JPH04111811A - Laminate layer rubber containing visco-elastic material - Google Patents

Laminate layer rubber containing visco-elastic material

Info

Publication number
JPH04111811A
JPH04111811A JP22896490A JP22896490A JPH04111811A JP H04111811 A JPH04111811 A JP H04111811A JP 22896490 A JP22896490 A JP 22896490A JP 22896490 A JP22896490 A JP 22896490A JP H04111811 A JPH04111811 A JP H04111811A
Authority
JP
Japan
Prior art keywords
rubber
plates
damping
laminated rubber
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22896490A
Other languages
Japanese (ja)
Inventor
Masuhiko Obata
小畑 益彦
Yasuo Nitta
康男 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP22896490A priority Critical patent/JPH04111811A/en
Publication of JPH04111811A publication Critical patent/JPH04111811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To effectively damp vibration from the earthquake or small-vibration regions by a method in which a laminate layer rubber containing a visco-elastic material is formed by alternately bonding rubber plates and steel plates and put between the downside of a building and the base slab. CONSTITUTION:A laminate layer rubber A is made up of a laminated rubber layer 10, a top plate 20 fixed to the upside of the layer 10, and a lower plate 30 fixed to the downside of the rubber layer 10. Steel plates 11a are inserted into the rubber 11 constituting the rubber layer 10 and bonded alternately with the rubber plates 11c. A rubber asphalt (visco-elastic material) is inserted into round columnar holes of the same diameter, leading vertically to the plates 11a, the rubber plates 11c, and the upside and downside of the rubber 11b to form rubber-asphalt bodies 12. The lower plate 30 of the rubber A is fixed to the pedestal on the base plate by bolts, and the top plate 20 is attached to the downside of building. Even damping effect on the vibration of small- vibrating regions can be obtained at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、ゴム板と鉄板とを交互に貼着してなり、建造
物下面と基礎版との間に介在させて地震等による振動を
吸収する粘弾性体入り積層ゴムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention consists of rubber plates and steel plates that are attached alternately, and is interposed between the lower surface of a building and a foundation plate to prevent vibrations caused by earthquakes, etc. This invention relates to a laminated rubber containing absorbent viscoelastic material.

[従来の技術] 近年、地震、風等により建造物に生じる振動を吸収する
免震装置を実際に採用されるケースが増えてきている。
[Prior Art] In recent years, there has been an increase in the number of cases in which seismic isolation devices that absorb vibrations generated in buildings due to earthquakes, wind, etc. are actually employed.

従来の免震装置としては、大きくわけて4種類のものが
考えられている。
Conventional seismic isolation devices can be roughly divided into four types.

■船人り積層ゴム 鉛棒のダンパーと積層ゴムを一体にしたもので、内部の
鉛は塑性変形を起こしてもすぐに復元し、もとの減衰性
能を発揮するものである。積層ゴムは薄いゴムと鉄板と
を交互に貼り合わせたもので、水平方向には軟らかく、
鉛直方向には硬い性質をもっている。
■Sailor's Laminated Rubber A lead rod damper and laminated rubber are integrated, and even if the lead inside is plastically deformed, it quickly recovers and maintains its original damping performance. Laminated rubber is made by laminating thin rubber and steel plates alternately, and is soft in the horizontal direction.
It has a hard property in the vertical direction.

その長所として、大きな減衰性能を持っている点、鉛の
塑性変形後の性能復元の再結晶がしやすいため地震時の
取り換えが少なくてずも点、免震装置の支持装置と減衰
機構が一体となっており免震装置の取り扱いが簡単であ
るという点、振動系が非線型で確定していないため共振
現象を起こしにくいといった点がある。
Its advantages are that it has a large damping performance, that it is easy to recrystallize to restore performance after plastic deformation of lead, so there is less need for replacement in the event of an earthquake, and that the supporting device and damping mechanism of the seismic isolation device are integrated. Therefore, the seismic isolation device is easy to handle, and the vibration system is nonlinear and undefined, so resonance phenomena are less likely to occur.

