JP4410393B2 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP4410393B2
JP4410393B2 JP2000190070A JP2000190070A JP4410393B2 JP 4410393 B2 JP4410393 B2 JP 4410393B2 JP 2000190070 A JP2000190070 A JP 2000190070A JP 2000190070 A JP2000190070 A JP 2000190070A JP 4410393 B2 JP4410393 B2 JP 4410393B2
Authority
JP
Japan
Prior art keywords
scroll
wall
plate
compression chamber
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000190070A
Other languages
Japanese (ja)
Other versions
JP2002005054A (en
Inventor
隆英 伊藤
浩 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000190070A priority Critical patent/JP4410393B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to KR10-2002-7002191A priority patent/KR100460396B1/en
Priority to EP01943811A priority patent/EP1293675A4/en
Priority to CNB01801741XA priority patent/CN1201083C/en
Priority to PCT/JP2001/005353 priority patent/WO2001098662A1/en
Priority to US10/049,911 priority patent/US6746224B2/en
Priority to EP09012092A priority patent/EP2163765B1/en
Publication of JP2002005054A publication Critical patent/JP2002005054A/en
Application granted granted Critical
Publication of JP4410393B2 publication Critical patent/JP4410393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/801Wear plates

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置や冷凍装置等に具備されるスクロール圧縮機に関する。
【0002】
【従来の技術】
スクロール圧縮機は、固定スクロールと旋回スクロールとを渦巻き状の壁体どうしを組み合わせて配置し、固定スクロールに対し旋回スクロールを公転旋回運動させることで壁体間に形成される圧縮室の容積を漸次減少させて該圧縮室内の流体の圧縮を行うものである。
【0003】
スクロール圧縮機の設計上の圧縮比は、圧縮室の最小容積(壁体どうしのかみ合いが外れて圧縮室が消滅する直前の容積)に対する、圧縮室の最大容積(壁体どうしがかみ合って圧縮室が形成された時点の容積)の比であり、次式(1)で表される。
Vi={A(θsuc)・L}/{A(θtop)・L}=A(θsuc)/A(θtop) … (1)
(1)式において、A(θ)は旋回スクロールの旋回角θに応じて容積を変化させる圧縮室の旋回面に平行な断面積を表す関数、θsucは圧縮室が最大容積となるときの旋回スクロールの旋回角、θtopは圧縮室が最小容積となるときの旋回スクロールの旋回角、Lは壁体どうしのラップ(重なり)長である。
【0004】
従来、スクロール圧縮機の圧縮比Viの向上を図るには、両スクロールの壁体の巻き数を増やして最大容積時の圧縮室の断面積A(θ)を大きくする手法が採られてきた。しかしながら、壁体の巻き数を増やす従来の手法ではスクロールの外形が拡大して圧縮機自体が大型化するため、大きさの制限が厳しい自動車用等の空気調和装置には採用し難いという問題点があった。
【0005】
上記の問題点を解決すべく、特公昭60−17956号には、固定スクロール、旋回スクロールともに壁体の渦巻き状の上縁を中心側が低く外周端側が高い段付き形状とし、さらにこの上縁の段付き形状に対応して、両スクロールともに端板の側面を中心側が高く外周端側が低い段付き形状としたスクロール圧縮機が提案されている。
【0006】
上記スクロール圧縮機において、最大容積時の圧縮室のラップ長をLl、最小容積時の圧縮室のラップ長をLsとすると、設計上の圧縮比Vi’は次式(2)で表される。
Vi’={A(θsuc)・Ll}/{A(θtop)・Ls} … (2)
(2)式においては、最大容積時の圧縮室のラップ長Llが最小容積時の圧縮室のラップ長Lsよりも大きく、Ll/Ls>1となるから、壁体の巻き数を増やさなくても、設計上の圧縮比を向上させることが可能である。
また、特開平4−311693号には、スクロールに段付き形状を採用し、外周側の漏れを低減する目的で、外周部ラップ先端にチップシールを備えた構造が開示されている。
【0007】
【発明が解決しようとする課題】
ところで、上記のようにスクロールに段付き形状を採用したものに限らず、従来一般のスクロール圧縮機においては、吐出容量を可変に制御する技術が採用されることがある。これは、例えば空気調和装置において、定常な運転を行う間は起動運転時等と比べてさほど多くの冷媒搬送量を必要としないためである。
【0008】
容量制御には、吸入した流体の一部を高圧側から低圧側に逃がして吐出容量を少なくする技術が採用されるのが一般的である。しかしながら、一旦は高圧に圧縮した流体の一部を高圧側から低圧側に逃がすとすれば、駆動源の動力損を生むことになり効率的でない。
【0009】
本発明は、上記の事情に鑑みてなされたものであり、スクロールに段付き形状を採用したスクロール圧縮機において、駆動源の動力損を生むことなく容量制御を可能にしてスクロール圧縮機の性能を向上させることを目的としている。
【0010】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成のスクロール圧縮機を採用する。
すなわち、請求項1記載のスクロール圧縮機は、端板の一側面に立設された渦巻き状の壁体を有し、定位置に固定された固定スクロールと、端板の一側面に立設された渦巻き状の壁体を有し、前記各壁体どうしをかみ合わせて自転を阻止されつつ公転旋回運動可能に支持された旋回スクロールとを備え、前記各壁体の上縁は、複数の部位に分割されかつ該部位の高さが渦方向の中心側で低く外周端側で高くなる段付き形状とされ、同じく前記各端板の一側面は、前記各部位に対応し、その高さが渦方向の中心側で高く外周端側で低くなる複数の部位を有する段付き形状とされたスクロール圧縮機において、前記固定スクロールまたは前記旋回スクロールのいずれか一方の前記一側面のうち前記外周端側に位置する前記部位に配置されて前記旋回スクロールの旋回軸方向に移動自在な板体と、該板体を必要に応じて前記固定スクロールまたは前記旋回スクロールのいずれか他方の前記壁体の上縁に押圧する押圧手段とを備え、該押圧手段は、前記一方のスクロールの前記一側面のうち前記中心側に位置する前記部位をひとつの壁面として形成される圧縮室であって吐出されるまでの圧縮室内の圧力を、前記外周端側に位置する前記部位と前記板体との間に導入する導入路を備えることを特徴とする。
【0011】
このスクロール圧縮機において、容量制御を行う場合は押圧手段を作動させずに板体を旋回軸方向に移動自在とする。これにより、固定スクロールと旋回スクロールとからなるスクロール圧縮機構では、外周端側に位置して壁体が高い部分で両スクロールの壁体間に圧縮室を画成しようとしても、板体が圧を受けて動いてしまって流体の漏れを生じ、圧縮室は実際には圧縮を行わないまま中心側に向け進行してしまう。そして、中心側に位置して壁体が低い部分に至り壁体が高い部分を過ぎると、ようやく漏れのない圧縮室が画成されて圧縮が行われるようになる。これにより、圧縮が行われるようになってから吐出されるまでの圧縮室の容積変化が小さくなり、吐出容量が低減される。しかも、中心側に位置して壁体が低い部分に至るまでは圧縮室が画成されないから、流体を圧縮するための動力がかからない。
【0012】
容量制御を行わない場合は押圧手段を作動させて板体を固定スクロールまたは旋回スクロールのいずれか他方の壁体の上縁に押圧する。これにより、外周端側に位置して壁体が高い部分でも、板体が圧縮室の一部をなして気密性を確保するので、外周端側から中心側に至るまで、漏れのない圧縮室が画成されて圧縮が行われる。この際、渦方向の中心側に位置して高圧となる圧縮室であって吐出されるまでの圧縮室内の圧力を、外周端側に位置する部位と板体との間に導入することにより、板体が、中心側より低圧となる圧縮室内の圧力に抗して押圧され、圧縮室の気密性が確保される。
【0013】
請求項2記載のスクロール圧縮機は、請求項1記載のスクロール圧縮機において、前記板体が、前記一方のスクロールを旋回軸方向視すると、前記外周端側に位置する前記部位と略一致する形状となっていることを特徴とする。
【0014】
このスクロール圧縮機においては、板体を、外周端側に位置する部位と略一致する形状とすることにより、容量制御を行わない場合に、外周端側に位置して壁体が高い部分に形成される圧縮室の気密性が確保される。しかも、他に駆動源を設けることなく板体を押圧することが可能である。
【0015】
請求項記載のスクロール圧縮機は、請求項1または2記載のスクロール圧縮機において、前記板体を前記外周端側に位置する前記部位に引き寄せる方向に付勢する付勢手段を備えることを特徴とする。
【0016】
このスクロール圧縮機においては、付勢手段を設けて板体を外周端側に位置する部位に引き寄せることにより、容量制御を行うべく押圧手段による板体の押圧が解除された場合には、板体と相対する壁体との間に隙間が生まれる。これにより、外周端側では積極的に流体の漏れが生じて余計な圧の高まりが防止される。
【0017】
請求項記載のスクロール圧縮機は、請求項1、2または3記載のスクロール圧縮機において、前記板体の移動範囲を規制するストッパを備えることを特徴とする。
【0018】
このスクロール圧縮機においては、ストッパを設けて板体の移動範囲を規制することにより、板体が相対する壁体に過剰に押圧されるのが阻止されるので、板体の変形や壁体との過剰な摩擦による熱の発生が抑えられる。
【0019】
【発明の実施の形態】
本発明に係るスクロール圧縮機の実施形態を図1ないし図9に示して説明する。
図1は本発明に係るスクロール圧縮機の全体構成を示す断面図である。図において符号11はハウジングを示しており、このハウジング11は、カップ状に形成されたハウジング本体11aと、ハウジング本体11aの開口端側に固定された蓋板11bとで構成されている。
【0020】
