JPH04116141U - Package cage for storing semiconductor elements - Google Patents
Package cage for storing semiconductor elementsInfo
- Publication number
- JPH04116141U JPH04116141U JP2579091U JP2579091U JPH04116141U JP H04116141 U JPH04116141 U JP H04116141U JP 2579091 U JP2579091 U JP 2579091U JP 2579091 U JP2579091 U JP 2579091U JP H04116141 U JPH04116141 U JP H04116141U
- Authority
- JP
- Japan
- Prior art keywords
- weight
- lid
- sealing
- glass
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 239000011521 glass Substances 0.000 claims abstract description 65
- 238000007789 sealing Methods 0.000 claims abstract description 35
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 9
- 229910000464 lead oxide Inorganic materials 0.000 claims abstract description 8
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 7
- 229910052810 boron oxide Inorganic materials 0.000 claims abstract description 7
- 229910000174 eucryptite Inorganic materials 0.000 claims abstract description 6
- 239000000945 filler Substances 0.000 claims abstract description 6
- 238000003860 storage Methods 0.000 claims description 8
- 239000005394 sealing glass Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 abstract description 48
- 230000008018 melting Effects 0.000 abstract description 43
- 230000008646 thermal stress Effects 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 229910000833 kovar Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
- Glass Compositions (AREA)
Abstract
(57)【要約】
【目的】内部に収容する半導体素子を長期間にわたり正
常、且つ安定に作動させることができる薄型の半導体素
子収納用パッケージを提供することにある。
【構成】アルミナセラミックス製基体1 と鉄合金製蓋体
2 とを酸化鉛58.0乃至68.0重量%、酸化ホウ素4.0 乃至
10.0重量%、酸化ケイ素2.0 乃至5.0 重量%に、フィラ
ーとしてのβ- ユークリプタイトを21.0乃至35.0重量%
含有させたガラスから成る封止用の低融点ガラス5,7 で
接合させ、基体1 と蓋体2 とから成る容器の内部を気密
に封止するようにした。封止用低融点ガラス5,7 に熱応
力によるクラックや割れの発生及び蓋体2 と封止用低融
点ガラス5,7 の間の剥離を皆無として内部に収容する半
導体素子3 を長期間にわたり正常、且つ安定に作動させ
ることが可能となる。
(57) [Summary] [Objective] The object is to provide a thin package for storing semiconductor elements that allows the semiconductor elements housed inside to operate normally and stably for a long period of time. [Constitution] Alumina ceramic base 1 and iron alloy lid
2 and lead oxide 58.0 to 68.0% by weight, boron oxide 4.0 to 68.0% by weight
10.0% by weight, 2.0 to 5.0% by weight of silicon oxide, and 21.0 to 35.0% by weight of β-eucryptite as a filler.
They were joined together using low melting point glasses 5 and 7 for sealing made of glass containing glass, so that the inside of the container consisting of the base body 1 and the lid body 2 was hermetically sealed. The semiconductor element 3 housed inside can be maintained for a long period of time without any cracks or fractures due to thermal stress in the low-melting glass 5, 7 for sealing, and no peeling between the lid 2 and the low-melting glass 5, 7 for sealing. It becomes possible to operate normally and stably.
Description
【0001】0001
本考案は半導体素子を収容するため半導体素子収納用パッケージの改良に関す るものである。 This invention relates to the improvement of semiconductor device storage packages to accommodate semiconductor devices. It is something that
【0002】0002
従来、半導体素子、特に半導体集積回路素子を収容するためのパッケージは図 2に示すように、アルミナセラミックス等の電気絶縁材料から成り、中央部に半 導体素子を収容する空所を形成するための凹部を有し、上面に封止用の低融点ガ ラス層12が被着された絶縁基体11と、同じくアルミナセラミックス等の電気絶縁 材料から成り、中央部に半導体素子を収容する空所を形成するための凹部を有し 、下面に封止用の低融点ガラス層14が被着させた蓋体13と、内部に収容する半導 体素子15を外部の電気回路に電気的に接続するための外部リード端子16とから構 成されており、絶縁基体11の上面に外部リード端子16を載置させるととも予め被 着させておいた封止用の低融点ガラス層12を溶融させることによって外部リード 端子16を絶縁基体11に仮止めし、次に前記絶縁基体11の凹部に半導体素子15を取 着するとともに該半導体素子15の各電極(入出力電極)をボンディングワイヤ17 を介して外部リード端子16に接続し、しかる後、絶縁基体11と蓋体13とをその相 対向する各々の主面に被着させておいた封止用の低融点ガラス層12、14を溶融一 体化させ、絶縁基体11と蓋体13とから成る容器を気密に封止することによって製 品としての半導体装置となる。 Conventionally, packages for accommodating semiconductor devices, especially semiconductor integrated circuit devices, are As shown in Figure 2, it is made of an electrically insulating material such as alumina ceramics, and has a semicircular structure in the center. It has a recess to form a cavity for accommodating the conductor element, and a low melting point glass for sealing is provided on the top surface. An insulating substrate 11 on which a lath layer 12 is adhered, and an electrically insulating substrate made of alumina ceramics, etc. material, and has a recess in the center to form a cavity for accommodating the semiconductor element. , a lid body 13 with a low melting point glass layer 14 for sealing on the bottom surface, and a semiconductor housed inside. It consists of an external lead terminal 16 for electrically connecting the body element 15 to an external electric circuit. The external lead terminals 16 are placed on the top surface of the insulating base 11 and are covered in advance. External leads are formed by melting the low melting point glass layer 12 for sealing. The terminal 16 is temporarily fixed to the insulating base 11, and then the semiconductor element 15 is placed in the recess of the insulating base 11. At the same time, each electrode (input/output electrode) of the semiconductor element 15 is connected to the bonding wire 17. and then connect the insulating base 11 and the lid 13 to the external lead terminal 16 through the The low melting point glass layers 12 and 14 for sealing, which have been applied to each of the opposing main surfaces, are melted together. The container made of the insulating base 11 and the lid 13 is hermetically sealed. It becomes a semiconductor device as a product.
