JPH04111359A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04111359A
JPH04111359A JP22966190A JP22966190A JPH04111359A JP H04111359 A JPH04111359 A JP H04111359A JP 22966190 A JP22966190 A JP 22966190A JP 22966190 A JP22966190 A JP 22966190A JP H04111359 A JPH04111359 A JP H04111359A
Authority
JP
Japan
Prior art keywords
output buffer
transistor
breakdown
channel length
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22966190A
Other languages
Japanese (ja)
Inventor
Takao Akiba
隆雄 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP22966190A priority Critical patent/JPH04111359A/en
Publication of JPH04111359A publication Critical patent/JPH04111359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To strengthen an electrostatic breakdown strength without changing the size of an output buffer by a method wherein a noise is made to escape by a P-N junction avalanche breakdown or a punchthrough. CONSTITUTION:Regarding the breakdown strength of an NMOS transistor at an output buffer part, the breakdown strength of the output buffer is strenthened even by using the transistor formed of an impurity layer which has been made fine when a P-N junction avalanche breakdown at a drain part or a channel length caused by a punchthrough at a channel part is selected. The figure shows the following: an electric current value at which the drain part has been broken down permanently when an electric current is injected into the drain part of the NMOS transistor of an LDD structure; and a channel length of the NMOS transistor at this time. When the channel length is set at 4mum or higher or 1.2mum or lower, the breakdown current of the transistor becomes large. Inversely, when it is set at 4mum or lower and 1.2mum or higher, the transistor is broken down permanently by a small electric current. Consequently, when the L length of the transistor used in the output buffer is set at 4mum or higher or 1.2mum or lower, it is possible to obtain the output buffer which is resistant to a noise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ICの静電破壊の耐性を向上することのでき
る出力バッファ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an output buffer circuit that can improve resistance to electrostatic damage of an IC.

〔発明の概要〕[Summary of the invention]

本発明は出力バッファの出力部分すなわちMOSトラン
ジスタのドレイン部分にノイズが入った場合、ドレイン
部のPN接合によるアバランシニラ降伏か、ソース・ド
レインのパンチスルーでノイズをグランドに逃がすこと
により、素子の破壊を防ぐものである。
In the present invention, when noise enters the output part of the output buffer, that is, the drain part of the MOS transistor, the device is prevented from being destroyed by letting the noise escape to ground through avalancinilla breakdown due to the PN junction of the drain part or punch-through between the source and drain. It is something to prevent.

〔従来の技術〕[Conventional technology]

従来、出力バッファ部での静電破壊の耐性を高める技術
として、ソース・ドレインの電極となるコンタクトとゲ
ートのスペースを広げる。ドレイン・ソースの面積を大
きくする、またドレイン・ソースの濃度を濃くし、拡散
の濃度勾配をゆるく、深くし、電界をゆるめてかつアバ
ランシェ降伏も低(する方法が知られていた。
Conventionally, as a technique to increase resistance to electrostatic discharge damage in the output buffer section, the space between the contact and the gate, which serve as the source/drain electrodes, is widened. Known methods include increasing the area of the drain and source, increasing the concentration of the drain and source, making the concentration gradient of diffusion gentler and deeper, loosening the electric field, and lowering avalanche breakdown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の方法では微細化にともないドレイン・ソ
ースが浅い不純物拡散となるため、濃度勾配も急峻とな
り、ドレイン端で電界が強くホットエレクトロンが発生
しやすくなる。そのため微細化されたMOSでは出力ト
ランジスタに大きなノイズがのった時にはこのホットエ
レクトロンで引き起こされるスナップバンク現象でドレ
イン永久破壊が起きるという欠点があった。
However, in conventional methods, as miniaturization occurs, impurity diffusion becomes shallow in the drain and source, resulting in a steep concentration gradient and a strong electric field at the drain end, making hot electrons more likely to be generated. Therefore, miniaturized MOS has the disadvantage that when large noise is applied to the output transistor, the snap bank phenomenon caused by these hot electrons causes permanent destruction of the drain.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明は出力ハンコア部
のNMO5I−ランジスタの耐圧がトルイン部でのPN
接合アバランシヱ降伏が、チャネル部でのパンチスルー
で起きるチャネル長を選ぶことにより、出力バッファの
耐圧は微細化された不純物層で形成されたトランジスタ
を使用しても強くなることができた。
In order to solve the above problems, the present invention has been developed so that the withstand voltage of the NMO5I-transistor in the output hammer core section is PN at the toru-in section.
By selecting a channel length where junction avalanche breakdown occurs due to punch-through in the channel portion, the breakdown voltage of the output buffer can be increased even when using a transistor formed with a miniaturized impurity layer.

〔作用〕[Effect]

上記最適化されたチャネル長を持つトランジスタで形成
された出力バッファノイズが入った場合、先にドレイン
部でのアバランシェでブレイクダウンまたはパンチスル
ーでブレイクダウンするため、永久破壊に至らないバッ
ファが得られた。
When noise enters the output buffer formed by the transistor with the optimized channel length, it first breaks down due to avalanche or punch-through at the drain, so a buffer that does not cause permanent damage can be obtained. Ta.