■積層ゴム+鋼材ダンパー 鋼材タンパ−は鋼材の塑性化によって地震のエネルギー
を吸収し、特に大きな地震時に有効なタンパ−である。
■Laminated rubber + steel damper Steel tamper absorbs earthquake energy by plasticizing the steel material, and is particularly effective during large earthquakes.

その長所として、大きな減衰性能を持っている点、免震
装置の支持装置と減衰機構が独立しているためねじれ変
形を生じやすい上部建物に対[7、免震装置部の構造計
画を容易に行うことができる点、振動系が非線型で確定
していないため共振現象を起こしにくい点がある。
Its advantages are that it has a large damping performance, and that the supporting device and damping mechanism of the seismic isolation device are independent, making it easy to plan the structure of the seismic isolation device for upper buildings that are prone to torsional deformation [7. The vibration system is nonlinear and undefined, so resonance phenomena are less likely to occur.

■積層ゴム+オイルダンパー オイルダンパーは小さい振幅から大きな振幅まで安定し
た減衰力特性を発揮する。このダンパーと積層ゴムとを
組み合わせることによって地震時における建物の変位を
抑制するものである。
■Laminated rubber + oil damper The oil damper exhibits stable damping force characteristics from small amplitudes to large amplitudes. The combination of this damper and laminated rubber suppresses the displacement of buildings during earthquakes.

その長所として、微小振幅領域より減衰効果が期待でき
中小地震に対し有利となる点、減衰機構に塑性変形によ
る履歴エネルギーを期待していないため地震時のタンパ
−の取り換えが少なくてすむ点、応答が線型であり大地
震時の応答予測が明解である点、減衰性能の設定が容易
である点がある。
Its advantages are that it can be expected to have a damping effect in the micro-amplitude region, making it advantageous for small and medium-sized earthquakes, and that the damping mechanism does not rely on hysteresis energy due to plastic deformation, so there is less need to replace tampers during earthquakes, and response is linear, making it easy to predict the response during a large earthquake, and making it easy to set the damping performance.

■高減衰積層ゴム 上記積層ゴムの減衰性をさらに高めたものである。この
ため地震時の水平方向の振動を吸収することがでるもの
である。
■High damping laminated rubber This is a rubber laminated rubber with higher damping properties than the above laminated rubber. This makes it possible to absorb horizontal vibrations during earthquakes.

[発明が解決しようとする課題] しかしながら上記従来技術には以下に掲げる問題点があ
った。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following problems.

鉛入り積層ゴム及び積層ゴム+鋼材ダンパーは、材料の
履歴特性を減衰特性に利用するため、振幅の小さい領域
では減衰効果を期待できない。
Lead-containing laminated rubber and laminated rubber+steel dampers utilize the history characteristics of the material for damping characteristics, so damping effects cannot be expected in small amplitude regions.

積層ゴム+オイルダンパーは、オイルダンパーを利用し
ているため施工が繁雑で、タンパ−のストロークがその
まま建屋の限界変位となり、これを大きくするにはコス
トも増大する。
Since the laminated rubber + oil damper uses an oil damper, construction is complicated, and the stroke of the tamper becomes the limit displacement of the building, and increasing this increases the cost.

高減衰積層ゴムは、コストも普通の積層ゴムと比べて高
価となる。
Highly damped laminated rubber is also more expensive than ordinary laminated rubber.

本発明は、斯かる問題点に鑑みてなされたものであり、
その課題とするところは、振幅の小さい領域での減衰力
を期待することができるとともに、従来技術に比べて低
廉な粘弾性体入り積層ゴムを提供する点にある。
The present invention has been made in view of such problems,
The objective is to provide a laminated rubber containing a viscoelastic material that can be expected to have a damping force in a small amplitude region and is less expensive than conventional techniques.