【0003】 尚、前記絶縁基体11の上面及び蓋体13の下面に被着させた封止用の低融点ガラ ス層12、14は、該低融点ガラス層12、14を絶縁基体11及び蓋体13に強固に接着さ せるためその熱膨張係数がアルミナセラミックス等の熱膨張係数に合わしたガラ ス、例えば酸化鉛(PbO)70.0 重量%、酸化ホウ素(B2 O 3 )8.6重量%、酸化チタ ン(TiO2 )7.8重量%、酸化ジコニウム(ZrO2 )6.7重量%を含むガラスが使用され ている。Note that the low melting point glass layers 12 and 14 for sealing are attached to the upper surface of the insulating substrate 11 and the lower surface of the lid 13. 13, glass whose thermal expansion coefficient matches that of alumina ceramics, such as lead oxide (PbO) 70.0% by weight, boron oxide (B 2 O 3 ) 8.6% by weight, titanium oxide (TiO 2 ) 7.8% by weight and 6.7% by weight of ziconium oxide (ZrO 2 ).
【0004】 しかしながら、近時、ICカード等、情報処理装置は薄型化が急激に進み、該 情報処理装置に搭載される半導体装置もその厚みを薄くしたものが要求されるよ うになり、同時に半導体装置を構成する半導体素子収納用パッケージもその蓋体 の厚みを0.2mm 程度としてパッケージ全体の厚みを薄型化することが要求される ようになってきた。0004 However, in recent years, information processing devices such as IC cards have become rapidly thinner, and Semiconductor devices installed in information processing equipment will also be required to be thinner. At the same time, the package for storing semiconductor elements that constitutes the semiconductor device also has its lid. It is required to reduce the overall thickness of the package by reducing the thickness to approximately 0.2mm. It's starting to look like this.
【0005】 そこで上述した従来の半導体素子収納用パッケージの蓋体厚みを0.2mm 程度と し、パッケージ全体の厚みを薄くした場合、パッケージの蓋体は通常、アルミナ セラミックス等の電気絶縁材料より成り、該アルミナセラミックスは脆弱で機械 的強度が弱いことから蓋体の厚みを薄くすると蓋体の機械的強度が大幅に低下し てしまい、その結果、絶縁基体と蓋体とから成る容器内部に半導体素子を気密に 封止し、半導体装置となした後、蓋体に外力が印加されると該外力によって蓋体 が容易に破損し、容器内部の気密封止が破れて内部に収容する半導体素子を長期 間にわたり正常、且つ安定に作動させることができなくなるという欠点を有して いた。[0005] Therefore, the thickness of the lid of the conventional semiconductor device storage package mentioned above is set to about 0.2 mm. However, when the overall thickness of the package is reduced, the package lid is usually made of alumina. It is made of electrically insulating materials such as ceramics, and alumina ceramics are brittle and mechanically resistant. Since the mechanical strength of the lid is weak, reducing the thickness of the lid significantly reduces the mechanical strength of the lid. As a result, the semiconductor device is airtightly placed inside the container consisting of the insulating base and the lid. After sealing and forming a semiconductor device, if an external force is applied to the lid, the external force will cause the lid to close. The container is easily damaged and the hermetic seal inside the container is broken, causing the semiconductor devices housed inside to be damaged for a long period of time. It has the disadvantage that it cannot operate normally and stably for a long period of time. there was.