ハウジング11の内部には、固定スクロール12および旋回スクロール13からなるスクロール圧縮機構が配設されている。固定スクロール12は、端板12aの一側面に渦巻き状の壁体12bを立設された構成となっている。旋回スクロール13は、固定スクロール12と同様に端板13aの一側面に渦巻き状の壁体13bを立設された構成となっており、特に壁体13bは、固定スクロール12側の壁体12bと同一形状をなしている。また、壁体12b,13bの上縁には、後述する圧縮室Cの気密性を高めるためのチップシール27,28が配設されている(これらチップシール27,28については後述する)。
【0021】
固定スクロール12は、ボルト14によってハウジング本体11aに締結されている。旋回スクロール13は、固定スクロール12に対して相互に公転旋回半径だけ偏心しかつ180゜だけ位相をずらした状態で、壁体12b,13bどうしをかみ合わせて組み付けられており、蓋板11bと端板13aとの間に設けられた自転阻止機構15によって自転を阻止されつつ公転旋回運動可能に支持されている。
【0022】
蓋板11bには、クランク16aを備える回転軸16が貫通され、ベアリング17a,17bを介して蓋板11bに回転自在に支持されている。
【0023】
旋回スクロール13側の端板13aの他端面の中央には、ボス18が突設されている。ボス18には、クランク16aの偏心部16bが軸受19およびドライブブッシュ20を介して回動自在に収容されており、旋回スクロール13は回転軸16を回転させることによって公転旋回運動するようになっている。回転軸16には、旋回スクロール13に与えられたアンバランス量を打ち消すバランスウェイト21が取り付けられている。
【0024】
また、ハウジング11の内部には、固定スクロール12の周囲に吸入室22が形成され、さらにハウジング本体11aの内底面と端板12aの他側面とに区画されて吐出キャビティ23が形成されている。
【0025】
ハウジング本体11aには、吸入室22に向けて低圧の流体を導く吸入ポート24が設けられ、固定スクロール12側の端板12aの中央には、容積を漸次減少させながら中心に移動してきた圧縮室Cから吐出キャビティ23に向けて高圧の流体を導く吐出ポート25が設けられている。端板12aの他側面中央には、所定の大きさ以上の圧力が作用した場合にのみ吐出ポート25を開く吐出弁26が設けられている。
【0026】
図2は固定スクロール12、旋回スクロール13それぞれの斜視図である。
固定スクロール12側の壁体12bは、その渦巻き状の上縁が2つの部位に分割され、かつ渦の中心側で低く外周端側で高い段付き形状となっている。旋回スクロール13側の壁体13bも、壁体12bと同様に渦巻き状の上縁が2つの部位に分割され、かつ渦方向の中心側で低く外周端側で高い段付き形状となっている。
【0027】
また、固定スクロール12側の端板12aは、壁体13bの上縁の各部位に対応し、一側面の高さが渦の中心で高く外周端で低くなる2つの部位を有する段付き形状となっている。旋回スクロール13側の端板13aも、端板12aと同様に一側面の高さが渦方向の中心で高く外周端で低くなる2つの部位を有する段付き形状となっている。
【0028】
壁体12bの上縁は、中心寄りに設けられた低位の上縁12cと外周端寄りに設けられた高位の上縁12dの2つの部位に分けられ、隣り合う上縁12c,12d間には、両者を繋いで旋回面に垂直な連結縁12eが存在している。壁体13bの上縁も、壁体12bと同様に中心寄りに設けられた低位の上縁13cと外周端寄りに設けられた高位の上縁13dの2つの部位に分けられ、隣り合う上縁13c,13d間には、両者を繋いで旋回面に垂直な連結縁13eとが存在している。
【0029】
また、端板12aの底面は、中心寄りに設けられた底の浅い底面12fと外周端寄りに設けられた底の深い底面12gの2つの部位に分けられ、隣り合う底面12f,12g間には、両者を繋いで垂直に切り立つ連結壁面12hが存在している。端板13aの底面も、端板12aと同様に中心寄りに設けられた底の浅い底面13fと外周端寄りに設けられた底の深い底面13gの2つの部位に分けられ、隣り合う底面13f,13g間には、両者を繋いで垂直に切り立つ連結壁面13hとが存在している。
【0030】
連結縁12eは、壁体12bを旋回スクロール13の方向から見ると壁体12bの内外両側面に滑らかに連続し壁体12bの肉厚に等しい直径を有する半円形をなしており、連結縁13eも、連結縁12eと同様に壁体13bの内外両側面に滑らかに連続し壁体13bの肉厚に等しい直径を有する半円形をなしている。
【0031】
また、連結壁面12hは、端板12aを旋回軸方向から見ると旋回スクロールの旋回に伴って連結縁13eが描く包絡線に一致する円弧をなしており、連結壁面13hも、連結壁面12hと同様に連結縁12eが描く包絡線に一致する円弧をなしている。
【0032】
壁体12bにおいて上縁12dと連結縁12eとが突き合う部分には、図3に示すようにリブ12iが設けられている。リブ12iは、応力集中を避けるため上縁12dと連結縁12eとに滑らかに連続する凹曲面をなして壁体12bと一体に形成されている。壁体13bにおいて上縁13d,13eが突き合う部分にも、同様の理由で同形状のリブ13iが設けられている。
【0033】
端板12aにおいて底面12gと連結壁面12hとが突き合う部分にも、肉盛りしたようにリブ12jが設けられている。リブ12jは、応力集中を避けるため底面12gと連結壁面12hとに滑らかに連続する凹曲面をなして壁体12bと一体に形成されている。端板13aにおいて底面13gと連結壁面13hとが突き合う部分にも、同様の理由で同形状のリブ13jが設けられている。
【0034】
壁体12bにおいて上縁12c,12eが突き合う部分、および壁体13bにおいて上縁13c,13eが突き合う部分は、組み付け時にリブ13j,12jとの干渉を避けるためにそれぞれ面取りされている。
【0035】
さらに、壁体12bの上縁12c,12dにはチップシール27c,27dが、連結縁12eにはチップシール(シール部材)27eがそれぞれ配設されている。壁部13の各上縁13cにはチップシール28cが、連結縁13eにはチップシール(シール部材)28eがそれぞれ配設されている。
【0036】
チップシール27c,27dは渦巻き状をなし、上縁12cに渦方向に沿って形成された溝12k,12lに嵌合されており、圧縮機の運転時には溝12k,12lに導入される高圧の流体により背圧を受け、底面13f,13gに押し当てられてシールとしての機能を発揮する。
【0037】
チップシール28cも渦巻き状をなし、上縁13cに渦方向に沿って形成された溝13kに嵌合されており、圧縮機の運転時には溝13kに導入される高圧の流体により背圧を受け、底面12fに押し当てられてシールとしての機能を発揮する。
【0038】
チップシール27eは棒状をなし、連結縁12eに沿って形成された溝12mに嵌合されるとともに溝12mからの離脱を防止する構造を採用されており、圧縮機の運転時には後述するように図示しない付勢手段によって連結壁面13hに押し当てられてシールとしての機能を発揮する。チップシール28eも、チップシール27eと同様に連結縁13eに沿って形成された溝13mに嵌合されるとともに溝13mからの離脱を防止する構造を採用されており、圧縮機の運転時には図示しない付勢手段によって連結壁面12hに押し当てられてシールとしての機能を発揮する。
【0039】
固定スクロール12に旋回スクロール13を組み付けると、低位の上縁12cが底の浅い底面13fに当接し、高位の上縁12dが底の深い底面13gに当接する。同時に、低位の上縁13cが底の浅い底面12fに当接するが、高位の上縁13dは底の深い底面12gには当接しない。これは、底面12gが端板13aから上縁13eまでの高さよりも深くなるように形成されているためで、これによって底面12gと上縁13eとの間には空間29が設けられ、この空間29には底面12gに沿って板体30が配設されることになる(図1参照)。
【0040】
板体30は、均一な厚さに形成されて十分な剛性を備えて旋回軸方向から見ると底面12gにほぼ一致する形状をなしており、渦をまく壁体12b間にはめ込まれ、旋回軸方向に移動自在となっている(ただしその移動可能な範囲は、旋回スクロール13を組み合わせることで底面12gと壁体13bの間に限定される)。
【0041】
固定スクロール12と旋回スクロール13とを組み合わせたスクロール圧縮機構には、板体30を壁体13bの上縁13dに押圧する押圧手段31が設けられている。押圧手段31は、図4に示すように、底面12fをひとつの壁面として渦方向の中心側に画成される圧縮室内の流体を空間29における板体30の背面側に導入する導入路32を備えている。導入路32の一部は、固定スクロール12の端板12aを穿って形成されている。
【0042】
導入路32には、路内の流体を外部に逃がす排出管33が接続されており、導入路32と排出管33との接続部分には、必要に応じて導入路32を開閉するとともに導入路32を閉じたときに空間29側の流体を外部に逃がす三方弁(開閉弁)34が設けられている。三方弁34は、圧縮機の運転状態を制御する制御部37に制御され、容量制御を行わない場合は導入路32を開くとともに排出管33を閉じ、容量制御を行う場合には導入路32を閉じるとともに排出管33を開く、といった作動をする。
【0043】
板体30と底面12gとの間には、板体30を底面12gに引き寄せる方向に付勢するバネ体(付勢手段)35が設けられている。バネ体35には、耐食性に富む材質のものが使用されている。バネ体35は、容量制御を行わない場合は空間29に導入される流体の圧力に屈して伸張し、板体30を壁体13bの上縁13dに押し当てることを許容するが、容量制御を行う場合には板体30を底面12gに引き寄せて上縁13dとの間に積極的に隙間を形成する。
【0044】
板体30には、旋回軸方向の移動範囲を規制するストッパ36が設けられている。ストッパ36はボルト部36aの基端に膨出部36bが設けられたもので、板体30に厚さ方向に形成された貫通孔30aにボルト部36aを通し、さらにこのボルト部36aを固定スクロール12の端板12aに形成したネジ穴37に螺着されている。なお、板体30の貫通孔30aには、膨出部36bの張り出し分を吸収して板体30が壁体13bの上縁13dに当接させるように、段付き形状が採用されている。
【0045】
容量制御を行わない場合、板体30が押圧手段31の作動により壁体13bの上縁13dに押し当てられてシールとして機能するため、両スクロール間には向かい合う端板12a,13aと壁体12b,13bとに区画されて圧縮室Cが画成される(図5〜図8参照)。
【0046】
圧縮室Cは旋回スクロール13の公転旋回運動に伴い外周端から中心に向けて移動するが、連結縁12eは、壁体12b,13bの当接点が連結縁12eよりも外周端寄りに存在する間は壁体12を挟んで隣接する圧縮室C(一方は密閉状態にない)間で流体の漏れが生じないように連結壁面13hに摺接し、壁体12b,13bの当接点が連結縁12eよりも外周端寄りに存在しない間は壁体12を挟んで隣接する圧縮室C(共に密閉状態にある)間で均圧を図るべく連結壁面13hには摺接しないようになっている。
【0047】