[課題を解決するための手段] 本発明の要旨は、ゴム板と鉄板とを交互に貼着してなり
、建造物下面と基礎板との間に介在させて地震等による
振動を吸収する粘弾性体入り積層ゴムであって、内部に
粘弾性体を備えてなることを特徴とする粘弾性体入り積
層ゴムに存する。
[Means for Solving the Problems] The gist of the present invention is to provide a rubber plate and a steel plate alternately attached to each other, and to provide a sticky material that absorbs vibrations caused by earthquakes, etc. by interposing it between the lower surface of a building and a foundation plate. The present invention relates to a laminated rubber containing a viscoelastic material, which is characterized in that the rubber contains a viscoelastic material inside.

[作用] 粘弾性体は、塑性体とは異なり小さな振幅領域において
も弾性変形により減衰効果を発揮する。
[Operation] Unlike a plastic body, a viscoelastic body exhibits a damping effect through elastic deformation even in a small amplitude region.

積層ゴムに用いるゴムは、高減衰ゴムに比べて低価格で
あるので、従来技術に比べて低廉化する。
Since the rubber used for the laminated rubber is less expensive than high-damping rubber, it is less expensive than conventional technology.

[実施例] 以下、本発明の実施例について図面を参照し2て詳細に
説明する。ただし、本実施例に記載され′ている構成部
品の寸法、材質、形状、その相対配置などは、特に特定
的な記載がないかぎりは、この発明の範囲をそれらのみ
に限定する趣旨のものではなく、単なる説明例にすぎな
い。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this example are not intended to limit the scope of this invention to only those, unless specifically stated. It's just an illustrative example.

本実施例に係る粘弾性体入り積層ゴムについて第1図を
用いて説明する。
The laminated rubber containing viscoelastic material according to this example will be explained using FIG. 1.

当該コムアスファルト入り積層ゴム(粘弾性体入り積層
ゴム)Aは、第1図に示すように、積層ゴム10と、当
該積層ゴム10の上面に固定し、てなる上板20と下面
に固定してなる下板30とからなるものである。
As shown in FIG. 1, the laminated rubber containing comb asphalt (laminated rubber containing viscoelastic material) A is fixed to the laminated rubber 10 and the upper surface of the laminated rubber 10, and is fixed to the upper plate 20 and the lower surface. It consists of a lower plate 30 consisting of:

前記積層ゴム10は、積層ゴム本体11と、コムアスフ
ァルト12(粘弾性体)とからなるものである。前記積
層ゴム本体11は、複数の鉄板11aと、当該各鉄板1
1aを内包してなるゴム部11bとからなる。前記各鉄
板11aは中心に同一径の孔を有する平面視環状の板状
体である。前記ゴム部11bは、前記鉄板11aの厚さ
だけ、間隔をあけて存する複数の板状部11cと、当該
各板状部11cを支持し前記ゴム部1↓bの側面を構成
する筒状部lidとからなる円柱状体である。前記各板
状部11c並びに前記ゴム部11bの上面及び下面には
、中心に前記孔と同一径の孔を設けている。前記各板状
部11cが仕切る空間には前記各鉄板11aを収納し、
前記板状部11Cと前記鉄板11aとを相互に貼着して
いる。前記ゴムアスファルト12は、前記板状部11C
と前記鉄板11aとを相互に貼着することにより形成さ
れた上下方向に連通ずる孔の内部に存する円柱状体であ
る。
The laminated rubber 10 is composed of a laminated rubber main body 11 and comb asphalt 12 (viscoelastic material). The laminated rubber main body 11 includes a plurality of iron plates 11a and each iron plate 1.
1a and a rubber portion 11b that includes a rubber portion 1a. Each of the iron plates 11a is an annular plate-shaped body having a hole of the same diameter in the center in a plan view. The rubber part 11b includes a plurality of plate-like parts 11c that are spaced apart by the thickness of the iron plate 11a, and a cylindrical part that supports each of the plate-like parts 11c and forms a side surface of the rubber part 1↓b. It is a cylindrical body consisting of a lid. A hole having the same diameter as the hole is provided at the center on the upper and lower surfaces of each of the plate-shaped portions 11c and the rubber portion 11b. Each of the iron plates 11a is stored in a space partitioned by each of the plate-like parts 11c,
The plate-shaped portion 11C and the iron plate 11a are attached to each other. The rubber asphalt 12 has the plate-like portion 11C.
It is a cylindrical body existing inside a hole that communicates in the vertical direction and is formed by adhering the iron plate 11a and the iron plate 11a to each other.