【0006】 また上記欠点を解消するために蓋体を機械的強度に優れ、且つ熱膨張係数が絶 縁基体及び封止用の低融点ガラス層と近似するコバール金属や42アロイで形成 することが考えられる。[0006] In addition, in order to eliminate the above drawbacks, the lid body has excellent mechanical strength and has an absolute coefficient of thermal expansion. Made of Kovar metal or 42 alloy similar to the low melting point glass layer for edge substrate and sealing. It is possible to do so.
【0007】 しかしながら、コバール金属や42アロイは絶縁基体を構成するアルミナセラ ミックスや封止用の低融点ガラスと熱膨張係数が近似するものの若干の差を有し ており( コバール金属や42アロイ: 4.4 〜5.0 ×10-6/ ℃、アルミナセラミッ クスおよび封止用の低融点ガラス:6.5〜7.5 ×10 -6 / ℃) 、該コバール金属や 42アロイ等を広面積の蓋体に使用した場合、前記熱膨張係数の差が無視できな くなり、封止用の低融点ガラス層を溶融させ絶縁基体と蓋体とから成る容器を気 密に封止する際、封止用の低融点ガラスを溶融させる熱が蓋体と絶縁基体及び封 止用低融点ガラス層の両者に印加されると両者の熱膨張係数の相違に起因した熱 応力によって封止用低融点ガラス層にクラックや割れが発生したり、封止用低融 点ガラス層と蓋体との間に剥離が発生したりし、その結果、容器の気密封止が破 れ、内部に収容する半導体素子を長期間にわたり正常、且つ安定に作動させるこ とができないという欠点を誘発してしまう。However, although Kovar metal and 42 alloy have similar thermal expansion coefficients to alumina ceramics constituting the insulating substrate and low melting point glass for sealing, they have a slight difference (Kovar metal and 42 alloy: 4.4 ~5.0 × 10 -6 / °C, alumina ceramics and low melting glass for sealing: 6.5 - 7.5 × 10 -6 / °C), when Kovar metal or 42 alloy is used for a wide area lid, the above The difference in thermal expansion coefficient can no longer be ignored, and when the low melting point glass layer for sealing is melted to airtightly seal a container consisting of an insulating base and a lid, the heat that melts the low melting point glass for sealing is If thermal stress is applied to both the lid, the insulating base, and the low melting point glass layer for sealing, the low melting point glass layer for sealing may crack or break due to the difference in thermal expansion coefficient between the two. Peeling may occur between the low-melting-point glass layer for sealing and the lid, and as a result, the hermetic seal of the container may be broken, making it impossible for the semiconductor devices housed inside to operate normally and stably for a long period of time. It induces the disadvantage of not being able to do it.
【0008】[0008]
本考案はアルミナセラミックス製基体と鉄合金製蓋体との間に半導体素子及び 該半導体素子の各電極がボンディングワイヤにより接続された外部リード端子と を挟持し、封止用ガラスのガラス溶着によって内部に半導体素子を気密に封止す る半導体素子収納用パッケージにおいて、前記封止用ガラスが酸化鉛58.0乃至68 .0重量%、酸化ホウ素4.0 乃至10.0重量%、酸化ケイ素2.0 乃至5.0 重量%に、 フィラーとしてのβ- ユークリプタイトを21.0乃至35.0重量%含有させたガラス から成ることを特徴とするものである。 The present invention has a semiconductor element between the alumina ceramic base and the iron alloy lid. Each electrode of the semiconductor element is connected to an external lead terminal by a bonding wire. The semiconductor element is hermetically sealed inside by glass welding of the sealing glass. In the package for housing semiconductor elements, the sealing glass contains lead oxide of 58.0 to 68%. .0% by weight, boron oxide 4.0 to 10.0% by weight, silicon oxide 2.0 to 5.0% by weight, Glass containing 21.0 to 35.0% by weight of β-eucryptite as a filler It is characterized by consisting of the following.
【0009】[0009]
次に本考案を添付図面に基づき詳細に説明する。 Next, the present invention will be explained in detail based on the accompanying drawings.
【0010】 図1は本考案の半導体素子収納用パッケージの一実施例を示す断面図であり、 1 は基体、2 は蓋体である。この基体1 と蓋体2 とで半導体素子3 を収容するた めの容器が構成される。0010 FIG. 1 is a sectional view showing an embodiment of the semiconductor element storage package of the present invention. 1 is the base body and 2 is the lid body. The base body 1 and the lid body 2 accommodate the semiconductor element 3. A second container is constructed.
【0011】 前記基体1 はアルミナセラミックスから成り、その上面中央部に半導体素子3 を収容するための凹部1aが設けてあり、該凹部1a底面には半導体素子3 がガラス 、樹脂、ロウ材等の接着材を介して取着固定される。[0011] The base 1 is made of alumina ceramics, and has a semiconductor element 3 in the center of its upper surface. A recess 1a is provided for accommodating a semiconductor element 3 on the bottom surface of the recess 1a. It is attached and fixed via an adhesive such as resin, brazing material, etc.
