This makes it possible to realize an excellent compressor that can further improve the performance index.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回転式圧縮機の断面図
、第2図は同第1図の回転式圧縮機の縦断面図、第3図
と第4図は中間圧縮機を説明する断面図、第5図は従来
の回転式圧縮機の断面図、第6図は従来の回転式圧縮機
の縦断面図、第7図はベーン厚と性能の関係を示すグラ
フである。 2・・・・・・密閉ケーシング、5・・・・・・シャフ
ト、5c・・・・・・クランク、6・・・・・・ローラ
、13a・・・・・・吸入室、13b・・・・・・圧縮
室、20・・・・・・中間圧機構、21・・・・・・シ
リンダ、22・・・・・・主軸受、23・・・・・・副
軸受、24・・・・・・ベーン、25・・・・・・背圧
室。 代理人の氏名 弁理士 小鍜治  明 ほか2名中闇圧
質惟 シ  リ ン ダ 主軸受 21軸弓ン 背圧室 20−m−中 閉 2I−シリ 22−  主軸 23−−一  偏り 軸 24−  へ 25−  背任 圧責 ンダ 受 受 ン 室 第 図 り1
Fig. 1 is a sectional view of a rotary compressor showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of the rotary compressor shown in Fig. 1, and Figs. 3 and 4 show an intermediate compressor. FIG. 5 is a cross-sectional view of a conventional rotary compressor, FIG. 6 is a vertical cross-sectional view of a conventional rotary compressor, and FIG. 7 is a graph showing the relationship between vane thickness and performance. 2... Sealed casing, 5... Shaft, 5c... Crank, 6... Roller, 13a... Suction chamber, 13b... ... Compression chamber, 20 ... Intermediate pressure mechanism, 21 ... Cylinder, 22 ... Main bearing, 23 ... Sub-bearing, 24 ... ...Vane, 25...Back pressure chamber. Name of agent: Patent attorney Akira Okaji and two others Middle pressure cylinder Main bearing 21 shaft Bow back pressure chamber 20-m-Medium closed 2I-Series 22-Main shaft 23--1 Offset shaft 24- Go to 25- Back Pressure Reception Room Plan 1

Claims (1)

【特許請求の範囲】 密閉ケーシングと、前記密閉ケーシング内に収納された
シリンダと、前記シリンダの両端に固定された主軸受お
よび副軸受と前記主軸受と副軸受内に回転自在に収納さ
れクランクを有するシャフトと、前記シャフトのクラン
クに嵌められ前記シリンダ内を偏心回転するローラと、
前記シリンダの溝内を往復運動し前記ローラと当接する
ことにより前記シリンダ内を吸入室と圧縮室に分割する
ベーンと、前記ベーンの背面と前記シリンダと前記主軸
受と前記副軸受とに囲まれた背圧室と、前記背圧室内の
圧力を低圧圧力P_sと高圧圧力P_dの中間圧力P_
d′に制御する中間圧機構とを備え、前記ベーンの厚み
Tを T=(P_d−P_s/P_d′−P_s)×T_o但
し、3≦T_o≦3.2〔mm〕 としたことを特徴とする回転式圧縮機。
[Scope of Claims] A sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub-bearing fixed to both ends of the cylinder, and a crank rotatably housed in the main bearing and sub-bearing. a shaft having a shaft, and a roller that is fitted into a crank of the shaft and rotates eccentrically within the cylinder;
A vane that reciprocates in a groove of the cylinder and comes into contact with the roller to divide the inside of the cylinder into a suction chamber and a compression chamber, and is surrounded by a back surface of the vane, the cylinder, the main bearing, and the auxiliary bearing. The pressure inside the back pressure chamber is set to an intermediate pressure P_ between the low pressure P_s and the high pressure P_d.
d', and the thickness T of the vane is T=(P_d-P_s/P_d'-P_s)×T_o, where 3≦T_o≦3.2 [mm]. rotary compressor.
JP23680490A 1990-09-05 1990-09-05 Rotary compressor Pending JPH04116285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23680490A JPH04116285A (en) 1990-09-05 1990-09-05 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23680490A JPH04116285A (en) 1990-09-05 1990-09-05 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH04116285A true JPH04116285A (en) 1992-04-16

Family

ID=17006033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23680490A Pending JPH04116285A (en) 1990-09-05 1990-09-05 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH04116285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932861B2 (en) * 2014-06-13 2018-04-03 Echogen Power Systems Llc Systems and methods for controlling backpressure in a heat engine system having hydrostaic bearings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932861B2 (en) * 2014-06-13 2018-04-03 Echogen Power Systems Llc Systems and methods for controlling backpressure in a heat engine system having hydrostaic bearings

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
US7381038B2 (en) Capacity-changing unit of orbiting vane compressor
JPH08319973A (en) Compressor and delivery valve device therefor
JP2001323881A (en) Compressor
WO2022116577A1 (en) Pump body assembly and fluid machinery having same
US20060073056A1 (en) Hermetically sealed type orbiting vane compressor
JP2501182B2 (en) Refrigeration equipment
CN214036117U (en) Pump body assembly and fluid machine with same
JPH04116285A (en) Rotary compressor
KR102004090B1 (en) A Rotary Compressor Having A Reduced Leaking Loss
JPH0681786A (en) Two-stage compression type rotary compressor
JPH06346878A (en) Rotary compressor
JP4410393B2 (en) Scroll compressor
JP2002155877A (en) Scroll compressor
JP2003065236A (en) Hermetic electric compressor
JPH07217569A (en) Rotary compressor
KR100360236B1 (en) Structure for reducing gas-leakage of scrollcompressor
JPH05141375A (en) Rotary compressor
JPH05133363A (en) Closed type compressor
JPH04179889A (en) Rotary compressor
JPH04219486A (en) Rotary compressor
JPH01170780A (en) Scroll gas compressor
JP2604835B2 (en) Rotary compressor
JPH0674170A (en) Rolling piston type rotary compressor
JPS6075790A (en) Compressing device of scroll type