JPH0411583B2 - - Google Patents

Info

Publication number
JPH0411583B2
JPH0411583B2 JP56082992A JP8299281A JPH0411583B2 JP H0411583 B2 JPH0411583 B2 JP H0411583B2 JP 56082992 A JP56082992 A JP 56082992A JP 8299281 A JP8299281 A JP 8299281A JP H0411583 B2 JPH0411583 B2 JP H0411583B2
Authority
JP
Japan
Prior art keywords
weight
heat insulating
insulating material
wall panel
foamable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56082992A
Other languages
Japanese (ja)
Other versions
JPS57195756A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8299281A priority Critical patent/JPS57195756A/en
Publication of JPS57195756A publication Critical patent/JPS57195756A/en
Publication of JPH0411583B2 publication Critical patent/JPH0411583B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom

Landscapes

  • Building Environments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は発泡性組成物に関し、特にプレハブ住
宅などの外壁または壁パネルの鉄板などに接触す
るような場所、あるいは壁パネルの鉄鋼材で形成
した枠体内に用いた発泡性組成物に関する。 (従来の技術) 従来、この種の断熱材としては、フエノール樹
脂を主成分とし、発泡剤としてフレオンを採用し
た発泡性組成物から得られたものは公知である
(例えば、特開昭48−47564号公報参照)。 フエノール樹脂は難燃性であり、耐候性がよ
く、また機械的強度が高く、比較的弾性もある。
さらに熱および電気の絶縁性がよく、耐水性があ
るなど断熱材の基材としては、すぐれた特性を有
することは知られている。一般に、このようなフ
エノール樹脂を主成分とした発泡性組成物には、
フエノールスルホン酸等の酸触媒が用いられ、該
酸触媒によつてフエノール樹脂を硬化させて断熱
材を製造するようになされていた。 一方、発泡剤として用いるフレオンは、発泡温
度を調節するため、通常フレオン11(常温で気
体)、フレオン12(常温で気体)、またはフレオ
ン22(常温で気体)とフレオン113(沸点
47.6℃)との混合物を採用している。また、フレ
オン以外の発泡剤としては、例えば特開昭56−
30438号公報に多数種類の発泡剤が開示されてい
る。 (発明が解決しようとする課題) しかし、上記した発泡組成物では、フエノール
スルホン酸等の酸触媒が断熱材の成形後にも残存
することとなる。そのため、このようにして得ら
れた断熱材を、壁パネルの鉄鋼材で形成した軸組
や鉄板などの他の金属部材と接触するような場
所、あるいは壁パネルの鉄枠の内部に施工する場
合、該断熱材によつて金属部材が腐食されること
となる。これを防止するために、亜鉛末などの含
まれたさび止め塗料を金属材料に塗布し、該金属
材料を防錆した後、断熱材を施工することが考え
られるが、この場合作業効率が悪化することとな
る。すなわち、金属材料にさび止め塗料を塗布す
る塗布工程が必要となり、施工コストが嵩むとい
つた不都合が生じる。また、塗布したさび止め塗
料を完全に乾かした後、断熱材を施工しなければ
ならず、施工に時間がかかるといつた不都合を生
じる。そこで、低コストおよび短時間で施工する
ことのできる腐食防止作用に優れた断熱材が提供
されることが望まれていた。 一方、上記したフレオンは、比較的高価であ
る。また、フレオン以外の発泡剤を用いたとして
も、断熱材として優れた性能を維持した状態で、
安価な断熱材を提供することは困難であつた。そ
こで、発泡剤としては単品を用いること、そして
できるだけ少ない量を用いて安価な断熱材が提供
されることが望まれていた。 本発明は、係る実状に鑑みてなされたもので、
壁パネルの鋼鉄材で形成した枠体内に装着しても
腐食防止作用に優れた性能を有するとともに、安
価な断熱材を製造することのできる発泡性組成物
を提供することを目的としている。 (課題を解決するための手段) 本発明に係る住宅の壁パネルに用いた発泡性組
成物は、PH7.0〜8.0のレゾール型フエノール−
アルデヒド重縮合物65〜80重量%、フエノールス
ルホン酸10〜16重量%、シリコーン0.2〜.0.7重
量%、発泡剤として塩化メチレン4.5〜12.0重量
%、腐食防止剤として亜鉛末3.5〜6.5重量%とか
らなる発泡性組成物であり、この発泡性組成物を
壁パネルの鉄板などに接触するような場所、ある
いは壁パネルの鉄鋼材で形成した枠体内に装着し
たものである。 (実施例) 以下、本発明の実施例を説明する。 本発明に係る住宅の壁パネルに用いた発泡性組
成物は、PH7.0〜8.0のレゾール型フエノール−
アルデヒド重縮合物65〜80重量%、フエノールス
ルホン酸10〜16重量%、塩化メチレン4.5〜12.0
重量%、亜鉛末3.5〜6.5重量%、シリコーン0.2
〜.0.7重量%からなる。 すなわち、本発明の住宅の壁パネルに用いた発
泡性組成物は、レゾール型フエノール−アルデヒ
ド重縮合物、フエノールスルホン酸、塩化メチレ
ン、亜鉛末、シリコーンの各成分の濃度を上記の
如き数値範囲に限定することが必要であり、フエ
ノール樹脂が65重量%以下では、得られた成形物
の機械的強度が小さすぎて、断熱材としては不適
であり、80重量%以上では、成形加工性が悪くな
る。また、レゾール型フエノール−アルデヒド重
縮合物の初期PHは、7.0〜8.0の範囲に調整して
おく。 フエノールスルホン酸は硬化剤であり、10重量
%以下では上記レゾール型フエノール−アルデヒ
ド重縮合物が完全に硬化しない。また、16重量%
以上では、硬化時間が短く適当な寸法の成形物を
得ることができないばかりか、得られた成形物の
密度が高くなりすぎて、断熱材としては不適当で
ある。 塩化メチレンは発泡剤であり、4.5重量%以下
では、一定寸法の成形物が得られなくなり、特に
幅あるいは厚みが不均一な成形物しか得られな
い。12.0重量%以上では発泡密度が高くなりすぎ
て、成形物の表面に、いわゆる荒れが生じる。ま
た、成形物の密度が小さすぎて断熱材としては用
いることができない。 フエノールスルホン酸は、成形後にも残存する
ため、得られた断熱材が施工段階で鉄板などの他
の金属部材と接触する場合、これら金属部材を腐
食する。このため亜鉛末を配合するが、3.5重量
%以下では効果がなく、6.5重量%以上では得ら
れた成形物の、とくに曲げ強度および圧縮強度が
著しく低くなる。 シリコーンは、成形物中の気泡の分散を均一に
するために配合されるが、0.2重量%以下では効
果がなく、0.7重量%以上では、成形物中の独立
気泡率が低下し、曲げ強度および圧縮強度が低下
するだけでなく吸水性も高くなり、断熱材として
は採用できなくなる。 レゾール型フエノール−アルデヒド重縮合物と
しては、フエノール樹脂(フエノール、クレゾー
ル、キシレノール、レゾルシンなど)とアルデヒ
ド類(ホルムアルデヒド、テセトアルデヒド、フ
ルフラールなど)から得られるレゾール型樹脂お
よびそれらの変性樹脂をPH調節して用いること
ができる。 フエノールスルホン酸としては、o−、m−、
p−フエノールスルホン酸のいずれをも用いるこ
とができる。 次に、本発明の具体例を示すが、この具体例は
本発明を限定するものではない。なお、部は重量
部を示す。 〔具体例〕 レゾール型フエノール−アルデヒド重縮合物
(商品名Fol−63、昭和ユニオン合成株式会社製、
固定成分濃度76重量%)100部、フエノールスル
ホン酸(第1工業製薬株式会社製、純分67重量
%)20部、塩化メチレン10部、亜鉛末5部および
シリコーン(商品名シリコーンF−258、信越化
学株式会社製)0.5部を配合して、発泡性組成物