【0012】 前記アルミナセラミックスから成る基体1 は例えば、酸化アルミニウム(Al2 O 3 ) 、シリカ(SiO2 ) 、マグネシア(MgO) 、カルシア(CaO) 等の原料粉末を図 1 に示す基体1 の形状に対応したプレス型内に充填させるとともに一定圧力を印 加して成形し、しかる後、成形品を約15000 ℃の温度で焼成することによって製 作される。The substrate 1 made of alumina ceramics is made of raw material powder such as aluminum oxide (Al 2 O 3 ), silica (SiO 2 ), magnesia (MgO), calcia (CaO), etc. in the shape of the substrate 1 shown in FIG. The molded product is manufactured by filling it into a press mold corresponding to the above, molding it by applying a constant pressure, and then firing the molded product at a temperature of approximately 15,000°C.
【0013】 また前記基体1 の上面にはコバール金属(Fe-Ni-Co 合金) や42アロイ(Fe-Ni合 金) 等の金属から成る外部リード端子4 の一端が封止用の低融点ガラス5 を介し て仮止めされており、該外部リード端子4 はコバール金属等のインゴット(塊) を従来周知の圧延加工法及び打ち抜き加工法を採用し所定の板状に形成すること によって製作される。[0013] In addition, the upper surface of the substrate 1 is coated with Kovar metal (Fe-Ni-Co alloy) or 42 alloy (Fe-Ni alloy). One end of the external lead terminal 4 made of a metal such as gold) is connected through a low melting point glass 5 for sealing. The external lead terminal 4 is an ingot (lump) of Kovar metal, etc. is formed into a predetermined plate shape using conventionally well-known rolling and punching methods. Produced by.
【0014】 前記外部リード端子4は内部に収容する半導体素子3を外部電気回路に接続す る作用を為し、その一端には半導体素子3の各電極がボンディングワイヤ6 を介 して接続され、外部リード端子4 を外部電気回路に接続することによって半導体 素子3 は外部電気回路と電気的に接続されることとなる。[0014] The external lead terminal 4 is used to connect the semiconductor element 3 housed inside to an external electric circuit. Each electrode of the semiconductor element 3 is connected to one end via a bonding wire 6. By connecting the external lead terminal 4 to an external electrical circuit, the semiconductor Element 3 will be electrically connected to an external electrical circuit.
【0015】 尚、前記外部リード端子4はその表面にニッケル、金等から成る良導電性で、 且つ耐蝕性に優れた金属をメッキにより1.0 乃至20.0μm 厚みに層着させておく と外部リード端子4 の酸化腐食を有効に防止するとともに外部リード端子4 とボ ンディングワイヤ6 、外部電気回路との電気的接続を良好となすことができる。 そのため外部リード端子4 はその表面にニッケル、金等をメッキにより1.0 乃至 20.0μm の厚みに層着させておくことが好ましい。[0015] The external lead terminal 4 has a good conductivity made of nickel, gold, etc. on its surface. In addition, a layer of metal with excellent corrosion resistance is applied by plating to a thickness of 1.0 to 20.0 μm. This effectively prevents oxidation corrosion of the external lead terminal 4 and the external lead terminal 4. The ending wire 6 can provide a good electrical connection with an external electric circuit. Therefore, the surface of the external lead terminal 4 is plated with nickel, gold, etc. It is preferable to form a layer with a thickness of 20.0 μm.
【0016】 また前記外部リード端子4 が仮止めされた基体1 にはその上面に蓋体2 が、該 蓋体2 の下面に被着させた封止用の低融点ガラス7 と基体1 の上面に被着させた 封止用の低融点ガラス5 とを溶融一体化させることよって接合され、これによっ て基体1 と蓋体2 とから成る容器内部に半導体素子3 が気密に封止される。[0016] Further, the base 1 to which the external lead terminal 4 is temporarily fixed has a lid 2 on its top surface. A low melting point glass 7 for sealing was applied to the bottom surface of the lid 2 and a low melting point glass 7 was applied to the top surface of the base 1. It is joined by melting and integrating low melting point glass5 for sealing, and this results in The semiconductor element 3 is hermetically sealed inside the container consisting of the base body 1 and the lid body 2.