前記上板2o及び前記下板30は、ともに前記積層ゴム
10の直径よりも大きな直径の平面視円形の鋼製板状体
である。
The upper plate 2o and the lower plate 30 are both steel plate-shaped bodies that are circular in plan view and have a diameter larger than the diameter of the laminated rubber 10.

ナオ、前記ゴムアスファルト入り積層ゴムへの設置は従
来同様に、基礎板に設けたペデスタルに前記下板30を
ボルト等により固定し、前記上板20を建屋の下面に取
り付けることにより行えば良い。
Installation on the rubber asphalt-containing laminated rubber can be done in the same way as in the past, by fixing the lower plate 30 to a pedestal provided on the base plate with bolts or the like, and attaching the upper plate 20 to the lower surface of the building.

次キに、以−Lのように構成したゴムアスファルト入り
積層ゴムAの作用効果について説明する。
Next, the effects of the rubber asphalt-containing laminated rubber A constructed as shown below will be explained.

鉛入り積層ゴムは、鉛の塑性変形によって振動エネルギ
ーを吸収し、減衰性能を発揮するものである。したがっ
て、地震入力が小さく鉛が弾性状態であると減衰効果は
期待できないものである。これに対し粘弾性体であるゴ
ムアスファルト12を用いることによって、小さな振幅
領域より減衰効果を発揮することができる。
Lead-containing laminated rubber absorbs vibration energy through plastic deformation of lead and exhibits damping performance. Therefore, if the seismic input is small and lead is in an elastic state, no damping effect can be expected. On the other hand, by using the rubber asphalt 12, which is a viscoelastic material, it is possible to exhibit a damping effect in a small amplitude region.

また、積層ゴム10に用いているコムは、高減衰ゴムに
比べて低価格であるので、本実施例によれば前記免震装
置の価格を高減衰ゴムを用いた免震装置に比べて価格を
低廉化できる。
Furthermore, since the comb used in the laminated rubber 10 is less expensive than high-damping rubber, according to this embodiment, the price of the seismic isolation device is lower than that of a seismic isolation device using high-damping rubber. can be made cheaper.

ナオ、本実施例においてはゴムアスファルト12の本数
を1本としているが、本発明の範囲をそれに限定する趣
旨ではなく、本発明においては他の構成、例えば第2図
に示すように6本等、本発明を実施するうえで好適な本
数とすることができる。
Nao, in this embodiment, the number of rubber asphalt 12 is one, but this is not intended to limit the scope of the present invention, and the present invention may have other configurations, such as six as shown in FIG. , the number can be set to a suitable number for implementing the present invention.

また、前記ゴムアスファル)12の形状は円柱であるが
、本発明の範囲をそれに限定する趣旨ではなく、本発明
においては他の形状、例えば円錐台等、本発明を実施す
るうえて好適な形状とすることができる。
Further, although the shape of the rubber asphalt 12 is a cylinder, this is not intended to limit the scope of the present invention, and the present invention may use other shapes such as truncated cones or other shapes suitable for carrying out the present invention. It can be done.