を調整した。 このようにして得た発泡性組成物を40〜70℃で
溶融して断熱材を得た。 〔比較例 1〜4〕 塩化メチレン10部のかわりに、フレオン(フレ
オン11と113の混合物、混合比1:1)10
部、15部、20部、25部を用いた以外は上記具体例
と同様にして発泡性組成物を調整した。 このようにして得た発泡性組成物を40〜70℃で
溶融して断熱材を得た。 次に、これら具体例および比較例1〜4で得ら
れた断熱材の性能を比較する実験を行つた。 〔実験例〕 上記具体例および比較例1〜4で得られた断熱
材の(1)密度、(2)圧縮強度、(3)曲げ強度、(4)吸水
率、(5)熱伝導率を測定して比較を行つた。結果を
表1に示す。なお、各性能の測定方法は下記に示
す。 (1) 密度 厚み40mm、幅100mm、長さ100mmの試験片を100
±5℃で絶乾し、そのときの重量Wと容積Vを測
定し、次式から算出した。 密度(g/cm3)=W/V (2) 圧縮強度 厚み40mm、幅50mm、長さ50mmの試験片を平行平
面の台および上板の間にはさみ、一定荷重を徐々
に加えて最大荷重を求める。 (3) 曲げ強度 厚み40mm、幅75mm、長さ300mmの試験片の両端
を、二列に配置した高さが同じ台に載置し、試験
片の中央の全幅に徐々に荷重を加えて曲げ強度K
(Kg/cm2)を求めた。 K=3Wl/2bh2 W:最大荷重(Kg) l:試験片の長さ(cm) b:試験片の幅(cm) h:試験片の厚さ(cm) (4) 吸水率 厚み25mm、幅100mm、長さ100mmの試験片を23±
3℃の恒温槽に浸漬し、基準重量と最終吸水後の
重量を測定し吸水率A(gr/100cm2)を求めた。 A=(B−C)/表面積×100 B:基準重量(g) −10秒間浸漬した後、網目の開きが約3mm
で、70°に傾斜させた金網上に30秒間放置さ
せた後の重量 C:最終吸水後の重量(g) −24時間浸漬した後、基準重量と同じ方法
で測定した重量 (5) 熱伝導率 厚み25mm、幅100mm、長さ100mmの試験片をJIS
−A−1412に規定する方法で測定した。
(Industrial Application Field) The present invention relates to a foamable composition, particularly for use in areas where it comes into contact with the exterior walls of prefabricated houses or the steel plates of wall panels, or within a frame made of steel material of a wall panel. The present invention relates to sexual compositions. (Prior Art) Conventionally, as this type of heat insulating material, one obtained from a foamable composition containing a phenol resin as a main component and using Freon as a foaming agent is known (for example, Japanese Patent Application Laid-Open No. 1989-1992). (See Publication No. 47564). Phenolic resins are flame retardant, have good weather resistance, have high mechanical strength, and are relatively elastic.
Furthermore, it is known to have excellent properties as a base material for heat insulating materials, such as good thermal and electrical insulation and water resistance. Generally, such foamable compositions containing phenolic resin as a main component include:
Acid catalysts such as phenolsulfonic acid have been used to cure phenolic resins to produce heat insulating materials. On the other hand, Freon used as a blowing agent is usually Freon 11 (gaseous at room temperature), Freon 12 (gaseous at room temperature), or Freon 22 (gaseous at room temperature) and Freon 113 (boiling point
47.6℃). In addition, as a blowing agent other than Freon, for example, JP-A-56-
Publication No. 30438 discloses many types of blowing agents. (Problems to be Solved by the Invention) However, in the foamed composition described above, the acid catalyst such as phenolsulfonic acid remains even after the heat insulating material is formed. Therefore, when installing the insulation material obtained in this way in a place where it will come into contact with other metal members such as a frame made of steel or iron plates of a wall panel, or inside the steel frame of a wall panel, , the metal member will be corroded by the heat insulating material. In order to prevent this, it is possible to apply anti-rust paint containing zinc powder or the like to the metal material to prevent rust and then install insulation material, but in this case work efficiency will deteriorate. I will do it. That is, a coating process for applying a rust-preventing paint to the metal material is required, resulting in inconveniences such as increased construction costs. In addition, the heat insulating material must be installed after the applied anti-rust paint has completely dried, resulting in inconveniences such as time-consuming installation. Therefore, it has been desired to provide a heat insulating material that can be installed at low cost and in a short period of time and has excellent corrosion prevention properties. On the other hand, the above Freon is relatively expensive. In addition, even if a foaming agent other than Freon is used, it can maintain its excellent performance as a heat insulating material.
