JPH04114986A - High-speed fermentation treatment of organic material - Google Patents

High-speed fermentation treatment of organic material

Info

Publication number
JPH04114986A
JPH04114986A JP2230588A JP23058890A JPH04114986A JP H04114986 A JPH04114986 A JP H04114986A JP 2230588 A JP2230588 A JP 2230588A JP 23058890 A JP23058890 A JP 23058890A JP H04114986 A JPH04114986 A JP H04114986A
Authority
JP
Japan
Prior art keywords
fermentation
tank
fermenter
period
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230588A
Other languages
Japanese (ja)
Inventor
Masakatsu Kishida
岸田 正坦
Makoto Kitano
誠 北野
Seiji Kugimiya
釘宮 清治
Yoshiaki Akiyoshi
秋吉 義昭
Kenji Harada
健二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2230588A priority Critical patent/JPH04114986A/en
Publication of JPH04114986A publication Critical patent/JPH04114986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Fertilizers (AREA)

Abstract

PURPOSE:To improve the productivity of a fermentation product by setting the residence period in a fermentation tank at a specific ratio based on the logarithmic growth period of a thermophilic microorganism. CONSTITUTION:Animal manure or an organic mixture containing the manure as main component is used as a raw material and is charged into a fermentation tank main body 6 through a charging port 1 together with prescribed amounts of produced compost as a seed and a water-content controlling agent such as sawdust to obtain a mixture having a water content of 70%. The components are heated and mixed immediately after charging with a heating apparatus 3, a ventilation apparatus 4 and a stirring apparatus 5 and maintained at 50-70 deg.C to effect the fermentation of the mixture. After a prescribed fermentation residence period corresponding to >=1/3 of the logarithmic growth period of a thermophilic microorganism, the intermediate product fermented in the fermentation tank 6 is discharged from the discharging port 2 and transferred to a heaping tank 11. The fermented material 9 is turned over in the heaping tank 11 and subjected to the post-ripening under aeration with a blower 7 from the bottom over a prescribed period to obtain a fully ripened compost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は動物糞単体またはこれを主成分とする有機混合
物を高速に発酵させ、良質の堆肥を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-quality compost by fermenting animal manure alone or an organic mixture containing animal manure as a main component at high speed.

〔従来の技術〕[Conventional technology]

有機物の高速発酵処理設備としては、従来長方形の上面
が開放された発酵槽に専用の攪拌機がイリいた開放型、
スクレーバ型、あるいは円筒形をした密閉型の発酵槽に
専用の攪拌機、通気装置(−部無いものもある)、加熱
装置(一部無いものもある)を取り付けた密閉型がある
。これらの高速発酵処理設備を用いると、発酵が速く製
品の品質も均一で、しかも大量生産が可能であるので全
国的にかなり使用されている。なお、これらの設備はお
おむね3〜30日程度処理した後、後熟用の堆肥舎(堆
積槽)で堆積発酵させるのが一般的である(全農施設・
資利部編 家畜のふん尿処理利用施設・機械の構造 昭
和60年)。
Conventional high-speed fermentation processing equipment for organic matter is the open type, which has a rectangular fermenter with an open top and a dedicated agitator.
There are closed types that have a scraper type or a cylindrical closed type fermenter equipped with a dedicated stirrer, aeration device (some models do not have a negative part), and a heating device (some models do not have a part). Using these high-speed fermentation processing equipment, fermentation is fast, product quality is uniform, and mass production is possible, so they are widely used throughout the country. In addition, in these facilities, after processing for approximately 3 to 30 days, it is common to pile up and ferment in a post-ripening compost house (sediment tank) (Zen-Noh Facilities/
Structure of facilities and machines used for processing livestock excrement (edited by the Resources and Resources Department, 1985).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この様な有機物の高速発酵処理方法には多くの
課題が存在している。
However, there are many problems with such high-speed fermentation treatment methods for organic substances.