連結縁13eも同様に、壁体12b,13bの当接点が連結縁13eよりも外周端寄りに存在する間は壁体13を挟んで隣接する圧縮室C(一方は密閉状態にない)間で流体の漏れが生じないように連結壁面12hに摺接し、壁体12b,13bの当接点が連結縁13eよりも外周端寄りに存在しない間は壁体13を挟んで隣接する圧縮室C(共に密閉状態にある)間で均圧を図るべく連結壁面12hには摺接しないようになっている。なお、連結縁12eと連結壁面13h、および連結縁13eと連結壁面12hの摺接は、旋回スクロール13が1/2回転する間で同期して起こる。
【0048】
容量制御を行う場合、板体30はバネ体35の作動により底面12gに引き寄せられてシールとしての機能を失うため、壁体12b,13bの外周端から連結壁面12h,13hに至るまでは気密性を備える圧縮室Cは画成されず、連結壁面12h,13hを過ぎた時点で初めて気密性を備える圧縮室Cが画成される。
【0049】
上記のように構成されたスクロール圧縮機について、容量制御を行わない場合の流体圧縮の過程を図5ないし図8に示して順に説明する。
【0050】
図5に示す状態では、壁体12bの外周端が壁体13bの外側面に当接するとともに、壁体13bの外周端が壁体12bの外側面に当接し、端板12a,13a、壁体12b,13b間に流体が封入され、スクロール圧縮機構の中心を挟んで正対した位置に、最大容積の圧縮室Cが2つ画成される。この時点では、連結縁12eと連結壁面13h、連結縁13eと連結壁面12hは摺接しているが、直後に解消される。
【0051】
図5の状態から旋回スクロール13がπ/2だけ旋回し図6に示す状態に至る過程では、圧縮室Cが密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させて流体を圧縮し、圧縮室Cに先行する圧縮室C0も密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させて引き続き流体を圧縮する。この過程では、連結縁12eと連結壁面13h、連結縁13eと連結壁面12hそれぞれの摺接が解消されており、壁体13を挟んで隣接する2つの圧縮室Cが連通状態となって均圧される。
【0052】
図6の状態から旋回スクロール13がπ/2だけ旋回し図7に示す状態に至る過程では、圧縮室Cが密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させてさらに流体を圧縮し、圧縮室Cに先行する圧縮室C0も密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させて引き続き流体を圧縮する。この過程でも、連結縁12eと連結壁面13h、連結縁13eと連結壁面12hそれぞれの摺接は解消されており、隣接する2つの圧縮室C間の均圧は継続される。
【0053】
図7に示す状態では、外周端に近い壁体12bの内側面とその内方に位置する壁体13bの外側面との間には後に圧縮室となる空間cが画成され、同じく外周端に近い壁体13bの内側面とその内方に位置する壁体12bの外側面との間にも後に圧縮室となる空間cが画成され、空間cには吸入室22から低圧の流体が流入する。この時点で、連結縁12eは連結壁面13hに、連結縁13eは連結壁面12hにそれぞれに摺接を開始し、空間cに先行する圧縮室Cの密閉状態を保つようになる。
【0054】
図7の状態から旋回スクロール13がπ/2だけ旋回し図8に示す状態に至る過程では、空間cが大きさを拡大しながらスクロール圧縮機構の中心に向けて進行し、空間cに先行する圧縮室Cも密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させて流体を圧縮する。この過程では、連結縁12eと連結壁面13h、連結縁13eと連結壁面12hそれぞれの摺接が継続されており、空間cとの間を封止して圧縮室Cの密閉状態が保たれる。
【0055】
図8の状態から旋回スクロール13がさらにπ/2だけ旋回し再び図5に示す状態に至る過程では、空間cがさらに大きさを拡大しながらスクロール圧縮機構の中心に向けて進行し、空間cに先行する圧縮室Cも密閉状態を保ちながら中心に向けて進行し、漸次容積を減少させて流体を圧縮し、最終的に最小容積となる。この過程でも、連結縁12eと連結壁面13h、連結縁13eと連結壁面12hそれぞれの摺接は継続されており、空間cとの間を封止して圧縮室Cの密閉状態が保たれる。
【0056】
最大容積から最小容積(吐出弁26開放時の容積)に至る圧縮室Cの大きさの変遷は、図5における圧縮室C→図6における圧縮室C→図7における圧縮室C→図8における圧縮室Cと見なせる。ここで、それぞれの状態における圧縮室を展開した形状を図9に示す。
【0057】
最大容積となる(a)の状態では、圧縮室は旋回軸方向の幅が途中で狭くなる異形の短冊状をなし、その幅はスクロール圧縮機構の外周端側では底面12gから上縁12dまでの壁体12bの高さ(もしくは底面13gから上縁13dまでの壁体13bの高さ)にほぼ等しいラップ長Llとなり、中心側では底面12fから上縁12cまでの高さ(もしくは底面13fから上縁13cまでの壁体13bの高さ)にほぼ等しいラップ長Ls(<Ll)となる。
【0058】
(b)の状態では、圧縮室は(a)の状態と同じく幅が途中で狭くなる異形の短冊状をなすが、(a)の状態と比較して旋回方向の長さが短くなるとともに、ラップ長Llの部分が短く、ラップ長Lsの部分が長くなる。
【0059】
(c)の状態では、圧縮室は中心側に移動することで旋回方向の長さがさらに短くなる。しかもラップ長Llの部分が消滅してしまい、幅が均一(ラップ長Ls)な短冊状となる。
【0060】
最小容積となる(d)の状態では、圧縮室は(c)の状態と同じく幅が均一な短冊状をなすが、(c)の状態と比較して旋回方向の長さが短くなる。この後は吐出弁26が開放して流体が吐出される。
【0061】
上記スクロール圧縮機においては、圧縮室の容積変化が、従来のように旋回面に平行な断面積の減少のみによって引き起こされるのではなく、図7に示したように旋回軸方向の幅の減少と断面積の減少とによって相乗的に引き起こされる。
【0062】
したがって、壁体12b,13bを段付き形状とし、スクロール圧縮機構の外周端寄りと中心寄りとで壁体12b,13bのラップ長を変化させ、圧縮室Cの最大容積を大きくしたり最小容積を小さくしたりすることで、壁体どうしのラップ長が一定である従来のスクロール圧縮機に比べて圧縮比を向上させることができる。
【0063】
また、上記スクロール圧縮機において、容量制御を行う場合は、板体30がシールとしての機能を果たさないことから、連結壁面12h,13hよりも外周端側では気密性を備える圧力室が画成されず、先行する圧縮室C0がこの時点で初めて気密性を備えて画成される。したがって、圧縮が行われるようになってから吐出されるまでの圧縮室Cの容積変化が小さくなり、吐出容量が低減される。しかも、圧縮室Cが連結壁面12h,13hを過ぎるまでは流体を圧縮するための動力がかからないと見なせるので、容量制御を行う場合において圧縮機を駆動するための動力が小さくすることができ、従来は無駄に消費していた動力損をなくして運転効率を高めることができる。
【0064】
また、容量制御を行わない場合は、連続壁面12h,13hよりも中心側に画成されて高圧となる圧縮室C内の圧力を導入路32を通じて空間29に導入することにより、板体30が、バネ体35の付勢力、ならびに連続壁面12h,13hよりも外周端側に画成されて低圧となる圧縮室C内の圧力に抗して押圧され、圧縮室Cの気密性が確保されるので、圧縮効率を高めて圧縮機の性能を向上させることができる。しかも、他に駆動源を設けることなく板体を押圧することが可能である。
【0065】
さらに、バネ体35を設けて板体30を底面12gに引き寄せることにより、容量制御を行うべく押圧手段31による板体30の押圧が解除された場合には、板体30と相対する壁体13bとの間に隙間が生まれ、外周端側では積極的に流体の漏れが生じて余計な圧の高まりが防止されるので、無駄な動力の消費をなくして運転効率を高めることができる。
【0066】
加えて、ストッパ36を設けて板体30の移動範囲を規制することにより、板体30が壁体13bに過剰に押圧されるのが阻止され、板体30の変形や壁体13bとの過剰な摩擦による熱の発生が抑えられるので、圧縮機の安定した運転が可能になる。
【0067】
なお、本実施形態においては固定スクロール12側に板体30を配設したが、旋回スクロール13側に板体30を配設した構成としてもよい。また、本実施形態においては板体30の移動範囲を規制するストッパ36を設けたが、板体30は底面12gと壁体13bの上縁13dとによって移動範囲を規制されているので、ストッパは必ずしも設けなくてよい。
【0068】
本実施形態においては連結縁12e,13eが旋回スクロール13の旋回面に垂直に形成され、これに対応して連結壁面12h,13hも旋回面に垂直に形成されているが、連結縁12e,13e、連結壁面12h,13hは互いの対応関係を守っていれば旋回面に垂直である必要はなく、例えば旋回面に対して傾斜するように形成しても構わない。
【0069】
本実施形態においては固定スクロール12、旋回スクロール13とともに1つの段差を有する段付き形状を採用したが、本発明に係るスクロール圧縮機は段差を複数有するものについても実施可能である。
【0070】
【発明の効果】
以上説明したように、本発明に係る請求項1記載のスクロール圧縮機によれば、容量制御を行う場合、押圧手段を作動させずに板体を旋回軸方向に移動自在とすることにより、固定スクロールと旋回スクロールとからなるスクロール圧縮機構では、外周端側に位置して壁体が高い部分では両スクロールの壁体間に圧縮室は画成されず、中心側に位置して壁体が低い部分に至り、連結壁面を過ぎて初めて圧縮室が画成されるので、圧縮が行われるようになってから吐出されるまでの圧縮室の容積変化が小さくなり、吐出容量が低減される。しかも、圧縮室が連結壁面を過ぎるまでは流体を圧縮するための動力がかからない。つまり、容量制御を行う場合において圧縮機を駆動するための動力を小さくすることができ、従来は無駄に消費していた動力損をなくして運転効率を高めることができる。また、容量制御を行わない場合、渦方向の中心側に位置して高圧となる圧縮室であって吐出されるまでの圧縮室内の圧力を、外周端側に位置する部位と板体との間に導入することにより、板体が、中心側より低圧となる圧縮室内の圧力に抗して押圧され、圧縮室の気密性が確保されるので、圧縮効率を高めて圧縮機の性能を向上させることができる。
【0071】
請求項2記載のスクロール圧縮機によれば、板体を、外周端側に位置する部位と略一致する形状とすることにより、容量制御を行わない場合に、外周端側に位置して壁体が高い部分に画成される圧縮室の気密性が確保されるので、圧縮効率を高めて圧縮機の性能を向上させることができる。しかも、他に駆動源を設けることなく板体を押圧することが可能である。
【0072】
請求項記載のスクロール圧縮機によれば、付勢手段を設けて板体を外周端側に位置する部位に引き寄せることにより、容量制御を行うべく押圧手段による板体の押圧が解除された場合には、板体と相対する壁体との間に隙間が生まれ、流体の漏れを生じ易くなり、外周端側では積極的に流体の漏れが生じて余計な圧の高まりが防止されるので、無駄な動力の消費をなくして圧縮機の運転効率を高めることができる。