It has been difficult to provide inexpensive insulation materials. Therefore, it has been desired to use a single foaming agent and to provide an inexpensive heat insulating material using as little amount as possible. The present invention was made in view of the actual situation,
The purpose of the present invention is to provide a foamable composition that has excellent corrosion prevention performance even when installed in a frame made of steel for a wall panel, and can be used to produce an inexpensive heat insulating material. (Means for Solving the Problems) The foamable composition used for the wall panel of a house according to the present invention is a resol type phenol with a pH of 7.0 to 8.0.
Aldehyde polycondensate 65-80% by weight, phenolsulfonic acid 10-16% by weight, silicone 0.2-80%. 0.7% by weight, 4.5-12.0% by weight of methylene chloride as a foaming agent, and 3.5-6.5% by weight of zinc dust as a corrosion inhibitor. It is installed in a place like this, or inside a frame made of steel on a wall panel. (Example) Hereinafter, an example of the present invention will be described. The foamable composition used for the wall panel of the house according to the present invention is a resol type phenol with a pH of 7.0 to 8.0.
Aldehyde polycondensate 65-80% by weight, phenolsulfonic acid 10-16% by weight, methylene chloride 4.5-12.0%
wt%, zinc powder 3.5-6.5 wt%, silicone 0.2
~. Consisting of 0.7% by weight. That is, the foamable composition used for the wall panel of the house of the present invention has the concentrations of the resol-type phenol-aldehyde polycondensate, phenolsulfonic acid, methylene chloride, zinc dust, and silicone within the numerical ranges mentioned above. If the phenol resin is less than 65% by weight, the mechanical strength of the resulting molded product is too low and is unsuitable as a heat insulating material, and if it is more than 80% by weight, the molding processability is poor. Become. Further, the initial pH of the resol type phenol-aldehyde polycondensate is adjusted to a range of 7.0 to 8.0. Phenolsulfonic acid is a curing agent, and if it is less than 10% by weight, the resol type phenol-aldehyde polycondensate will not be completely cured. Also, 16% by weight
In this case, the curing time is short and not only is it impossible to obtain a molded product of appropriate dimensions, but also the density of the obtained molded product becomes too high, making it unsuitable as a heat insulating material. Methylene chloride is a blowing agent, and if it is less than 4.5% by weight, molded products of constant dimensions cannot be obtained, and in particular, only molded products with non-uniform width or thickness can be obtained. If it exceeds 12.0% by weight, the foaming density becomes too high and the surface of the molded product becomes rough. Furthermore, the density of the molded product is too low to be used as a heat insulating material. Since phenolsulfonic acid remains even after molding, when the obtained heat insulating material comes into contact with other metal members such as iron plates during the construction stage, it corrodes these metal members. For this reason, zinc powder is blended, but if it is less than 3.5% by weight, it is ineffective, and if it is more than 6.5% by weight, the resulting molded product will have a significantly low bending strength and compressive strength. Silicone is blended to uniformly disperse the air bubbles in the molded product, but if it is less than 0.2% by weight, it has no effect, and if it is more than 0.7% by weight, the closed cell ratio in the molded product decreases, and the bending strength and Not only does its compressive strength decrease, but its water absorption also increases, making it unsuitable for use as a heat insulating material. As resol-type phenol-aldehyde polycondensates, resol-type resins obtained from phenolic resins (phenol, cresol, xylenol, resorcinol, etc.) and aldehydes (formaldehyde, tesetaldehyde, furfural, etc.) and their modified resins are used to adjust the pH. It can be used as As phenolsulfonic acid, o-, m-,
Any p-phenolsulfonic acid can be used. Next, specific examples of the present invention will be shown, but these specific examples do not limit the present invention. Note that parts indicate parts by weight. [Specific example] Resol type phenol-aldehyde polycondensate (trade name Fol-63, manufactured by Showa Union Gosei Co., Ltd.,
100 parts of fixed component concentration (76% by weight), 20 parts of phenolsulfonic acid (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., purity 67% by weight), 10 parts of methylene chloride, 5 parts of zinc powder, and silicone (trade name: Silicone F-258, (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare a foamable composition. The foamable composition thus obtained was melted at 40 to 70°C to obtain a heat insulating material. [Comparative Examples 1 to 4] Instead of 10 parts of methylene chloride, 10 parts of Freon (mixture of Freon 11 and 113, mixing ratio 1:1)
A foamable composition was prepared in the same manner as in the above specific example except that 15 parts, 20 parts, and 25 parts were used. The foamable composition thus obtained was melted at 40 to 70°C to obtain a heat insulating material. Next, an experiment was conducted to compare the performance of the heat insulating materials obtained in these specific examples and comparative examples 1 to 4. [Experimental example] The (1) density, (2) compressive strength, (3) bending strength, (4) water absorption, and (5) thermal conductivity of the heat insulating materials obtained in the above specific examples and comparative examples 1 to 4 were determined. We measured and compared. The results are shown in Table 1. The method for measuring each performance is shown below. (1) Density: 100 test pieces with a thickness of 40 mm, a width of 100 mm, and a length of 100 mm.
It was completely dried at ±5°C, and the weight W and volume V at that time were measured and calculated from the following formula. Density (g/cm 3 ) = W/V (2) Compressive strength A test piece with a thickness of 40 mm, width of 50 mm, and length of 50 mm is sandwiched between a parallel plane table and an upper plate, and a constant load is gradually applied to determine the maximum load. . (3) Bending strength Both ends of a test piece with a thickness of 40 mm, width of 75 mm, and length of 300 mm were placed on a stand arranged in two rows at the same height, and a load was gradually applied to the entire width of the center of the test piece to bend it. Strength K
(Kg/cm 2 ) was determined. K=3Wl/2bh 2 W: Maximum load (Kg) l: Length of test piece (cm) b: Width of test piece (cm) h: Thickness of test piece (cm) (4) Water absorption rate Thickness: 25 mm, A test piece of width 100mm and length 23±
The sample was immersed in a constant temperature bath at 3°C, and the standard weight and the weight after final water absorption were measured to determine the water absorption rate A (gr/100cm 2 ). A = (B-C)/Surface area x 100 B: Standard weight (g) - After immersing for 10 seconds, the mesh opening is approximately 3 mm
C: Weight after final water absorption (g) - Weight measured in the same manner as the reference weight after immersion for 24 hours (5) Heat conduction JIS test specimen with a thickness of 25 mm, width of 100 mm, and length of 100 mm
- Measured by the method specified in A-1412.

【表】 第1に示すように上記具体例の組成物から得ら
れた断熱材は、発泡剤としてフレオンを用いた比
較例の組成物から得られた断熱材と比較して、特
に吸水性および熱伝導率が小さいというすぐれた
性能を示すことが理解される。 また、この断熱材は壁パネルの鉄板などに接触
するような場所、あるいは壁パネルの鉄鋼材で形
成した枠体内に装着されるものである。 (発明の効果) 以上述べたように、本発明によると、亜鉛末を
腐食防止剤とすることによつて、腐食防止作用を
備えるとともに、優れた性能を有する断熱材を提
供することができるので、壁パネルの鉄板などの
他の金属部材と接触するような場所、あるいは壁
パネルの鉄鋼材枠内に装着した場合であつても、
金属部材を腐食することがない。そのため、従来
のように、金属部材に、さび止め塗料を塗布して
腐食防止しておくといつた塗布工程が必要なくな
り、施工コストを削減することができる。また、
塗布したさび止め塗料を乾かすための時間も必要
なくなり、得られた断熱材を、短時間で施工する
ことができる。 また、安価な塩化メチレンを発泡剤として原料
コストの低下を図ることができる。
[Table] As shown in Table 1, the heat insulating material obtained from the composition of the above specific example has particularly high water absorption and It is understood that it exhibits excellent performance with low thermal conductivity. Further, this heat insulating material is installed in a place where it comes into contact with a steel plate of a wall panel, or inside a frame made of a steel material of a wall panel. (Effects of the Invention) As described above, according to the present invention, by using zinc powder as a corrosion inhibitor, it is possible to provide a heat insulating material that has a corrosion inhibiting effect and has excellent performance. , even if it is installed in a place where it comes into contact with other metal parts such as the steel plate of a wall panel, or within the steel frame of a wall panel.
Will not corrode metal parts. Therefore, there is no need for a conventional coating process in which rust-preventing paint is applied to metal members to prevent corrosion, and construction costs can be reduced. Also,
It also eliminates the need for time to dry the applied anti-rust paint, allowing the resulting insulation material to be installed in a short time. Furthermore, the cost of raw materials can be reduced by using inexpensive methylene chloride as a blowing agent.

Claims (1)

【特許請求の範囲】[Claims] 1 PH7.0〜8.0のレゾール型フエノール−アルデ
ヒド重縮合物65〜80重量%、フエノールスルホン
酸10〜16重量%、シリコーン0.2〜0.7重量%、発
泡剤として塩化メチレン4.5〜12.0重量%、腐食
防止剤として亜鉛末3.5〜6.5重量%とからなる発
泡性組成物であり、この発泡性組成物を壁パネル
の鉄板などに接触するような場所、あるいは壁パ
ネルの鉄鋼材で形成した枠体内に装着したことを
特徴とする住宅の壁パネルに用いた発泡性組成
物。
1 65-80% by weight of resol type phenol-aldehyde polycondensate with pH7.0-8.0, 10-16% by weight of phenolsulfonic acid, 0.2-0.7% by weight of silicone, 4.5-12.0% by weight of methylene chloride as a blowing agent, corrosion prevention It is a foamable composition consisting of 3.5 to 6.5% by weight of zinc powder as an agent, and this foamable composition is installed in a place where it will come into contact with a steel plate of a wall panel, or inside a frame made of steel material of a wall panel. A foamable composition used for wall panels of a house, which is characterized by:
JP8299281A 1981-05-29 1981-05-29 Expandable composition Granted JPS57195756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299281A JPS57195756A (en) 1981-05-29 1981-05-29 Expandable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8299281A JPS57195756A (en) 1981-05-29 1981-05-29 Expandable composition

Publications (2)

Publication Number Publication Date
JPS57195756A JPS57195756A (en) 1982-12-01
JPH0411583B2 true JPH0411583B2 (en) 1992-02-28

Family

ID=13789711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299281A Granted JPS57195756A (en) 1981-05-29 1981-05-29 Expandable composition

Country Status (1)

Country Link
JP (1) JPS57195756A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847564A (en) * 1971-10-13 1973-07-06
JPS5313669A (en) * 1976-06-07 1978-02-07 Gusmer Frederick Emil Process for manufacture of phenollaldehyde foam with hard closed cells
JPS5630438A (en) * 1979-08-20 1981-03-27 Koppers Co Inc Manufacture of phenol resin foam having uniform appearance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847564A (en) * 1971-10-13 1973-07-06
JPS5313669A (en) * 1976-06-07 1978-02-07 Gusmer Frederick Emil Process for manufacture of phenollaldehyde foam with hard closed cells
JPS5630438A (en) * 1979-08-20 1981-03-27 Koppers Co Inc Manufacture of phenol resin foam having uniform appearance

Also Published As

Publication number Publication date
JPS57195756A (en) 1982-12-01

Similar Documents

Publication Publication Date Title
US6350511B2 (en) Melamine resin foam
US3926760A (en) Process for electrophoretic deposition of polymer
US8663793B2 (en) Excellent heat-dissipating black resin composition, method for treating a zinc coated steel sheet using the same and steel sheet treated thereby
US5651816A (en) Cement, cement products, molding material, concrete member and a method of producing the same
US6182407B1 (en) Gypsum board/intumescent material fire barrier wall
JP6659851B2 (en) Polymer foam board with flexible water resistant intumescent coating
US6607817B1 (en) Melamine resin foam with excellent oil repellency
CN101326226A (en) Phenol resin foam
CA2289372C (en) Intumescent material
US4627998A (en) Carbon fiber reinforced concrete
JP2008525565A (en) High toughness phenolic foam
Wang et al. Corrosion protection performance of nano-SiO 2/epoxy composite coatings in acidic desulfurized flue gas condensates
EP0835281A1 (en) Thermal protective compositions
JPH0411583B2 (en)
RU2186813C2 (en) Thermal-insulation coating composition
Al Juhaiman et al. Polystyrene/organoclay nanocomposites as anticorrosive coatings of C-steel
KR102445442B1 (en) Composite insulation for buildings with excellent flame retardant and moisture-proof performance and improved energy efficiency
CN109024945A (en) Super heat preservation polyurethane energy-saving plate
KR102445440B1 (en) Composite insulation for buildings with excellent flame retardant and moisture-proof performance and improved energy efficiency
CN216157010U (en) Building waterproof board
RU2800113C2 (en) Console from polymer composite material performing a support function
JP2001335655A (en) Method of producing phenolic resin foamed body
JPH09249762A (en) Production of phenol resin foam
AU2021104185A4 (en) Plastic masterbatch for heat-insulating and anticorrosive hot-melt acrylic color steel plate, heat-insulating and anticorrosive hot-melt acrylic color steel plate and their preparation methods
JP3089084B2 (en) Heat insulation composite panel