たとえば開放型の発酵槽を第9図に示すが、攪拌機10
は単に切り返し機能だけで破砕機能がないため、発酵処
理物9の細粒化が行われず、その結果発酵速度は比較的
遅くなる。したがって、標準的な品質の製品堆肥を得る
ための処理時間が長くなり、設備費が高くなる。また、
大屋根構造どなっているため、脱臭対策が取りにくい事
に加えて蝿の近寄りをふぜぎ難く、環境衛生問題も多い
For example, an open type fermenter is shown in FIG.
Since it only has a turning function and does not have a crushing function, the fermented product 9 is not made into fine particles, and as a result, the fermentation rate becomes relatively slow. Therefore, the processing time to obtain a standard quality product compost becomes longer and the equipment cost becomes higher. Also,
Due to the large roof structure, it is difficult to take measures to deodorize, and it is also difficult to attract flies, causing many environmental hygiene problems.

一方、密閉型の発酵槽では上記の問題点は解決されるが
、発酵槽で2〜7日処理した後後熟用の堆肥舎で堆積発
酵させるため、2〜7日の発酵滞留時間分の密閉容器(
例えば鋼製)を作らねばならず、発酵槽の設備費が高い
。したがって、発酵槽の設備費を下げるために、後熟用
の堆肥舎での堆積発酵期間を極端に延長しない範囲で発
酵槽の処理時間をいかに設定するかが課題となっている
On the other hand, with a closed fermenter, the above problems are solved, but after processing in the fermenter for 2 to 7 days, it is piled up and fermented in a post-ripening compost house, so the fermentation residence time of 2 to 7 days is Airtight container (
For example, it must be made of steel), and the equipment costs for the fermenter are high. Therefore, in order to reduce equipment costs for fermenters, the challenge is how to set the processing time of fermenters within a range that does not excessively extend the fermentation period in the post-ripening compost house.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、動物糞単体またはこれと含水率調整剤との混
合物を原料とし、これらを発酵槽に投入して発酵処理し
、その後堆積槽で発酵させて製品堆肥を製造する方法に
おいて、発酵槽滞留時間を高温性微生物の対数増殖期間
の三分の一以」二に設定することを特徴とする有機物の
高速発酵処理方法である。
The present invention provides a method for producing a product compost by using animal excrement alone or a mixture of it and a moisture content regulator as a raw material, charging it into a fermentation tank for fermentation treatment, and then fermenting it in a sedimentation tank. This is a high-speed fermentation treatment method for organic matter, characterized by setting the residence time to one-third or more of the logarithmic growth period of thermophilic microorganisms.

〔作 用〕[For production]

本発明は発酵槽の有機物を安定化し、無臭化する。 The present invention stabilizes the organic matter in the fermenter and makes it odorless.

作用を説明するために、本発明を実施する手段である発
酵槽と後熟用の堆積槽の装置構成について説明する。発
酵槽本体6は、第1図に示すように原料等を投入する投
入口1、中間製品を排出する排出口2、処理途中に内容
物を加熱する加熱装置3、処理途中の内容物が嫌気的に
ならないように換気する換気装置4、そして内容物を均
一に攪拌し処理物を細粒化する攪拌装置5から構成され
ている。
In order to explain the operation, the device configurations of a fermenter and an after-ripening deposition tank, which are means for carrying out the present invention, will be described. As shown in Fig. 1, the fermenter main body 6 includes an input port 1 for inputting raw materials, etc., a discharge port 2 for discharging intermediate products, a heating device 3 for heating the contents during processing, and an anaerobic system for the contents during processing. It is comprised of a ventilation device 4 that ventilates the air so that it does not become a target, and a stirring device 5 that uniformly stirs the contents and pulverizes the processed material.

ここで、加熱装置3は内容物温度を50〜70°Cに昇
温する能力のあるものでなくてはいけない。
Here, the heating device 3 must be capable of raising the temperature of the contents to 50 to 70°C.

また、攪拌装置5はできるだけ内容物が攪拌・細粒化で
きるものが良い。
Further, the stirring device 5 is preferably one that can stir and pulverize the contents as much as possible.

一方、堆積槽は第2図に示すように、堆積槽11内部が
嫌気的になったり70°C以上の高温になったりしない
ように底吹装置7、底吹ブロワ−8を具備している。さ
らに、堆積[11内部の均一性を確保するために、定期
的に切り返すためのショベルカーなどの切り返し装置を
用いると良い。
On the other hand, as shown in FIG. 2, the sedimentation tank is equipped with a bottom blower 7 and a bottom blower 8 to prevent the inside of the sedimentation tank 11 from becoming anaerobic or reaching a high temperature of 70°C or higher. . Further, in order to ensure uniformity inside the deposited material 11, it is preferable to use a turning device such as a shovel car for periodically turning the material.

有機物の流れであるが、投入口1より原料有機物、所定
割合の種菌用製品堆肥、そして前2者の混合で含水率が
7096をこえる場合には含水率調整剤が投入される。
Regarding the flow of organic matter, raw organic matter, a predetermined ratio of product compost for starter, and, if the moisture content of the mixture of the former two exceeds 7096, a moisture content regulator is input from the input port 1.

これらの混合物が加熱、攪拌、換気されて発酵が始まる
。そして所定時間発酵槽で発酵した中間製品は排出口2
から取り出され、後熟用堆積槽11に運ばれる。堆積槽
11で切り返し、底吹通気操作をうけて所定期間後熟さ
れ、完熟堆肥となる。
These mixtures are heated, stirred, and ventilated to begin fermentation. The intermediate products fermented in the fermenter for a predetermined period of time are discharged from the outlet 2.
and transported to the post-ripening sedimentation tank 11. It is turned over in the sedimentation tank 11, subjected to bottom blowing aeration, and ripened after a predetermined period of time to become fully ripened compost.

発酵槽での発酵過程は、第3図に示すように、高温性微
生物(高温性細菌、高温性放線菌)数の推移で表される
。高温性微生物は対数増殖期、生育減衰期、定常期と菌
数が推移し増殖する。
The fermentation process in the fermenter is represented by the change in the number of thermophilic microorganisms (thermophilic bacteria, thermophilic actinomycetes), as shown in FIG. Thermophilic microorganisms proliferate through a logarithmic growth phase, a growth decay phase, and a stationary phase.

一方、有機物の発酵完熟程度は水抽出物中の有機態炭素
と有機態窒素の比率で現される。この比率を有機態C/
N比と呼ぶ。M、 l+jrai、 A Standa
rdMeasurement  For  Compo
st  Maturjty、BiocycleNove
mber/December 1983によれば、有機
態C/N比が5〜6の範囲に入れば有機物の発酵は終了
しているといわれている。
On the other hand, the degree of complete fermentation of organic matter is expressed by the ratio of organic carbon to organic nitrogen in the water extract. This ratio is organic C/
It is called the N ratio. M, l+jrai, A Standa
rdMeasurement For Compo
st Maturjty, BiocycleNove
According to Miber/December 1983, it is said that fermentation of organic matter is complete when the organic C/N ratio falls within the range of 5 to 6.

第8図に示すように、有機態C/’N比と高温性微生物
数の変化パターンはよく似ている。言い換えれば、発酵
槽で高温性微生物が対数増殖している時は有機態C/N
比は大きく増加変化し、有機物は激しく発酵し完熟化す
る。次に、高温性微生物の増殖が定常期に入ると有機態
C/N比は漸増もしくは一定値となり、発酵はほぼ終了
し後熟している。実施例で述べるが、発酵槽に於いてど
れくらい高温性微生物を増殖させるか、すなわち高温性
微生物を指標として発酵槽滞留時間をどの程度に設定す
るかが全体の発酵日数を決定する。
As shown in Figure 8, the change patterns of the organic C/'N ratio and the number of thermophilic microorganisms are very similar. In other words, when thermophilic microorganisms are growing logarithmically in the fermenter, organic C/N
The ratio increases greatly, and the organic matter ferments vigorously and becomes fully ripe. Next, when the growth of thermophilic microorganisms enters the stationary phase, the organic C/N ratio gradually increases or becomes a constant value, and fermentation is almost completed and after-ripening occurs. As will be described in Examples, the total number of days for fermentation is determined by how long the thermophilic microorganisms are grown in the fermenter, that is, how long the fermenter residence time is set using the thermophilic microorganisms as an indicator.