【0073】
請求項記載のスクロール圧縮機によれば、ストッパを設けて板体の移動範囲を規制することにより、板体が相対する壁体に過剰に押圧されるのが阻止され、板体の変形や壁体との過剰な摩擦による熱の発生が抑えられるので、圧縮機の安定した運転が可能になる。
【図面の簡単な説明】
【図1】 本発明に係るスクロール圧縮機の実施形態を示す側断面図である。
【図2】 固定スクロール、旋回スクロールそれぞれの斜視図である。
【図3】 上縁と連結縁との間に設けられるリブ、および底面と連結壁面との間に設けられるリブを示す側断面図である。
【図4】 固定スクロールと板体、ならびに押圧手段を示す側断面図である。
【図5】 スクロール圧縮機の駆動時における流体圧縮の過程を示す状態説明図である。
【図6】 同じく、スクロール圧縮機の駆動時における流体圧縮の過程を示す状態説明図である。
【図7】 同じく、スクロール圧縮機の駆動時における流体圧縮の過程を示す状態説明図である。
【図8】 同じく、スクロール圧縮機の駆動時における流体圧縮の過程を示す状態説明図である。
【図9】 最大容積から最小容積に至る圧縮室の大きさの変遷を示す状態説明図である。
【符号の説明】
12 固定スクロール
12a 端板
12b 壁体
12c,12d 上縁
12e 連結縁
12f 底面
12h 連結壁面
13 旋回スクロール
13a 端板
13b 壁体
13c,13d 上縁
13e 連結縁
13f 底面
13h 連結壁面
29 空間
30 板体
31 押圧手段
32 導入路
33 排出管
34 三方弁(開閉弁)
35 バネ体(付勢手段)
36 ストッパ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scroll compressor provided in an air conditioner, a refrigeration apparatus, or the like.
[0002]
[Prior art]
In a scroll compressor, a fixed scroll and an orbiting scroll are arranged in combination with spiral walls, and the volume of the compression chamber formed between the walls is gradually increased by orbiting the orbiting scroll relative to the fixed scroll. The fluid in the compression chamber is compressed by decreasing.
[0003]
The compression ratio of the design of the scroll compressor is the maximum volume of the compression chamber (the volume immediately before the compression chamber disappears due to the disengagement of the walls and the compression chamber disappears). The volume at the time when is formed), and is expressed by the following equation (1).
Vi = {A (θsuc) · L} / {A (θtop) · L} = A (θsuc) / A (θtop) (1)
In equation (1), A (θ) is a function representing a cross-sectional area parallel to the orbiting surface of the compression chamber that changes the volume according to the orbiting angle θ of the orbiting scroll, and θsuc is orbital when the compression chamber has the maximum volume. The turning angle of the scroll, θtop is the turning angle of the turning scroll when the compression chamber becomes the minimum volume, and L is the wrap (overlap) length of the wall bodies.
[0004]
Conventionally, in order to improve the compression ratio Vi of the scroll compressor, a technique has been adopted in which the number of turns of the wall of both scrolls is increased to increase the cross-sectional area A (θ) of the compression chamber at the maximum capacity. However, the conventional method of increasing the number of turns of the wall body enlarges the outer shape of the scroll and increases the size of the compressor itself, so that it is difficult to employ it in an air conditioner for automobiles and the like that is severely limited in size. was there.
[0005]
In order to solve the above-mentioned problems, Japanese Patent Publication No. 60-17756 discloses that both the fixed scroll and the orbiting scroll have a stepped shape with a lower center side and a higher outer peripheral end side with a spiral upper edge of the wall body. Corresponding to the stepped shape, a scroll compressor has been proposed in which both side scrolls have a stepped shape with the side surface of the end plate being higher on the center side and lower on the outer peripheral end side.
[0006]
In the scroll compressor, when the wrap length of the compression chamber at the maximum volume is Ll and the wrap length of the compression chamber at the minimum volume is Ls, the designed compression ratio Vi ′ is expressed by the following equation (2).
Vi ′ = {A (θsuc) · Ll} / {A (θtop) · Ls} (2)
In the equation (2), since the wrap length Ll of the compression chamber at the maximum volume is larger than the wrap length Ls of the compression chamber at the minimum volume and Ll / Ls> 1, it is necessary to increase the number of turns of the wall body. However, it is possible to improve the design compression ratio.
Japanese Patent Laid-Open No. 4-311693 discloses a structure in which a stepped shape is adopted for the scroll and a tip seal is provided at the outer peripheral wrap tip for the purpose of reducing leakage on the outer peripheral side.
[0007]
[Problems to be solved by the invention]
By the way, it is not restricted to what employ | adopted the stepped shape for the scroll as mentioned above, In the conventional general scroll compressor, the technique which variably controls discharge capacity may be employ | adopted. This is because, for example, in an air conditioner, a much larger amount of refrigerant is not required during steady operation than when starting operation.
[0008]
For volume control, a technique is generally adopted in which part of the sucked fluid is released from the high pressure side to the low pressure side to reduce the discharge volume. However, once a part of the fluid compressed to a high pressure is allowed to escape from the high pressure side to the low pressure side, a power loss of the drive source is generated, which is not efficient.