【0017】 前記蓋体2 はコバール金属(Fe-Ni-Co合金) や42アロイ(Fe-Ni 合金) 等の 鉄合金から成り、該コバール金属等のインゴット( 塊) を従来周知の金属圧延加 工法及び打ち抜き加工法を採用し、所定の板状に成形することによって製作され る。[0017] The lid body 2 is made of Kovar metal (Fe-Ni-Co alloy), 42 alloy (Fe-Ni alloy), etc. Kovar metal is made of iron alloy, and ingots (clumps) of Kovar metal are processed by conventional metal rolling process. It is manufactured by using construction methods and punching methods to form it into a predetermined plate shape. Ru.
【0018】 前記蓋体2 を構成する鉄合金はアルミナセラミックス等の脆性材料ではないた めその厚みを0.2mm 程度としても外力印加によって破損することはない。従って 、蓋体2 の厚みを0.2mm 程度としパッケージの全体厚みを薄型化しても容器内部 の気密封止を維持することができ容器内部に収容する半導体素子3 を長期間にわ たり正常、且つ安定に作動させることが可能となる。[0018] The iron alloy constituting the lid 2 is not a brittle material such as alumina ceramics. Even if the thickness of the inlet is about 0.2 mm, it will not be damaged by the application of external force. Therefore Even if the thickness of the lid body 2 is made approximately 0.2 mm and the overall thickness of the package is made thinner, the inside of the container It is possible to maintain the hermetic seal of the semiconductor device3 housed inside the container for a long period of time. This makes it possible to operate normally and stably.
【0019】 尚、前記蓋体2 はその表面を高融点ガラス2aで被覆しておくと、該高融点ガラ ス2aは導電性である蓋体2 の電気的絶縁を図り、蓋体2 に半導体素子3 の電極を 外部リード端子4 に接続するボンディングワイヤ6 が接触し、半導体素子3 の電 極間に短絡を生じたり、半導体素子3 に外部から不要な電気が流れ、半導体素子 3 の特性に変化が生じるのを有効に防止することができる。従って、半導体素子 3 を信頼性高く安定に作動させるためには蓋体2 の表面を高融点ガラス2aで被覆 しておくことが好ましい。この場合、高融点ガラス2aとしては、例えば酸化鉛(P bO) 40.0乃至60.0重量%、酸化ケイ素(SiO 2)20.0 乃至40.0重量%、酸化ホウ素 (B2 O 3 )5.0乃至10.0重量%を含むガラス、或いは酸化ケイ素(SiO 2)40.0 乃至 60.0重量%、酸化バリウム(BaO)20.0 乃至35.0重量%、酸化カルシウム(CaO) 5. 0 乃至15.0重量%を含むガラスが蓋体2 の熱膨張係数に近似した熱膨張係数を有 し、蓋体2 に強固に被覆させることが可能となるため好適に使用され、これらの ガラスは融点が600 乃至900 ℃と高いことから基体1 と蓋体2 とを封止用の低融 点ガラス5 、7 を加熱溶融させて接合させる際、封止用低融点ガラス5 、7 を加 熱溶融させるための熱が印加されたとしても溶融することはなく、蓋体2 の電気 的絶縁を維持することが可能となる。Incidentally, when the surface of the lid 2 is coated with a high melting point glass 2a, the high melting point glass 2a electrically insulates the lid 2 which is conductive, and a semiconductor element is attached to the lid 2. The bonding wire 6 that connects the electrodes of the semiconductor element 3 to the external lead terminals 4 may come into contact with each other, causing a short circuit between the electrodes of the semiconductor element 3, or causing unnecessary electricity to flow into the semiconductor element 3 from the outside, causing changes in the characteristics of the semiconductor element 3. This can be effectively prevented from occurring. Therefore, in order to operate the semiconductor element 3 reliably and stably, it is preferable to cover the surface of the lid 2 with high melting point glass 2a. In this case, the high melting point glass 2a contains, for example, 40.0 to 60.0% by weight of lead oxide (P bO), 20.0 to 40.0% by weight of silicon oxide (SiO 2 ), and 5.0 to 10.0% by weight of boron oxide (B 2 O 3 ). Glass, or glass containing 40.0 to 60.0% by weight of silicon oxide (SiO 2 ), 20.0 to 35.0% by weight of barium oxide (BaO), and 5.0 to 15.0% by weight of calcium oxide (CaO) has a thermal expansion coefficient of the lid body 2. These glasses are preferably used because they have similar coefficients of thermal expansion and can be tightly coated on the lid 2. Since these glasses have a high melting point of 600 to 900°C, it is possible to When the low melting point glasses 5 and 7 for sealing are heated and melted and bonded, even if the heat for heating and melting the low melting point glasses 5 and 7 is applied, they do not melt, and the lid body 2 This makes it possible to maintain electrical insulation.