また、粘弾性体としてゴムアスファルト12を用いたが
、本発明の範囲をそれに限定する趣旨ではなく、本発明
においては他のもの、例えば軟質ポリ塩化ビニール、エ
ピクロルヒドリンゴム、ニトリルゴム、ウレタンコム等
、本発明を実施するうえで好適なものを用いることがで
きる。
Further, although rubber asphalt 12 was used as the viscoelastic material, this is not intended to limit the scope of the present invention, and in the present invention, other materials such as soft polyvinyl chloride, epichlorohydrin rubber, nitrile rubber, urethane rubber, etc. Any suitable material can be used to carry out the present invention.

最後に本実施例に免震装置とは異なる構成であるが、同
じ粘弾性体を用いた制振装置の実験結果があるのでここ
に記載することとする。
Finally, there are experimental results of a vibration damping device using the same viscoelastic body, although the configuration is different from that of the seismic isolation device in this example, so they will be described here.

■ 実験概要 (a)  加力装置 反力床に剛結されたヘースマット、加力ビーム、加力ビ
ームを支持する4本の支柱及び制振装置の反力を受ける
反力ビームとにより構成されている。
■Experiment outline (a) Force device reaction force Consisting of a Heath mat rigidly connected to the floor, a force beam, four columns supporting the force beam, and a reaction beam that receives the reaction force of the vibration damping device. There is.

加力ビームは支柱と交差する4ケ所でローラ支持され、
反力壁を介【、アクチュエータより加振される。制振装
置は、加力ビームと反力ビームに高力ボルトを用いて固
定されており、加力ビームに外力か生ずると制振装置は
相対変形が生ずる事になる。
The loading beam is supported by rollers at four locations where it intersects with the pillars.
Excited by the actuator via the reaction wall. The damping device is fixed to the force beam and the reaction beam using high-strength bolts, and if an external force is applied to the force beam, the vibration damping device will undergo relative deformation.

(b)  制振装置 制振装置は、厚さ5mmに成型されたシート状粘弾性体
と粘弾性体を挾む6枚の鉄板から構成されており、アク
チュエータの動きに対して隣り合った鉄板はそれぞれ逆
方向に動く。このため、鉄板間で生ずる相対変形に対し
、粘弾性体は減衰力を生ずる機構となっている。なお、
実験時の温度は20’C1粘弾性体の有効断面積は10
2m2である。
(b) Vibration damping device The vibration damping device consists of a sheet-like viscoelastic body molded to a thickness of 5 mm and six iron plates sandwiching the viscoelastic body. move in opposite directions. Therefore, the viscoelastic body is a mechanism that generates a damping force against the relative deformation that occurs between the steel plates. In addition,
The temperature during the experiment was 20'C1, and the effective cross-sectional area of the viscoelastic body was 10
It is 2m2.

(C)  加力計画 加力は加力ビームに取り付けた差動トランス変位形によ
り変位制御で行った。第3図には、加力ケースを示すが
、加振としては、主として小変形(L  3,5mm)
を対象とした場合とそれ以上(但し上限約15mm)の
振幅を対象とした場合に大別される。また、−度15m
m程度の変形を行った後、再度15mm程度の変形を経
験させている。
(C) Loading planning Loading was performed by displacement control using a differential transformer displacement type attached to the loading beam. Figure 3 shows the applied case, but the excitation mainly involves small deformations (L 3.5 mm).
There are two main categories: cases where the target amplitude is 15 mm, and cases where the target amplitude is larger than that (with an upper limit of about 15 mm). Also, -15m
After being deformed by about 15 mm, the sample is again deformed by about 15 mm.