[0009]
The present invention has been made in view of the above circumstances, and in a scroll compressor adopting a stepped shape for the scroll, the capacity of the scroll compressor can be controlled without causing power loss of the drive source, and the performance of the scroll compressor can be improved. The purpose is to improve.
[0010]
[Means for Solving the Problems]
As means for solving the above problems, a scroll compressor having the following configuration is employed.
That is, the scroll compressor according to claim 1 has a spiral wall body standing on one side surface of the end plate, and is fixed on a fixed scroll in a fixed position and on one side surface of the end plate. A rotating scroll supported by the revolving orbiting motion while preventing rotation by engaging the wall bodies, and the upper edge of each wall body is provided at a plurality of sites. It is divided and has a stepped shape in which the height of the portion is low on the center side in the vortex direction and high on the outer peripheral end side. Similarly, one side surface of each end plate corresponds to each portion, and the height is vortex. In a scroll compressor having a stepped shape having a plurality of portions that are higher at the center side in the direction and lower at the outer peripheral end side, on the outer peripheral end side of the one side surface of either the fixed scroll or the orbiting scroll Arranged in the position of the position A plate that is movable in the direction of the turning axis of the scroll, and a pressing means that presses the plate against the upper edge of the other wall of the fixed scroll or the turning scroll as required. The means is formed by using the portion located on the center side of the one side surface of the one scroll as one wall surface. Until it is discharged in the compression chamber An introduction path for introducing the pressure in the compression chamber between the portion located on the outer peripheral end side and the plate body is provided.
[0011]
In this scroll compressor, when capacity control is performed, the plate body is movable in the direction of the turning axis without operating the pressing means. As a result, in the scroll compression mechanism composed of the fixed scroll and the orbiting scroll, even if an attempt is made to define a compression chamber between the walls of both scrolls at the portion where the wall body is located on the outer peripheral end side, the plate body pressurizes. In response, the fluid moves and leaks, and the compression chamber actually advances toward the center without being compressed. Then, when the wall is located at the center side and reaches the low wall part and passes through the high wall part, a compression chamber with no leakage is finally defined and compression is performed. As a result, the volume change of the compression chamber from when compression is performed to when it is discharged is reduced, and the discharge capacity is reduced. In addition, since the compression chamber is not defined until the wall is located at the center and reaches a low part, no power is required to compress the fluid.
[0012]
When the capacity control is not performed, the pressing means is operated to press the plate body against the upper edge of the other wall body of the fixed scroll or the orbiting scroll. Thereby, even if the wall body is located at the outer peripheral end side and the wall body is high, the plate body forms a part of the compression chamber to ensure airtightness, so that there is no leakage chamber from the outer peripheral end side to the center side. Is defined and compressed. At this time, it is located at the center side of the vortex direction and becomes high pressure Until it is discharged in the compression chamber By introducing the pressure in the compression chamber between the portion located on the outer peripheral end side and the plate body, the plate body is pressed against the pressure in the compression chamber that is lower than the center side, and the compression chamber is hermetically sealed. Sex is secured.
[0013]
The scroll compressor according to claim 2 is the scroll compressor according to claim 1, wherein the plate body substantially coincides with the portion located on the outer peripheral end side when the one scroll is viewed in the turning axis direction. It is characterized by becoming.
[0014]
In this scroll compressor, the plate body is shaped so as to be substantially coincident with the portion located on the outer peripheral end side, so that when the capacity control is not performed, the wall body is formed on the high portion located on the outer peripheral end side. The airtightness of the compression chamber is ensured. Moreover, it is possible to press the plate without providing another drive source.
[0015]
Claim 3 The scroll compressor described is claimed 1 or 2 The scroll compressor according to claim 1, further comprising an urging unit that urges the plate body in a direction to draw the plate body toward the portion located on the outer peripheral end side.
[0016]
In this scroll compressor, when the pressing of the pressing member by the pressing unit is released to perform the capacity control by providing the urging means and pulling the plate to the portion located on the outer peripheral end side, the plate A gap is created between the wall and the opposite wall. As a result, fluid leakage actively occurs on the outer peripheral end side, thereby preventing an excessive increase in pressure.
[0017]
Claim 4 The scroll compressor described is claimed 1, 2 or 3 The scroll compressor described above is characterized by including a stopper that regulates a moving range of the plate.
[0018]
In this scroll compressor, by restricting the range of movement of the plate by providing a stopper, it is possible to prevent the plate from being excessively pressed against the opposing wall, so the deformation of the plate and the wall Heat generation due to excessive friction is suppressed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a scroll compressor according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing the overall configuration of a scroll compressor according to the present invention. In the figure, reference numeral 11 denotes a housing. The housing 11 includes a housing body 11a formed in a cup shape and a lid plate 11b fixed to the opening end side of the housing body 11a.
[0020]
A scroll compression mechanism including a fixed scroll 12 and a turning scroll 13 is disposed inside the housing 11. The fixed scroll 12 has a configuration in which a spiral wall body 12b is erected on one side surface of the end plate 12a. As with the fixed scroll 12, the orbiting scroll 13 has a configuration in which a spiral wall body 13b is erected on one side surface of the end plate 13a. In particular, the wall body 13b includes a wall body 12b on the fixed scroll 12 side. It has the same shape. Further, tip seals 27 and 28 are provided on the upper edges of the wall bodies 12b and 13b to enhance the airtightness of the compression chamber C described later (the tip seals 27 and 28 will be described later).
[0021]
The fixed scroll 12 is fastened to the housing main body 11 a by a bolt 14. The orbiting scroll 13 is assembled with the wall plates 12b and 13b meshed with each other while being eccentric with respect to the fixed scroll 12 by the revolving orbiting radius and shifted in phase by 180 °. The rotation prevention mechanism 15 provided between 13a and 13a is supported so as to be capable of revolving while being prevented from rotating.
[0022]
A rotating shaft 16 having a crank 16a passes through the lid plate 11b, and is rotatably supported by the lid plate 11b via bearings 17a and 17b.
[0023]
A boss 18 projects from the center of the other end surface of the end plate 13a on the orbiting scroll 13 side. An eccentric portion 16b of the crank 16a is rotatably accommodated in the boss 18 via a bearing 19 and a drive bush 20, and the orbiting scroll 13 rotates and revolves by rotating the rotating shaft 16. Yes. A balance weight 21 that cancels the unbalance amount given to the orbiting scroll 13 is attached to the rotary shaft 16.
[0024]
In the housing 11, a suction chamber 22 is formed around the fixed scroll 12, and a discharge cavity 23 is formed by being partitioned into an inner bottom surface of the housing body 11a and the other side surface of the end plate 12a.
[0025]
The housing body 11a is provided with a suction port 24 that guides a low-pressure fluid toward the suction chamber 22, and a compression chamber that has moved to the center while gradually reducing the volume at the center of the end plate 12a on the fixed scroll 12 side. A discharge port 25 for guiding a high-pressure fluid from C toward the discharge cavity 23 is provided. At the center of the other side surface of the end plate 12a, a discharge valve 26 that opens the discharge port 25 only when a pressure of a predetermined magnitude or larger is provided.
[0026]
FIG. 2 is a perspective view of each of the fixed scroll 12 and the orbiting scroll 13.
The wall 12b on the fixed scroll 12 side has a spiral upper edge divided into two parts, and has a stepped shape that is low on the center side of the vortex and high on the outer peripheral end side. Similarly to the wall body 12b, the wall body 13b on the orbiting scroll 13 side has a spiral upper edge divided into two parts, and has a stepped shape that is low on the center side in the vortex direction and high on the outer peripheral end side.
[0027]
Further, the end plate 12a on the fixed scroll 12 side corresponds to each part of the upper edge of the wall body 13b, and has a stepped shape having two parts where the height of one side surface is high at the center of the vortex and low at the outer peripheral end. It has become. Similarly to the end plate 12a, the end plate 13a on the orbiting scroll 13 side also has a stepped shape having two portions where the height of one side surface is high at the center in the vortex direction and low at the outer peripheral end.
[0028]
The upper edge of the wall 12b is divided into two parts, a lower upper edge 12c provided near the center and a higher upper edge 12d provided near the outer peripheral end, and between the adjacent upper edges 12c and 12d. There is a connecting edge 12e that connects the two and is perpendicular to the turning surface. Similarly to the wall 12b, the upper edge of the wall 13b is also divided into two parts, a lower upper edge 13c provided near the center and a higher upper edge 13d provided near the outer peripheral edge. Between 13c and 13d, there is a connecting edge 13e that connects the two and is perpendicular to the turning surface.
[0029]
Further, the bottom surface of the end plate 12a is divided into two parts, a shallow bottom surface 12f provided near the center and a deep bottom surface 12g provided near the outer peripheral edge, and between the adjacent bottom surfaces 12f and 12g. There is a connecting wall surface 12h that connects the two and stands vertically. Similarly to the end plate 12a, the bottom surface of the end plate 13a is also divided into two parts: a shallow bottom surface 13f provided near the center and a deep bottom surface 13g provided near the outer peripheral end. Between 13g, there exists a connecting wall surface 13h that connects the two and stands vertically.
[0030]
When the wall 12b is viewed from the direction of the orbiting scroll 13, the connecting edge 12e has a semicircular shape that is smoothly continuous with both the inner and outer side surfaces of the wall 12b and has a diameter equal to the wall thickness of the wall 12b. Similarly to the connecting edge 12e, it also has a semicircular shape that smoothly continues to both the inner and outer side surfaces of the wall 13b and has a diameter equal to the wall thickness of the wall 13b.
[0031]
The connecting wall surface 12h has an arc that matches the envelope drawn by the connecting edge 13e as the orbiting scroll turns when the end plate 12a is viewed from the turning axis direction. The connecting wall surface 13h is the same as the connecting wall surface 12h. Is formed into an arc that matches the envelope drawn by the connecting edge 12e.
[0032]
A rib 12i is provided at a portion of the wall 12b where the upper edge 12d and the connecting edge 12e meet as shown in FIG. In order to avoid stress concentration, the rib 12i is formed integrally with the wall 12b so as to form a concave curved surface that is smoothly continuous with the upper edge 12d and the connecting edge 12e. The rib 13i of the same shape is also provided in the wall 13b at the portion where the upper edges 13d and 13e abut for the same reason.
[0033]
A rib 12j is also provided on the end plate 12a so that the bottom surface 12g and the connecting wall surface 12h face each other. In order to avoid stress concentration, the rib 12j is formed integrally with the wall 12b so as to form a concave curved surface that is smoothly continuous with the bottom surface 12g and the connecting wall surface 12h. A rib 13j having the same shape is also provided on the end plate 13a at a portion where the bottom surface 13g and the connecting wall surface 13h face each other for the same reason.
[0034]
A portion where the upper edges 12c, 12e abut on the wall body 12b and a portion where the upper edges 13c, 13e abut on the wall body 13b are chamfered to avoid interference with the ribs 13j, 12j during assembly.
[0035]
Further, chip seals 27c and 27d are disposed on the upper edges 12c and 12d of the wall body 12b, and a chip seal (seal member) 27e is disposed on the connecting edge 12e. A tip seal 28c is disposed on each upper edge 13c of the wall portion 13, and a tip seal (seal member) 28e is disposed on the connecting edge 13e.
[0036]
The tip seals 27c and 27d have a spiral shape and are fitted in grooves 12k and 12l formed along the vortex direction on the upper edge 12c. When the compressor is operated, a high-pressure fluid introduced into the grooves 12k and 12l. The back pressure is received by and pressed against the bottom surfaces 13f and 13g to exert a function as a seal.
[0037]
The tip seal 28c also has a spiral shape and is fitted in a groove 13k formed in the upper edge 13c along the vortex direction, and receives back pressure by a high-pressure fluid introduced into the groove 13k during operation of the compressor. It is pressed against the bottom surface 12f and exhibits a function as a seal.
[0038]
The tip seal 27e has a rod-like shape and is adapted to be fitted into a groove 12m formed along the connecting edge 12e and to prevent detachment from the groove 12m. It is pressed against the connecting wall surface 13h by the urging means that does not, and exhibits a function as a seal. Similarly to the tip seal 27e, the tip seal 28e is fitted in a groove 13m formed along the connecting edge 13e and is prevented from being detached from the groove 13m, and is not shown when the compressor is in operation. It is pressed against the connecting wall surface 12h by the urging means and exhibits a function as a seal.
[0039]
When the orbiting scroll 13 is assembled to the fixed scroll 12, the lower upper edge 12c contacts the shallow bottom surface 13f, and the higher upper edge 12d contacts the deep bottom surface 13g. At the same time, the lower upper edge 13c contacts the shallow bottom surface 12f, but the higher upper edge 13d does not contact the deep bottom surface 12g. This is because the bottom surface 12g is formed to be deeper than the height from the end plate 13a to the upper edge 13e, whereby a space 29 is provided between the bottom surface 12g and the upper edge 13e. 29 is provided with a plate 30 along the bottom surface 12g (see FIG. 1).
[0040]
The plate body 30 is formed to have a uniform thickness, has sufficient rigidity, and has a shape that substantially matches the bottom surface 12g when viewed from the direction of the swivel axis. The plate body 30 is fitted between the wall bodies 12b that vortex, It is movable in the direction (however, the movable range is limited between the bottom surface 12g and the wall body 13b by combining the orbiting scroll 13).
[0041]
The scroll compression mechanism that combines the fixed scroll 12 and the orbiting scroll 13 is provided with a pressing means 31 that presses the plate 30 against the upper edge 13d of the wall 13b. As shown in FIG. 4, the pressing means 31 has an introduction path 32 for introducing the fluid in the compression chamber defined on the center side in the vortex direction with the bottom surface 12 f as one wall surface to the back side of the plate body 30 in the space 29. I have. A part of the introduction path 32 is formed by piercing the end plate 12 a of the fixed scroll 12.
[0042]
A discharge pipe 33 that allows fluid in the path to escape to the outside is connected to the introduction path 32, and the introduction path 32 is opened and closed as necessary at the connection portion between the introduction path 32 and the discharge pipe 33. A three-way valve (open / close valve) 34 is provided to allow the fluid on the space 29 side to escape to the outside when 32 is closed. The three-way valve 34 is controlled by a control unit 37 that controls the operating state of the compressor. When the capacity control is not performed, the introduction path 32 is opened and the discharge pipe 33 is closed. When the capacity control is performed, the introduction path 32 is opened. The operation of closing and opening the discharge pipe 33 is performed.
[0043]
Between the plate body 30 and the bottom surface 12g, a spring body (biasing means) 35 that urges the plate body 30 in a direction to draw the plate body 30 toward the bottom surface 12g is provided. The spring body 35 is made of a material having high corrosion resistance. When the volume control is not performed, the spring body 35 is bent and stretched by the pressure of the fluid introduced into the space 29, and allows the plate body 30 to be pressed against the upper edge 13d of the wall body 13b. When performing, the plate body 30 is pulled toward the bottom surface 12g to positively form a gap with the upper edge 13d.
[0044]
The plate body 30 is provided with a stopper 36 that restricts the movement range in the direction of the pivot axis. The stopper 36 is provided with a bulging portion 36b at the base end of the bolt portion 36a. The bolt portion 36a is passed through a through hole 30a formed in the plate body 30 in the thickness direction, and the bolt portion 36a is fixedly scrolled. 12 is screwed into a screw hole 37 formed in the end plate 12a. Note that the through-hole 30a of the plate 30 has a stepped shape so that the protruding portion of the bulging portion 36b is absorbed and the plate 30 is brought into contact with the upper edge 13d of the wall 13b.
[0045]
When the capacity control is not performed, the plate body 30 is pressed against the upper edge 13d of the wall body 13b by the operation of the pressing means 31 and functions as a seal, so that the end plates 12a and 13a and the wall body 12b facing each other between the scrolls. , 13b and the compression chamber C is defined (see FIGS. 5 to 8).
[0046]
The compression chamber C moves from the outer peripheral end toward the center in accordance with the revolving orbiting motion of the orbiting scroll 13. However, the connecting edge 12e has a contact point between the wall bodies 12b and 13b closer to the outer peripheral end than the connecting edge 12e. Is in sliding contact with the connecting wall surface 13h so that fluid does not leak between adjacent compression chambers C (one is not sealed) across the wall body 12, and the contact points of the wall bodies 12b and 13b are from the connecting edge 12e. As long as it does not exist near the outer peripheral end, it is not slidably contacted with the connecting wall surface 13h so as to equalize pressure between the adjacent compression chambers C (both in a sealed state) with the wall 12 interposed therebetween.
[0047]
Similarly, the connecting edge 13e is between the adjacent compression chambers C (one of which is not sealed) with the wall 13 interposed therebetween while the contact point of the walls 12b, 13b is closer to the outer peripheral end than the connecting edge 13e. In order to prevent fluid leakage, the compression chamber C is slidably contacted with the connecting wall surface 12h, and the adjacent compression chambers C (both of which are sandwiched between the wall members 13) while the contact points of the wall members 12b and 13b do not exist closer to the outer peripheral end than the connecting edge 13e The connecting wall surface 12h is not slidably contacted in order to achieve a uniform pressure between them (in a sealed state). Note that the sliding contact between the connecting edge 12e and the connecting wall surface 13h and between the connecting edge 13e and the connecting wall surface 12h occurs synchronously while the orbiting scroll 13 rotates 1/2.
[0048]
When the capacity control is performed, the plate body 30 is attracted to the bottom surface 12g by the operation of the spring body 35 and loses its function as a seal. Therefore, the airtightness extends from the outer peripheral ends of the wall bodies 12b and 13b to the connecting wall surfaces 12h and 13h. The compression chamber C provided with is not defined, and the compression chamber C having airtightness is defined only after the connecting wall surfaces 12h and 13h.
[0049]
With respect to the scroll compressor configured as described above, the process of fluid compression when capacity control is not performed will be described in order with reference to FIGS.
[0050]
In the state shown in FIG. 5, the outer peripheral end of the wall body 12b contacts the outer surface of the wall body 13b, and the outer peripheral end of the wall body 13b contacts the outer surface of the wall body 12b. The fluid is sealed between 12b and 13b, and two compression chambers C having the maximum volume are defined at positions facing each other across the center of the scroll compression mechanism. At this time, the connecting edge 12e and the connecting wall surface 13h, and the connecting edge 13e and the connecting wall surface 12h are in sliding contact with each other, but are eliminated immediately thereafter.
[0051]
In the process from the state of FIG. 5 to the state shown in FIG. 6 in which the orbiting scroll 13 is revolved by π / 2, the compression chamber C advances toward the center while maintaining a sealed state, gradually compressing the fluid by reducing the volume. And the compression chamber C preceding the compression chamber C 0 Also, it proceeds toward the center while maintaining a sealed state, gradually reducing the volume, and subsequently compressing the fluid. In this process, the sliding contact between the connecting edge 12e and the connecting wall surface 13h, and the connecting edge 13e and the connecting wall surface 12h is eliminated, and the two compression chambers C adjacent to each other with the wall body 13 in between are in communication with each other. Is done.
[0052]
In the process from the state shown in FIG. 6 to the state shown in FIG. 7 in which the orbiting scroll 13 is turned by π / 2, the compression chamber C advances toward the center while maintaining a sealed state, gradually reducing the volume and further supplying fluid. Compression chamber C compresses and precedes compression chamber C 0 Also, it proceeds toward the center while maintaining a sealed state, gradually reducing the volume, and subsequently compressing the fluid. Even in this process, the sliding contact between the connecting edge 12e and the connecting wall surface 13h and between the connecting edge 13e and the connecting wall surface 12h is eliminated, and the pressure equalization between the two adjacent compression chambers C is continued.
[0053]
In the state shown in FIG. 7, a space c, which will later become a compression chamber, is defined between the inner side surface of the wall body 12b close to the outer peripheral end and the outer side surface of the wall body 13b positioned inward thereof. A space c, which will later become a compression chamber, is also defined between the inner side surface of the wall body 13b close to the outer wall surface and the outer side surface of the wall body 12b positioned inward of the wall body 13b. Inflow. At this time, the connecting edge 12e starts sliding contact with the connecting wall surface 13h, and the connecting edge 13e starts sliding contact with the connecting wall surface 12h, respectively, so that the compression chamber C preceding the space c is kept sealed.
[0054]
In the process from the state shown in FIG. 7 to the state shown in FIG. 8 in which the orbiting scroll 13 is turned by π / 2, the space c advances toward the center of the scroll compression mechanism while expanding in size, and precedes the space c. The compression chamber C also advances toward the center while maintaining a sealed state, and gradually reduces the volume to compress the fluid. In this process, the sliding contact between the connecting edge 12e and the connecting wall surface 13h, and the connecting edge 13e and the connecting wall surface 12h is continued, and the space c is sealed and the compression chamber C is kept sealed.
[0055]
In the process in which the orbiting scroll 13 is further rotated by π / 2 from the state of FIG. 8 to reach the state shown in FIG. 5 again, the space c further advances in size toward the center of the scroll compression mechanism. The compression chamber C that precedes also advances toward the center while maintaining a sealed state, gradually reduces the volume, compresses the fluid, and finally becomes the minimum volume. Even in this process, the sliding contact between the connecting edge 12e and the connecting wall surface 13h, and the connecting edge 13e and the connecting wall surface 12h is continued, and the space c is sealed and the compression chamber C is kept sealed.
[0056]
The transition of the size of the compression chamber C from the maximum volume to the minimum volume (volume when the discharge valve 26 is opened) is as follows: compression chamber C in FIG. 5 → compression chamber C in FIG. 6 → compression chamber C in FIG. It can be regarded as the compression chamber C. Here, the shape which expanded the compression chamber in each state is shown in FIG.
[0057]
In the state of (a) where the maximum volume is reached, the compression chamber has an irregular strip shape whose width in the orbiting axis direction becomes narrower in the middle, and the width is from the bottom surface 12g to the upper edge 12d on the outer peripheral end side of the scroll compression mechanism. The wrap length Ll is substantially equal to the height of the wall 12b (or the height of the wall 13b from the bottom surface 13g to the upper edge 13d), and the height from the bottom surface 12f to the upper edge 12c (or the upper surface from the bottom surface 13f on the center side). The wrap length Ls (<Ll) is approximately equal to the height of the wall 13b up to the edge 13c.
[0058]
In the state of (b), the compression chamber has an irregular strip shape whose width is narrowed in the same way as in the state of (a), but the length in the swirling direction is shorter than in the state of (a), The portion of the wrap length Ll is short and the portion of the wrap length Ls is long.
[0059]
In the state of (c), the compression chamber is moved to the center side, so that the length in the turning direction is further shortened. In addition, the portion of the wrap length L1 disappears, and a strip shape with a uniform width (wrap length Ls) is formed.
[0060]
In the state (d), which is the minimum volume, the compression chamber has a strip shape with a uniform width as in the state (c), but the length in the turning direction is shorter than that in the state (c). Thereafter, the discharge valve 26 is opened and fluid is discharged.
[0061]
In the scroll compressor, the change in the volume of the compression chamber is not caused only by the reduction in the cross-sectional area parallel to the turning surface as in the prior art, but the reduction in the width in the turning axis direction as shown in FIG. Caused by the reduction in cross-sectional area.
[0062]
Therefore, the wall bodies 12b and 13b are stepped, and the wrap length of the wall bodies 12b and 13b is changed between the outer peripheral end and the center of the scroll compression mechanism, so that the maximum volume of the compression chamber C is increased or the minimum volume is reduced. By reducing the size, the compression ratio can be improved as compared with the conventional scroll compressor in which the wrap length between the wall bodies is constant.
[0063]
In the scroll compressor, when capacity control is performed, since the plate 30 does not function as a seal, a pressure chamber having airtightness is defined on the outer peripheral end side of the connection wall surfaces 12h and 13h. The preceding compression chamber C 0 Is defined for the first time at this point with airtightness. Therefore, the volume change of the compression chamber C from when compression is performed to when it is discharged is reduced, and the discharge capacity is reduced. In addition, since it can be considered that power for compressing the fluid is not applied until the compression chamber C passes the connecting wall surfaces 12h and 13h, the power for driving the compressor can be reduced when performing capacity control. Can eliminate the power loss that was wasted and increase the driving efficiency.
[0064]
Further, when capacity control is not performed, the plate body 30 is formed by introducing the pressure in the compression chamber C, which is defined at the center side of the continuous wall surfaces 12h and 13h and becomes high pressure, into the space 29 through the introduction path 32. Further, the urging force of the spring body 35 and the pressure in the compression chamber C, which is defined on the outer peripheral end side than the continuous wall surfaces 12h and 13h and becomes a low pressure, are pressed against each other, and the airtightness of the compression chamber C is secured. Therefore, the compression efficiency can be increased and the performance of the compressor can be improved. Moreover, it is possible to press the plate without providing another drive source.
[0065]
Further, by providing the spring body 35 and pulling the plate body 30 to the bottom surface 12g, when the pressing of the plate body 30 by the pressing means 31 is released to perform capacity control, the wall body 13b facing the plate body 30 is released. A gap is created between the two and the fluid, and fluid leakage actively occurs on the outer peripheral end side to prevent an excessive increase in pressure, so that unnecessary power consumption can be eliminated and the operation efficiency can be improved.
[0066]
In addition, by providing the stopper 36 and restricting the movement range of the plate 30, the plate 30 is prevented from being excessively pressed against the wall 13 b, and the plate 30 is deformed or excessive with the wall 13 b. Since generation of heat due to friction is suppressed, the compressor can be operated stably.
[0067]
In the present embodiment, the plate body 30 is disposed on the fixed scroll 12 side. However, the plate body 30 may be disposed on the orbiting scroll 13 side. In the present embodiment, the stopper 36 for restricting the movement range of the plate body 30 is provided. However, since the plate body 30 is restricted in the movement range by the bottom surface 12g and the upper edge 13d of the wall body 13b, It is not always necessary to provide it.
[0068]
In the present embodiment, the connecting edges 12e and 13e are formed perpendicular to the orbiting surface of the orbiting scroll 13, and the corresponding connecting wall surfaces 12h and 13h are also formed perpendicular to the orbiting surface. The connecting wall surfaces 12h and 13h do not have to be perpendicular to the turning surface as long as the corresponding relationship is maintained. For example, the connecting wall surfaces 12h and 13h may be formed to be inclined with respect to the turning surface.
[0069]
In the present embodiment, a stepped shape having one step is employed together with the fixed scroll 12 and the orbiting scroll 13, but the scroll compressor according to the present invention can also be implemented for those having a plurality of steps.
[0070]
【The invention's effect】
As described above, according to the scroll compressor according to claim 1 of the present invention, when the capacity control is performed, the plate body can be moved in the direction of the turning axis without operating the pressing means, thereby being fixed. In the scroll compression mechanism composed of scroll and orbiting scroll, the compression chamber is not defined between the walls of the scrolls at the portion where the wall is located at the outer peripheral end, and the wall is low at the center. Since the compression chamber is defined only after reaching the portion and past the connecting wall surface, the change in the volume of the compression chamber from when the compression is performed to when the compression chamber is discharged is reduced, and the discharge capacity is reduced. Moreover, power for compressing the fluid is not applied until the compression chamber passes the connecting wall surface. That is, when performing capacity control, the power for driving the compressor can be reduced, and the power loss that has conventionally been wasted can be eliminated, and the operating efficiency can be increased. Also, when capacity control is not performed, it is located at the center side in the vortex direction and becomes high pressure Until it is discharged in the compression chamber By introducing the pressure in the compression chamber between the portion located on the outer peripheral end side and the plate body, the plate body is pressed against the pressure in the compression chamber that is lower than the center side, and the compression chamber is hermetically sealed. Therefore, the compression efficiency can be improved and the performance of the compressor can be improved.