【0020】 また前記基体1 の上面に被着させた封止用の低融点ガラス5 及び蓋体2 の下面 に被着させた封止用の低融点ガラス7 はそれぞれ酸化鉛58.0乃至68.0重量%、酸 化ホウ素4.0 乃至10.0重量%、酸化ケイ素2.0 乃至5.0 重量%に、フィラーとし てのβ- ユークリプタイトを21.0乃至35.0重量%含有させたガラスから成り、両 者を加熱溶融させ一体化させることによって基体1 と蓋体2 とから成る容器内部 に半導体素子3 を気密に封止する。[0020] Furthermore, low melting point glass 5 for sealing is adhered to the upper surface of the base 1 and the lower surface of the lid 2. The low-melting glass 7 for sealing was coated with 58.0 to 68.0% by weight of lead oxide and 58.0% to 68.0% by weight of acid 4.0 to 10.0% by weight of boron oxide and 2.0 to 5.0% by weight of silicon oxide as fillers. It consists of glass containing 21.0 to 35.0% by weight of β-eucryptite. The interior of the container consisting of the base body 1 and the lid body 2 is formed by heating and melting and integrating them. The semiconductor element 3 is hermetically sealed.
【0021】 前記封止用の低融点ガラス5 、7 はその熱膨張係数が5.5 〜6.0 ×10-6/ ℃で あり、基体1を構成するアルミナセラミックスの熱膨張係数(6.5〜7.5 ×10-6/ ℃) と蓋体2 を構成するコバール金属や42アロイ等の鉄合金の熱膨張係数(4.1〜 5.5 ×10-6/ ℃) の中間の値であり、そのため基体1 と蓋体2 とを封止用低融点 ガラス5 、7 を溶融一体化させることによって接合させ、基体1 と蓋体2 とから 成る容器内部に半導体素子3 を気密に封止する際、蓋体2 と溶融一体化した封止 用低融点ガラス5 、7 の間及び溶融一体化した封止用低融点ガラス5 、7 と基体 1 との間には大きな熱応力が発生することは無く、その結果、封止用低融点ガラ ス5 、7 に前記熱応力によってクラックや割れ等が発生したり、蓋体2 が封止用 低融点ガラス5 、7 より剥離したりすることはない。The low melting point glasses 5 and 7 for sealing have a coefficient of thermal expansion of 5.5 to 6.0 × 10 -6 /°C, and a coefficient of thermal expansion of the alumina ceramics constituting the base 1 (6.5 to 7.5 × 10 - 6 / ℃) and the thermal expansion coefficient of the iron alloy such as Kovar metal or 42 alloy that makes up the lid 2 (4.1 to 5.5 × 10 -6 / ℃), and therefore the are joined by melting and integrating the low-melting glasses 5 and 7 for sealing, and when the semiconductor element 3 is hermetically sealed inside the container consisting of the base 1 and the lid 2, the glass is melted and integrated with the lid 2. No large thermal stress is generated between the low melting point glasses 5 and 7 that have been melted together, and between the low melting point glasses 5 and 7 that have been melted and integrated with the substrate 1, and as a result, the The thermal stress does not cause cracks or fractures in the low melting point glasses 5, 7, nor does the lid body 2 separate from the low melting point glasses 5, 7 for sealing.
【0022】 尚、前記封止用の低融点ガラス5 、7 は酸化鉛の量が58.0重量%未満であると ガラスの熱膨張係数が小さくなって基体1 の熱膨張と合わなくなり、また68.0重 量%を越えるとガラスの結晶化が進んで容器の気密封止が困難となるとともに耐 薬品性が劣化して容器の気密封止の信頼性が大きく低下するため酸化鉛は58.0乃 至68.0重量%の範囲に限定される。[0022] In addition, the amount of lead oxide in the low melting point glasses 5 and 7 for sealing is less than 58.0% by weight. The coefficient of thermal expansion of the glass becomes smaller and does not match the thermal expansion of the base 1, and the weight of 68.0 If the amount is exceeded, crystallization of the glass will progress, making it difficult to hermetically seal the container and reducing the durability. Lead oxide has a 58.0 Limited to a range of up to 68.0% by weight.
【0023】 また酸化ケイ素が2.0 重量%未満であるとガラスの結晶化が進んで容器の気密 封止が困難となり、また5.0 重量%を越えるとガラスの熱膨張係数が小さくなっ て基体1 の熱膨張係数と合わなくなるため酸化ケイ素は2.0 乃至5.0 重量%の範 囲に限定される。[0023] Also, if silicon oxide is less than 2.0% by weight, the glass will crystallize and the container will become airtight. It becomes difficult to seal, and if it exceeds 5.0% by weight, the coefficient of thermal expansion of the glass decreases. Since the coefficient of thermal expansion does not match the thermal expansion coefficient of the substrate 1, silicon oxide should be in the range of 2.0 to 5.0% by weight. limited to
【0024】 また酸化ホウ素が4.0 重量%未満であるとガラスの熱膨張係数が大きくなって 蓋体の熱膨張と合わなくなり、また10.0重量%を越えるとガラスの耐薬品性が劣 化して容器の気密封止の信頼性が大きく低下するため酸化ホウ素は4.0 乃至10.0 重量%の範囲に限定される。[0024] Furthermore, if the boron oxide content is less than 4.0% by weight, the coefficient of thermal expansion of the glass will increase. It will not match the thermal expansion of the lid, and if it exceeds 10.0% by weight, the chemical resistance of the glass will deteriorate. Boron oxide is 4.0 to 10.0 because the reliability of the hermetic seal of the container is greatly reduced due to % by weight.