〔実施例〕〔Example〕

以下に本発明の具体的な実施例に基づいて説明する。 The present invention will be explained below based on specific examples.

第1図は公知の半導体装1の製造方法を使って作成した
LDD構造のNMO3トランジスタのドレイン部に電流
を注入し、ドレインが永久破壊したときの電流値とその
時のMOSトランジスタのチャネル長を示したものであ
る。チャネル長が4−以上、あるいは1.2−以下のト
ランジスタ破壊xfLは大きくなり、逆に4趨以下1.
2−以上のトランジスタは小さい電流で永久破壊するこ
とが分かる。従って、出力バッファに使用するトランジ
スタのL長を4辱以上あるいは1.2−以下とするとノ
イズに強い出力バッファを得ることができる。
Figure 1 shows the current value when the drain is permanently destroyed when a current is injected into the drain part of an NMO3 transistor with an LDD structure manufactured using a known method for manufacturing a semiconductor device 1, and the channel length of the MOS transistor at that time. It is something that When the channel length is 4 or more or 1.2 or less, the transistor breakdown xfL increases; conversely, if the channel length is 4 or less, 1.
It can be seen that transistors with a value of 2 or more are permanently destroyed by a small current. Therefore, if the L length of the transistor used in the output buffer is set to 4 or more or 1.2 or less, an output buffer that is resistant to noise can be obtained.

以上のようにチャネル長の最適化により、不純物層の深
さや濃度、ドレイン部の面積を変えることなく、ノイズ
に強い出力バッファが得られた。
As described above, by optimizing the channel length, an output buffer that is resistant to noise was obtained without changing the depth or concentration of the impurity layer or the area of the drain part.

〔発明の効果〕〔Effect of the invention〕

本発明はPN接合アバランシェ降伏またはパンチスルー
によりノイズを逃がすことにより出力バッファの大きさ
を変えずに静電耐圧の強くする効果がある。
The present invention has the effect of increasing the electrostatic breakdown voltage without changing the size of the output buffer by releasing noise through PN junction avalanche breakdown or punch-through.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例であるMOSトランジスタのド
レインに電流を注入した時の永久破壊電流とチャネル長
である。 以上
FIG. 1 shows the permanent breakdown current and channel length when a current is injected into the drain of a MOS transistor according to an embodiment of the present invention. that's all

Claims (1)

【特許請求の範囲】[Claims] MOSトランジスタのソース・ドレイン間耐圧がチャネ
ル長を制御することによるPN接合のアバランシェ降伏
あるいはパンチスルーで決まっているMOSトランジス
タを使用していることを特徴とする出力バッファ回路。
An output buffer circuit characterized in that it uses a MOS transistor whose source-drain breakdown voltage is determined by avalanche breakdown or punch-through of a PN junction by controlling the channel length.
JP22966190A 1990-08-30 1990-08-30 Semiconductor device Pending JPH04111359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22966190A JPH04111359A (en) 1990-08-30 1990-08-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22966190A JPH04111359A (en) 1990-08-30 1990-08-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04111359A true JPH04111359A (en) 1992-04-13

Family

ID=16895699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22966190A Pending JPH04111359A (en) 1990-08-30 1990-08-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04111359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359313B1 (en) * 1998-05-18 2002-03-19 Samsung Electronics Co., Ltd. Electrostatic discharge protection transistor for a semiconductor chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359313B1 (en) * 1998-05-18 2002-03-19 Samsung Electronics Co., Ltd. Electrostatic discharge protection transistor for a semiconductor chip

Similar Documents

Publication Publication Date Title
US7554159B2 (en) Electrostatic discharge protection device and method of manufacturing the same
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US6882009B2 (en) Electrostatic discharge protection device and method of manufacturing the same
JPH11261069A (en) Improved cmos having usefulness of low cgd, improved doping profile and sidewall process/method of injection for non-sensitivity against chemical processing
US4924277A (en) MIS transistor device
US6552399B2 (en) Dummy layer diode structures for ESD protection
US6797555B1 (en) Direct implantation of fluorine into the channel region of a PMOS device
KR100674283B1 (en) Integrated circuit
US6169001B1 (en) CMOS device with deep current path for ESD protection
US20040014303A1 (en) Method of ion implantation for achieving desired dopant concentration
JPH04111359A (en) Semiconductor device
KR100366829B1 (en) Semiconductor device
JPH0230185A (en) Semiconductor device and manufacture thereof
JPH09116151A (en) Asymmetrical type transistor and its manufacture
US6809376B2 (en) Semiconductor integrated circuit device and manufacture method therefore
US8110468B2 (en) DMOS-transistor having improved dielectric strength of drain and source voltages
US7038272B2 (en) Method for forming a channel zone of a transistor and NMOS transistor
US6049112A (en) Reduced capacitance transistor with electro-static discharge protection structure and method for forming the same
US5847431A (en) Reduced capacitance transistor with electro-static discharge protection structure
KR100574357B1 (en) MOS transistor for suppressing bulk punchthrough
JP2507981B2 (en) Manufacturing method of complementary MIS transistor
JPH06196643A (en) Semiconductor device
JPS6154660A (en) Semiconductor integrated circuit device
JPH06283713A (en) Semiconductor device and its manufacture
JPS6246571A (en) Semiconductor device