[0071]
According to the scroll compressor according to claim 2, when the capacity control is not performed by making the plate body substantially coincident with the portion located on the outer peripheral end side, the wall body is located on the outer peripheral end side. Since the airtightness of the compression chamber defined in the high portion is ensured, the compression efficiency can be improved and the performance of the compressor can be improved. Moreover, it is possible to press the plate without providing another drive source.
[0072]
Claim 3 According to the scroll compressor described, when the pressing of the plate by the pressing unit is released to perform the capacity control by providing the biasing means and pulling the plate to the portion located on the outer peripheral end side, A gap is created between the plate body and the opposing wall body, which tends to cause fluid leakage. On the outer peripheral end side, fluid leakage positively prevents an excessive increase in pressure, so useless power It is possible to increase the operating efficiency of the compressor by eliminating the consumption of the compressor.
[0073]
Claim 4 According to the scroll compressor described above, by providing a stopper to restrict the movement range of the plate body, the plate body is prevented from being excessively pressed against the opposing wall body, and the deformation of the plate body and the wall body Since the generation of heat due to excessive friction is suppressed, the compressor can be operated stably.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an embodiment of a scroll compressor according to the present invention.
FIG. 2 is a perspective view of each of a fixed scroll and a turning scroll.
FIG. 3 is a side sectional view showing a rib provided between an upper edge and a connection edge, and a rib provided between a bottom surface and a connection wall surface.
FIG. 4 is a side sectional view showing a fixed scroll, a plate body, and pressing means.
FIG. 5 is a state explanatory diagram showing a process of fluid compression when the scroll compressor is driven.
FIG. 6 is a state explanatory view similarly showing a process of fluid compression when the scroll compressor is driven.
FIG. 7 is also a state explanatory view showing a process of fluid compression when the scroll compressor is driven.
FIG. 8 is also a state explanatory view showing a process of fluid compression when the scroll compressor is driven.
FIG. 9 is a state explanatory diagram showing a change in the size of the compression chamber from the maximum volume to the minimum volume.
[Explanation of symbols]
12 Fixed scroll
12a end plate
12b wall
12c, 12d Upper edge
12e connecting edge
12f Bottom
12h Connecting wall
13 Orbiting scroll
13a end plate
13b wall
13c, 13d Upper edge
13e connecting edge
13f bottom
13h Connecting wall
29 space
30 plates
31 Pressing means
32 Introduction route
33 Discharge pipe
34 Three-way valve (open / close valve)
35 Spring body (biasing means)
36 Stopper

Claims (4)

端板の一側面に立設された渦巻き状の壁体を有し、定位置に固定された固定スクロールと、
端板の一側面に立設された渦巻き状の壁体を有し、前記各壁体どうしをかみ合わせて自転を阻止されつつ公転旋回運動可能に支持された旋回スクロールとを備え、
前記各壁体の上縁は、複数の部位に分割されかつ該部位の高さが渦方向の中心側で低く外周端側で高くなる段付き形状とされ、
同じく前記各端板の一側面は、前記各部位に対応し、その高さが渦方向の中心側で高く外周端側で低くなる複数の部位を有する段付き形状とされたスクロール圧縮機において、
前記固定スクロールまたは前記旋回スクロールのいずれか一方の前記一側面のうち前記外周端側に位置する前記部位に配置されて前記旋回スクロールの旋回軸方向に移動自在な板体と、
該板体を必要に応じて前記固定スクロールまたは前記旋回スクロールのいずれか他方の前記壁体の上縁に押圧する押圧手段とを備え、
該押圧手段は、前記一方のスクロールの前記一側面のうち前記中心側に位置する前記部位をひとつの壁面として形成される圧縮室であって吐出されるまでの圧縮室内の圧力を、前記外周端側に位置する前記部位と前記板体との間に導入する導入路を備えることを特徴とするスクロール圧縮機。
A fixed scroll having a spiral wall standing on one side of the end plate and fixed in place;
A swirl-like wall body provided upright on one side surface of the end plate, and a revolving scroll supported so as to be capable of revolving orbiting while engaging each wall body and preventing rotation,
The upper edge of each wall body is divided into a plurality of parts, and has a stepped shape in which the height of the part is low on the center side in the vortex direction and high on the outer peripheral end side,
Similarly, one side surface of each end plate corresponds to each part, in a scroll compressor having a stepped shape having a plurality of parts whose height is high at the center side in the vortex direction and low at the outer peripheral end side,
A plate body that is disposed in the portion located on the outer peripheral end side of the one side surface of either the fixed scroll or the orbiting scroll and is movable in the orbiting axis direction of the orbiting scroll;
Pressing means for pressing the plate body against the upper edge of the other wall body of the fixed scroll or the orbiting scroll as required,
The pressing means is a compression chamber formed using the portion located on the center side of the one side surface of the one scroll as one wall surface, and the pressure in the compression chamber until the discharge is performed , A scroll compressor comprising an introduction path introduced between the portion located on the side and the plate.
前記板体が、前記一方のスクロールを旋回軸方向視すると、前記外周端側に位置する前記部位と略一致する形状となっていることを特徴とする請求項1記載のスクロール圧縮機。  2. The scroll compressor according to claim 1, wherein the plate body has a shape substantially coincident with the portion located on the outer peripheral end side when the one scroll is viewed in the turning axis direction. 前記板体を前記外周端側に位置する前記部位に引き寄せる方向に付勢する付勢手段を備えることを特徴とする請求項1または2記載のスクロール圧縮機。 3. The scroll compressor according to claim 1, further comprising an urging unit that urges the plate body in a direction to draw the plate body toward the part located on the outer peripheral end side. 前記板体の移動範囲を規制するストッパを備えることを特徴とする請求項1、2または3記載のスクロール圧縮機。The scroll compressor according to claim 1, 2 or 3, further comprising a stopper for regulating a moving range of the plate.
JP2000190070A 2000-06-22 2000-06-23 Scroll compressor Expired - Lifetime JP4410393B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000190070A JP4410393B2 (en) 2000-06-23 2000-06-23 Scroll compressor
EP01943811A EP1293675A4 (en) 2000-06-22 2001-06-22 Scroll compressor
CNB01801741XA CN1201083C (en) 2000-06-22 2001-06-22 Scrawl compressor
PCT/JP2001/005353 WO2001098662A1 (en) 2000-06-22 2001-06-22 Scroll compressor
KR10-2002-7002191A KR100460396B1 (en) 2000-06-22 2001-06-22 Scroll compressor
US10/049,911 US6746224B2 (en) 2000-06-22 2001-06-22 Scroll compressor
EP09012092A EP2163765B1 (en) 2000-06-22 2001-06-22 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190070A JP4410393B2 (en) 2000-06-23 2000-06-23 Scroll compressor

Publications (2)

Publication Number Publication Date
JP2002005054A JP2002005054A (en) 2002-01-09
JP4410393B2 true JP4410393B2 (en) 2010-02-03

Family

ID=18689599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190070A Expired - Lifetime JP4410393B2 (en) 2000-06-22 2000-06-23 Scroll compressor

Country Status (1)

Country Link
JP (1) JP4410393B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439651B1 (en) 2000-11-06 2004-07-12 미츠비시 쥬고교 가부시키가이샤 Scroll compressor
KR100469461B1 (en) * 2002-08-28 2005-02-02 엘지전자 주식회사 Capacity changeable apparatus for scrool compressor
CN100371598C (en) * 2003-08-11 2008-02-27 三菱重工业株式会社 Scroll compressor
KR100595580B1 (en) * 2005-02-04 2006-07-03 엘지전자 주식회사 Step type capacity varying apparatus of scroll compressor
DE102011121365B4 (en) * 2011-12-19 2013-12-19 Robert Bosch Gmbh Spiral compressor with axially displaceable spiral blade

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017956B2 (en) * 1981-08-18 1985-05-08 サンデン株式会社 Scroll compressor
JPS6078997U (en) * 1983-11-07 1985-06-01 サンデン株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2002005054A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP5083401B2 (en) Scroll compressor
JP4301713B2 (en) Scroll compressor
WO2001098662A1 (en) Scroll compressor
JP4410393B2 (en) Scroll compressor
JP2005264827A (en) Scroll compressor
JP2001323881A (en) Compressor
JP4301714B2 (en) Scroll compressor
JPWO2005010372A1 (en) Scroll compressor
JP4475749B2 (en) Scroll compressor
KR100436221B1 (en) Scroll compressor
JPH11107945A (en) Scroll compressor
JP4160878B2 (en) Scroll compressor
JP4088567B2 (en) Scroll compressor
JP4709400B2 (en) Scroll compressor
JP2858903B2 (en) Scroll compressor
JP3252495B2 (en) Scroll compressor
JP2002138975A (en) Scroll compressor
JP3801332B2 (en) Compressor
JPH07217569A (en) Rotary compressor
JP2000110763A (en) Rotary compressor
JP3560786B2 (en) Scroll compressor
JP2804086B2 (en) Scroll compressor
JP2000009065A (en) Scroll type compressor
JPH08193584A (en) Rotary type compressor
JP3913072B2 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R151 Written notification of patent or utility model registration

Ref document number: 4410393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

EXPY Cancellation because of completion of term