■6実験結果 (a)  履歴ループ 第4図には、0.333Hzの定振幅(1,35mm)
の場合の履歴ループを示す。変形か5mm以上になると
紡錐形に近づいていく。また、変形か5mm程度では定
変位繰返しによる剛性低下は見られないか、変形が5m
m以上になると剛性は最大10〜15%程度低下する。
■6 Experimental results (a) History loop Figure 4 shows a constant amplitude of 0.333Hz (1.35mm).
The history loop for the case is shown. When the deformation exceeds 5 mm, it approaches a conical shape. In addition, if the deformation is about 5 mm, there is no decrease in rigidity due to repeated constant displacement, or if the deformation is about 5 mm.
When it becomes more than m, the rigidity decreases by about 10 to 15% at most.

(b)  減衰カー速度関係 減衰力と鉄板間の相対速度の関係を第5図に示す。これ
より速度を一定とすれば減衰力は振動数が低いもの程大
きく、振動数を一定とすれば変形が大きなもの程大きく
なる傾向がある。しかし、速度がある値(振動数により
異なる)以上になると振動数に拘わらず減衰力の上限値
が存在する。
(b) Damping car speed relationship Figure 5 shows the relationship between the damping force and the relative speed between the iron plates. From this, if the speed is kept constant, the damping force tends to be larger as the frequency is lower, and if the frequency is kept constant, the damping force tends to be larger as the deformation is larger. However, when the speed exceeds a certain value (which varies depending on the frequency), an upper limit value of the damping force exists regardless of the frequency.

(c)  等価減衰係数−速度関係 等価減衰係数と相対速度の関係を第6図に示す。(c) Equivalent damping coefficient-speed relationship FIG. 6 shows the relationship between the equivalent damping coefficient and relative velocity.

これより速度を一定とすれば減衰係数は振動数が低い程
大きく、振動数を一定とすれば変形が大きくなる程小さ
くなる傾向がある。しかし、変形が小さい範囲では係数
は、はぼ一定値になる。
From this, if the speed is kept constant, the damping coefficient tends to be larger as the frequency is lower, and if the frequency is kept constant, the damping coefficient tends to be smaller as the deformation becomes larger. However, in a range where the deformation is small, the coefficient becomes a nearly constant value.

(d)  剛性−速度関係 剛性と相対速度の関係を第7図に示す。これより速度を
一定とすれば剛性は振動数の大きいもの程高く、振動数
を一定とすれば変形の大きなもの程高く、振動数を一定
とすれば変形の大きなもの程低くなる傾向がある。しか
し、変形が小さな範囲では、剛性はほぼ一定値になる。
(d) Rigidity-Speed Relationship The relationship between stiffness and relative speed is shown in Figure 7. From this, if the speed is constant, the higher the vibration frequency, the higher the rigidity; if the frequency is constant, the higher the deformation, the higher the rigidity; and if the frequency is constant, the higher the deformation, the lower the stiffness tends to be. However, in a small deformation range, the stiffness remains approximately constant.

上記実験により以上のような結果を得ることができたが
、粘弾性体を用いた前記ゴムアスファルト入り積層ゴム
Aにも同様の減衰効果を期待することができる。
Although the above results were obtained through the above experiment, a similar damping effect can be expected from the rubber asphalt-containing laminated rubber A using a viscoelastic body.

[発明の効果」 本発明は、以上のように構成されているので以下に掲げ
る効果を有する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