【0025】 またフィラーとしてのβ- ユークリプタイトが21.0重量%未満であるとガラス の熱膨張係数が小さくなって基体1 の熱膨張と合わなくなり、また35.0重量%を 越えるとガラスの熱膨張係数が大きくなって蓋体2 の熱膨張と合わなくなるため β- ユークリプタイトは21.0乃至35.0重量%の範囲に限定される。[0025] Also, if β-eucryptite as a filler is less than 21.0% by weight, the glass The coefficient of thermal expansion of substrate 1 becomes smaller and does not match the thermal expansion of substrate 1, and 35.0% by weight If the temperature is exceeded, the thermal expansion coefficient of the glass will increase and will no longer match the thermal expansion of the lid body 2. β-eucryptite is limited to a range of 21.0 to 35.0% by weight.
【0026】 かくして本考案の半導体素子収納用パッケージによれば、基体1 の凹部1a底面 に半導体素子3 を接着材を介して取着固定するとともに該半導体素子3 の各電極 をボンディングワイヤ6 により外部リード端子4 に接続させ、しかる後、基体1 と蓋体2 とをその各々の相対向する主面に予め被着させておいた封止用の低融点 ガラス5 、7 を加熱溶融させ、接合させることによって、基体1 と蓋体2 とから 成る容器内部に半導体素子3 を気密に封止し、これによって製品としての半導体 装置が完成する。[0026] Thus, according to the semiconductor device storage package of the present invention, the bottom surface of the recess 1a of the base 1 A semiconductor element 3 is attached and fixed to the semiconductor element 3 through an adhesive, and each electrode of the semiconductor element 3 is is connected to external lead terminal 4 by bonding wire 6, and then connected to base 1. and lid body 2 are preliminarily coated on their respective opposing main surfaces. By heating and melting the glasses 5 and 7 and joining them, the base 1 and the lid 2 are separated. The semiconductor element 3 is hermetically sealed inside the container, which allows the semiconductor to be manufactured as a product. The device is completed.
【0027】[0027]
本考案の半導体素子収納用パッケージによれば、基体をアルミナセラミックス で、蓋体を鉄合金で形成するとともに封止用の低融点ガラスをその熱膨張係数が 基体と蓋体の熱膨張係数の中間にある酸化鉛58.0乃至68.0重量%、酸化ホウ素4. 0 乃至10.0重量%、酸化ケイ素2.0 乃至5.0 重量%に、フィラーとしてのβ- ユ ークリプタイトを21.0乃至35.0重量%含有させたガラスで形成したことから基体 と蓋体とを封止用低融点ガラスで接合させ、基体と蓋体とから成る容器内部に半 導体素子を気密に封止する際、蓋体と封止用低融点ガラスの間および封止用低融 点ガラスと基体の間に発生する熱応力は極めて小さなものとなり、その結果、封 止用低融点ガラスに前記熱応力によってクラックや割れ等が発生したり、蓋体が 封止用低融点ガラスより剥離したりすることは一切なく、常にパッケージの気密 封止を完全となし、内部に収容する半導体素子を長期間にわたり正常、且つ安定 に作動させることが可能となる。 According to the semiconductor device storage package of the present invention, the base is made of alumina ceramics. The lid body is made of iron alloy, and the low melting point glass for sealing is made of a material with a thermal expansion coefficient of Lead oxide 58.0 to 68.0% by weight, boron oxide 4.0% by weight, which is between the thermal expansion coefficients of the base and lid. 0 to 10.0% by weight, silicon oxide 2.0 to 5.0% by weight, and β-yl as a filler. -The base material is made of glass containing 21.0 to 35.0% by weight of cryptite. and the lid are joined together using low-melting glass for sealing, and a half is placed inside the container consisting of the base and the lid. When airtightly sealing a conductor element, there is a gap between the lid and the low melting glass for sealing, The thermal stress generated between the point glass and the substrate is extremely small, and as a result, the sealing The thermal stress may cause cracks or cracks in the low melting point glass for the lid, or the lid may become damaged. It never peels off from the low melting point glass used for sealing, and the package is always airtight. Completely seals and keeps the semiconductor elements housed inside normal and stable for a long period of time. It becomes possible to operate it.