また、発酵槽に於いてどれくらい高温性微生物を増殖さ
せるかは、発酵過程の処理品無臭性をも決定する。すな
わち、発酵槽においては高温性細菌の作用で硫黄系悪臭
、堆積槽に於いては高温性放線菌の作用で窒素系や炭化
水素系悪臭が無臭化されるため、効果的な発酵過程の無
臭化には高温性微生物の増殖が大きく影響する。
Furthermore, the degree to which thermophilic microorganisms are grown in the fermenter also determines the odorlessness of the processed product during the fermentation process. In other words, in the fermentation tank, sulfur-based odors are eliminated by the action of thermophilic bacteria, and in the sedimentation tank, nitrogen- and hydrocarbon-based odors are eliminated by the action of thermophilic actinomycetes, resulting in an effective odor-free fermentation process. The growth of thermophilic microorganisms has a large effect on

〔実施例〕〔Example〕

第1図を用いて実施例を説明する。原料として牛糞10
00kg、製品堆肥250kg、含水率調整剤(おがく
ず) 88kgを発酵槽本体6に入れ、3者の混合後の
含水率が7006となるようにした。投入直後から換気
(3m3/+n1n) 、t’A拌(I rpn+ )
 、加熱(鉄汝温度70’C)操作を加え発酵させた。
An example will be explained using FIG. Cow dung as raw material 10
00 kg, 250 kg of product compost, and 88 kg of a moisture content regulator (sawdust) were put into the fermenter main body 6, so that the moisture content after mixing the three was 7006. Ventilation (3m3/+n1n) and t'A stirring (I rpn+) immediately after charging
Fermentation was then carried out by heating (temperature: 70'C).

その後押々の発酵槽滞留時間だけ発酵槽で処理し、後熟
用の堆積槽に堆積さぜ、底吹通気(200〜1000 
(! /min/In”堆積物×1〜3時間/口)、切
り返しくショベルカーで41Fに1回)操作を行−) 
y、= 。
After that, it is processed in the fermenter for the fermenter residence time, and then deposited in the sedimentation tank for post-ripening.
(!/min/In" deposit x 1 to 3 hours/mouth), perform the operation once every 41F with a shovel car.
y,=.

各操業の発酵開始直後からの高温性微生物数および有機
態C、/ N比の推移を第4〜8図に、結果を第1表に
示す。ここで、発酵11数とは有機態C/N比が5〜6
の範囲に入り、かつ511間安定するのに要した1」数
である。また、I−1は高温性微生物の対数増殖期間で
あり、本実施例の場合10時間である。植害試験(幼植
物試験)とは、59農蚕1943号(昭和59年4月1
8[1・農林水産省農蚕園芸局長通達)に定めである方
法に準する。
The changes in the number of thermophilic microorganisms and the organic C,/N ratio immediately after the start of fermentation in each operation are shown in Figures 4 to 8, and the results are shown in Table 1. Here, the fermentation number 11 means that the organic C/N ratio is 5 to 6.
This is the number of 1'' required to enter the range and remain stable for 511 hours. Further, I-1 is the logarithmic growth period of thermophilic microorganisms, which is 10 hours in this example. Plant damage test (seedling test)
8 [1. Notification of the Director-General of the Agriculture, Forestry and Fisheries Bureau of the Ministry of Agriculture, Forestry and Fisheries].

第  1 表 Nα2〜5では第5〜8図に示すように発酵槽処理時間
内で有機態C/N比および高温性微生物数が急激に増加
した。そして堆積槽では両者ども漸増し、Nα5で17
日、Nα4で21日、NCL3で25日、Nα2で30
日で発酵は終了した。これら囲者は植害試験において発
芽障害はなく、発育も順調であった。
As shown in Figures 5-8, in Table 1 Nα2-5, the organic C/N ratio and the number of thermophilic microorganisms increased rapidly within the fermenter treatment time. In the sedimentation tank, both of them gradually increased to 17 at Nα5.
day, 21 days for Nα4, 25 days for NCL3, 30 days for Nα2
Fermentation was completed in a day. These fences had no germination problems in the planting damage test, and growth was good.

Nα1では、明らかに堆積槽での有機態C/N比や高温
性微生物数の増加が微少で、発酵終了の傾向を示した5
0日後においてもなお植害試験において発芽障害が発生
し、加えて発育も不良であり、50日間より多くの発酵
日数を要することが分かっ/こ 。
In Nα1, there was clearly a slight increase in the organic C/N ratio and the number of thermophilic microorganisms in the sedimentation tank, indicating a tendency for fermentation to end5.
Even after 0 days, germination failure still occurred in the plant damage test, and in addition, growth was poor, and it was found that more fermentation days were required than 50 days.

以上の結果から、発酵槽滞留時間は少なくとも高温性微
生物の対数増殖期間の三分の一以上必要であることが分
かる。
From the above results, it can be seen that the residence time in the fermenter is required to be at least one third of the logarithmic growth period of the thermophilic microorganism.

なお、生菌数測定法は、高温性細菌用の培地として標準
寒天培地、アルブミン寒天培地を用いたが、培地の選定
法等についてはに、 Nakasaki、 1984C
hange  in  Microbial  Num
bers  during Tt+ermophiIi
c Composting of Sewage sl
udge welt Referenc、e  to 
 CL  IEvoluting RaLe、八ppl
ide  and  Thnvironmer+tal
 l+Ncrobiology、 Jan、 1985
. p、 37−41に示される通りである。
In addition, the method for measuring the number of viable bacteria used a standard agar medium and an albumin agar medium as a medium for thermophilic bacteria, but the method for selecting a medium is described in Nakasaki, 1984C.
Hange in Microbial Number
bers during Tt+ermophiIi
c Composting of Sewage sl
udge welt Reference, e to
CL IEvoluting RaLe, 8ppl
ide and Thnvironmer+tal
l+Ncrobiology, Jan, 1985
.. As shown in p. 37-41.

一方、有機物の臭いであるが、Nα1で強い真実がした
他は無臭であった。環境衛生上の問題を考えると、少な
くともNα2以上の発酵槽滞留時間が必要である。
On the other hand, although it had an organic odor, it was odorless except for a strong odor at Nα1. Considering environmental hygiene issues, a fermenter residence time of at least Nα2 or more is required.

本実施例では牛糞を用いたが、種々の実験結果より他の
有機物、例えば豚糞、鶏糞でも同じ傾向を示した。従っ
て、本発明は牛糞に限定されるものではない。含水率調
整剤もおがくず、パーク等の有機質資材、石炭灰、ゼオ
ライト等の無機質資材等が使用可能である。
Although cow dung was used in this example, various experimental results showed that other organic substances, such as pig dung and chicken dung, showed the same tendency. Therefore, the present invention is not limited to cow dung. As the moisture content regulator, organic materials such as sawdust and perk, and inorganic materials such as coal ash and zeolite can be used.

なお、本発明における発酵槽での滞留時間と堆積槽での
堆積時間の最適値は、第5図に示すように発酵槽滞留時
間を高温性微生物の対数増殖期間の173とし、残りを
堆積槽での堆積時間とする。
In addition, the optimum values of the residence time in the fermenter and the deposition time in the sedimentation tank in the present invention are as shown in FIG. Let the deposition time be .

つまりこの場合、発酵槽および堆積槽全体の設備費、ラ
ンニングコストが最小となる。また、堆積槽の場所に制
限がある場合は、適宜、例えば第7.8図に示す時間で
実施してもよい。
In other words, in this case, the equipment costs and running costs for the entire fermentation tank and sedimentation tank are minimized. Furthermore, if there is a restriction on the location of the deposition tank, it may be carried out as appropriate, for example, at the time shown in FIG. 7.8.

〔発明の効果〕〔Effect of the invention〕

本発明は、発酵槽と堆積槽との絹み合わせによる有機物
の発酵において発酵槽処理時間の最小値を決定できるた
め、高生産性の発酵処理が可能である。また、本発明で
は悪臭の発生、蝿の近寄りを防止でき、開放型発酵槽特
有の環境衛生上の問題点を解消できる。
In the present invention, the minimum value of the fermentation tank processing time can be determined in the fermentation of organic matter by combining the fermentation tank and the sedimentation tank, so that highly productive fermentation processing is possible. Furthermore, the present invention can prevent the generation of bad odors and the approach of flies, and can solve the environmental hygiene problems peculiar to open fermenters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するだめの発酵槽の構造を示す図
、 第2図は本発明を実施するための堆積槽の構造を示す図
、 第3図は一般的な高温性微生物数増殖曲線を示す図、 第4図〜第8図は実施例における高温性微生物数と有機
態C/N比の推移を示す図、 第9図は従来の開放型の発酵槽を示す図である。 1・・・投入口、2・・・排出口、3・・・加熱装置、
4・・・換気装置、5・・・攪拌装置、6・・・発酵槽
本体、7・・・底吹装置、8・・・底吹ブロワ−9・・
・発酵処理物、10・・・攪拌機、1!・・・堆積槽。
Figure 1 is a diagram showing the structure of a fermentation tank for implementing the present invention, Figure 2 is a diagram showing the structure of a sedimentation tank for implementing the present invention, and Figure 3 is a general example of thermophilic microorganism growth. Figures 4 to 8 are diagrams showing the curves; Figures 4 to 8 are diagrams showing changes in the number of thermophilic microorganisms and organic C/N ratio in Examples; Figure 9 is a diagram showing a conventional open type fermenter. 1... Input port, 2... Outlet port, 3... Heating device,
4... Ventilation device, 5... Stirring device, 6... Fermentation tank main body, 7... Bottom blowing device, 8... Bottom blowing blower 9...
・Fermented product, 10... Stirrer, 1! ...Sedimentation tank.

Claims (1)

【特許請求の範囲】[Claims] (1)動物糞単体またはこれと含水率調整剤との混合物
を原料とし、これらを発酵槽に投入して発酵処理し、そ
の後堆積槽で発酵させて製品堆肥を製造する方法におい
て、発酵槽滞留時間を高温性微生物の対数増殖期間の三
分の一以上に設定することを特徴とする有機物の高速発
酵処理方法。
(1) In a method in which animal excrement alone or a mixture of it and a moisture content regulator is used as a raw material, it is put into a fermenter for fermentation treatment, and then fermented in a sedimentation tank to produce product compost. A method for high-speed fermentation of organic matter, characterized in that the time is set to one-third or more of the logarithmic growth period of thermophilic microorganisms.
JP2230588A 1990-09-03 1990-09-03 High-speed fermentation treatment of organic material Pending JPH04114986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230588A JPH04114986A (en) 1990-09-03 1990-09-03 High-speed fermentation treatment of organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230588A JPH04114986A (en) 1990-09-03 1990-09-03 High-speed fermentation treatment of organic material

Publications (1)

Publication Number Publication Date
JPH04114986A true JPH04114986A (en) 1992-04-15

Family

ID=16910095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230588A Pending JPH04114986A (en) 1990-09-03 1990-09-03 High-speed fermentation treatment of organic material

Country Status (1)

Country Link
JP (1) JPH04114986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429783B1 (en) * 2001-09-12 2004-05-03 장태희 Process for the rapid preparation of organic enzyme fertilizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829273A (en) * 1981-08-14 1983-02-21 Hitachi Ltd Noise detecting circuit for diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829273A (en) * 1981-08-14 1983-02-21 Hitachi Ltd Noise detecting circuit for diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429783B1 (en) * 2001-09-12 2004-05-03 장태희 Process for the rapid preparation of organic enzyme fertilizer

Similar Documents

Publication Publication Date Title
CN109437992A (en) The warehouse style ageing preparation method of microbial organic fertilizer
JP5442325B2 (en) Organic waste disposal method
Guryanov et al. Technical means for disinfection and processing of bedding manure into organic fertilizers
JPH0782069A (en) Compost preparation process
CN115368195B (en) Sludge composting method and application thereof
JPH10174582A (en) Active microbial mixture and its use
JPH04114986A (en) High-speed fermentation treatment of organic material
CN108395294A (en) A kind of agricultural waste fermentation at organic fertilizer application technology as the second resource
CZ32099A3 (en) Process and apparatus for producing compost
JP2002068877A (en) Organic fertilizer which can be manufactured in short period of time and method of manufacturing for the same
KR19980080558A (en) Compost with excellent fertilization and manufacturing method
JP2000327465A (en) Utilization method for water-nonutilizing fishery waste
JPH05270961A (en) Method and device for producing compost
JP2021127400A (en) Soil improvement agent, fertilizer and soil improvement method
CN112194509A (en) Preparation method of mixed manure organic fertilizer
JP2002037686A (en) Manufacturing method and apparatus of organic fertilizer
JP2008013380A (en) Compost manufacturing method
JP4643203B2 (en) Microorganism for fermenting, decomposing and treating cow dung, and method for treating cow dung using the same
JPH0483786A (en) Fermentation treatment of organic waste and treating system thereof
RU2055823C1 (en) Method of avian dung biological processing
JPS6138697A (en) Treatment of waste materal having high water content by yeast cultivating fermetation
JPH0222191A (en) Compost and production thereof
RU2815050C1 (en) Method of producing biologically active biohumus
KR20180057435A (en) Manufacturing method for fertilizer and fertilizer using the same
JPH10338587A (en) Low carbon/nitrogen ratio compost and its production