粘弾性体は、塑性体とは異なり小さな振幅領域において
も伸性変形により減衰効果を発揮し、積層ゴムに用いる
ゴムは、高減衰ゴムに比べて低価格であるので、本発明
は振幅の小さい領域での減衰力を期待できるとともに、
従来技術に比べて価格を低廉化できる。
Viscoelastic bodies, unlike plastic bodies, exhibit a damping effect through elastic deformation even in small amplitude regions, and the rubber used for laminated rubber is cheaper than high-damping rubber, so the present invention You can expect damping force in the area, and
The price can be lowered compared to conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るゴムアスファルト入り
積層ゴムを示す−N@面斜視図、第2図は他の実施例に
係るゴムアスファルト入り積層コムの斜視図、第3図は
加力ケース表を示す図、第4図は履歴ループを示す図、
第5図は減衰力と速度との関係を示す図、第6図は等価
減衰係数と速度との関係を示す図、第7図は剛性と速度
との関係を示す図である。 A・・・・・ゴムアスファルト入り積層ゴム、10・・
・・・積層コム、11・・・・・・積層ゴム本体、11
a・・・・鉄板、llb・・・・板状部、12・・・・
・・ゴムアスファルト。
FIG. 1 is a -N@ plane perspective view showing a laminated rubber containing rubber asphalt according to one embodiment of the present invention, FIG. 2 is a perspective view of a laminated comb containing rubber asphalt according to another embodiment, and FIG. Figure 4 shows the force case table, Figure 4 shows the history loop,
FIG. 5 is a diagram showing the relationship between damping force and speed, FIG. 6 is a diagram showing the relationship between equivalent damping coefficient and speed, and FIG. 7 is a diagram showing the relationship between stiffness and speed. A... Laminated rubber with rubber asphalt, 10...
...Laminated comb, 11...Laminated rubber body, 11
a... Iron plate, llb... Plate-shaped part, 12...
...Rubber asphalt.

Claims (1)

【特許請求の範囲】[Claims] ゴム板と鉄板とを交互に貼着してなり、建造物下面と基
礎版との間に介在させて地震等による振動を吸収する粘
弾性体入り積層ゴムであって、内部に粘弾性体を備えて
なることを特徴とする粘弾性体入り積層ゴム。
It is a laminated rubber with a viscoelastic material that is made by alternately pasting rubber plates and steel plates and is interposed between the bottom surface of a building and the foundation plate to absorb vibrations caused by earthquakes, etc., and has a viscoelastic material inside. A laminated rubber containing a viscoelastic material.
JP22896490A 1990-08-30 1990-08-30 Laminate layer rubber containing visco-elastic material Pending JPH04111811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22896490A JPH04111811A (en) 1990-08-30 1990-08-30 Laminate layer rubber containing visco-elastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22896490A JPH04111811A (en) 1990-08-30 1990-08-30 Laminate layer rubber containing visco-elastic material

Publications (1)

Publication Number Publication Date
JPH04111811A true JPH04111811A (en) 1992-04-13

Family

ID=16884628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22896490A Pending JPH04111811A (en) 1990-08-30 1990-08-30 Laminate layer rubber containing visco-elastic material

Country Status (1)

Country Link
JP (1) JPH04111811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197812A (en) * 2007-02-09 2008-08-28 Toshiba Corp Information processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197812A (en) * 2007-02-09 2008-08-28 Toshiba Corp Information processor

Similar Documents

Publication Publication Date Title
JPH10504088A (en) Tuning mass damper
JP2001032881A (en) Vertical base isolation device
JPH1130279A (en) Base isolator
JP7160587B2 (en) Seismic isolation structure
JPH08240033A (en) Base isolation structure
JPH11343675A (en) Damping device and damping structure
JP2002070943A (en) Slip support device for base isolation
JPH04111811A (en) Laminate layer rubber containing visco-elastic material
JPH03247870A (en) Vibration control for structure and vibration-isolated support frame
JP3114602B2 (en) Seismic isolation device
JPH11148534A (en) Slip type base isolation support device
JPS6114338A (en) Vibration attenuator of structure
JPH0339575A (en) Vibration control viscoelastic wall
JP3463085B2 (en) Seismic building
JP3097006B2 (en) Three-dimensional seismic isolation device
JP2003240051A (en) Slider
JP2801693B2 (en) Laminated rubber bearing
JP2810927B2 (en) Damping beam
JP2000104420A (en) Base isolation structure
JP3420117B2 (en) slider
JP3239901B2 (en) Three-dimensional seismic isolation support method and support structure
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method
JPH08326841A (en) Base isolation support device
JP2001164791A (en) Damper for base isolation building
JPH0448287Y2 (en)