【0028】 また蓋体の厚みを薄くすることが可能なことからパッケージの全体厚みも薄型 化でき、近時の薄型化が進む情報処理装置に搭載される半導体装置への適用も可 能となる。[0028] In addition, since the thickness of the lid can be made thinner, the overall thickness of the package is also thinner. It can also be applied to semiconductor devices installed in information processing equipment, which is becoming thinner in recent years. Becomes Noh.
【図面の簡単な説明】[Brief explanation of drawings]
【図1】本考案の半導体素子収納用パッケージの一実施
例を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor device storage package of the present invention.
【図2】従来の半導体素子収納用パッケージの一実施例
を示す断面図である。FIG. 2 is a sectional view showing an example of a conventional semiconductor device storage package.
1・・・・基体 2・・・・蓋体 2a・・・高融点ガラス 3・・・・半導体素子 4・・・・外部リード端子 5,7・・封止用の低融点ガラス 1...Base 2... Lid body 2a...High melting point glass 3...Semiconductor element 4...External lead terminal 5,7...Low melting point glass for sealing
Claims (1)
体との間に半導体素子及び該半導体素子の各電極がボン
ディングワイヤにより接続された外部リード端子とを挟
持し、封止用ガラスのガラス溶着によって内部に半導体
素子を気密に封止する半導体素子収納用パッケージにお
いて、前記封止用ガラスが酸化鉛58.0乃至68.0重量%、
酸化ホウ素4.0 乃至10.0重量%、酸化ケイ素2.0 乃至5.
0 重量%に、フィラーとしてのβ- ユークリプタイトを
21.0乃至35.0重量%含有させたガラスから成ることを特
徴とする半導体素子収納用パッケージ。1. A semiconductor element and an external lead terminal to which each electrode of the semiconductor element is connected by a bonding wire are sandwiched between an alumina ceramic base and an iron alloy lid, and glass for sealing is welded. In a semiconductor device storage package in which a semiconductor device is hermetically sealed inside, the sealing glass contains 58.0 to 68.0% by weight of lead oxide,
Boron oxide 4.0 to 10.0% by weight, silicon oxide 2.0 to 5.
0% by weight with β-eucryptite as a filler.
A package for storing semiconductor elements, characterized in that it is made of glass containing 21.0 to 35.0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2579091U JP2545400Y2 (en) | 1991-03-25 | 1991-03-25 | Package for storing semiconductor elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2579091U JP2545400Y2 (en) | 1991-03-25 | 1991-03-25 | Package for storing semiconductor elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04116141U true JPH04116141U (en) | 1992-10-16 |
JP2545400Y2 JP2545400Y2 (en) | 1997-08-25 |
Family
ID=31910452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2579091U Expired - Fee Related JP2545400Y2 (en) | 1991-03-25 | 1991-03-25 | Package for storing semiconductor elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2545400Y2 (en) |
-
1991
- 1991-03-25 JP JP2579091U patent/JP2545400Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2545400Y2 (en) | 1997-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04116141U (en) | Package cage for storing semiconductor elements | |
JPH04120239U (en) | Package cage for storing semiconductor elements | |
JP2962939B2 (en) | Package for storing semiconductor elements | |
JP2545401Y2 (en) | Package for storing semiconductor elements | |
JP2545402Y2 (en) | Package for storing semiconductor elements | |
JP2552419Y2 (en) | Package for storing semiconductor elements | |
JP2750237B2 (en) | Electronic component storage package | |
JP2555178Y2 (en) | Package for storing semiconductor elements | |
JP2842716B2 (en) | Package for storing semiconductor elements | |
JP2931481B2 (en) | Package for storing semiconductor elements | |
JP2552554Y2 (en) | Package for storing semiconductor elements | |
JP2873130B2 (en) | Package for storing semiconductor elements | |
JPH0629330A (en) | Semiconductor device | |
JP3318449B2 (en) | Package for storing semiconductor elements | |
JP3292609B2 (en) | Package for storing semiconductor elements | |
JP2997367B2 (en) | Package for storing semiconductor elements | |
JP3426722B2 (en) | Semiconductor device | |
JP2740604B2 (en) | Semiconductor device | |
JPH05121581A (en) | Semiconductor device housing package | |
JPH05326738A (en) | Package for semiconductor element | |
JP2548964Y2 (en) | Package for storing semiconductor elements | |
JP2759300B2 (en) | Glass-encapsulated semiconductor element storage package | |
JP2510571Y2 (en) | Glass-sealed package for semiconductor element storage | |
JPH083014Y2 (en) | Glass-sealed semiconductor device package | |
JPH0645374A (en) | Package for containing semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |