JPH04110805A - Proton exchange optical waveguide and production thereof - Google Patents

Proton exchange optical waveguide and production thereof

Info

Publication number
JPH04110805A
JPH04110805A JP2228172A JP22817290A JPH04110805A JP H04110805 A JPH04110805 A JP H04110805A JP 2228172 A JP2228172 A JP 2228172A JP 22817290 A JP22817290 A JP 22817290A JP H04110805 A JPH04110805 A JP H04110805A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
substrate
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2228172A
Other languages
Japanese (ja)
Other versions
JP3086239B2 (en
Inventor
Akitomo Itou
顕知 伊藤
Kazutami Kawamoto
和民 川本
Yasuo Hiyoshi
日良 康夫
Hidemi Sato
秀己 佐藤
Takako Fukushima
福島 貴子
Masataka Shiba
正孝 芝
Akira Inagaki
晃 稲垣
Minoru Yoshida
実 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02228172A priority Critical patent/JP3086239B2/en
Publication of JPH04110805A publication Critical patent/JPH04110805A/en
Application granted granted Critical
Publication of JP3086239B2 publication Critical patent/JP3086239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical deflector having high efficiency by having the optical waveguide with which DELTAn0 and (a) satisfy inequality DELTAn0<=(0.015a+0.005) when the difference in refractive index (n) between a substrate and an optical waveguide layer is designated as DELTAn0 and the depth to make the DELTAn to 1/3 the DELTAn0 as (a). CONSTITUTION:The reason that the optical deflector has extremely high optical deflecting efficiency lies in that an electrooptical coefft. rijk and an optical elasticity coefft. Pijkl are recovered to the same level as the level of bulk LiNbO3 and the large value of DELTAB13 is obtainable. The heat treating conditions have a deep relation with the thickness T(mum) of the proton exchange layer before the heat treatment. Namely, the heat treating temp. needs be set at 375 to 400 deg.C and the heat treating time (t) needs be set at least at t>=2T<2> in order to satisfy the conditions n0>=0.035, DELTAn0<=(0.015a+0.005) and to make the refractive index distribution into an error function type. If, however, the (t) is set too long, the DELTAn0 falls below 0.035 and, therefore, the heat treatment is executed at t 2T<2> (hour) as far as possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導波型光学素子用の光導波路およびその製造
方法と、上記光導波路を用いた光偏向装置、光集積ヘッ
ドおよび光情報記録再生装置等の応用装置に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical waveguide for a waveguide type optical element, a method for manufacturing the same, an optical deflection device using the optical waveguide, an optical integrated head, and an optical information recording device. The present invention relates to applied devices such as playback devices.

〔従来の技術〕[Conventional technology]

光導波路を用いた電気光学素子や音響光学素子等が、従
来、光偏向器およびそれを用いた集積化光ヘッド(光集
積ヘッドともいう)、光変調器、光スィッチ、光スペク
トラムアナライザ等に用いられている。
Electro-optic devices, acousto-optic devices, etc. using optical waveguides have conventionally been used in optical deflectors, integrated optical heads (also called optical integrated heads), optical modulators, optical switches, optical spectrum analyzers, etc. It is being

上記光学素子を形成するための基板として、圧電性、光
弾性、電気光学効果にすぐれた材料として、ニオブ酸リ
チウム、タンタル酸リチウムもしくはこれら両者の混晶
系、これらを一般式で表すと一般式 LiNb□−yTayO3 ただし、○≦y≦1の単結
晶基板が広く用いられている。
As a substrate for forming the above optical element, lithium niobate, lithium tantalate, or a mixed crystal system of both of these materials is used as a material with excellent piezoelectricity, photoelasticity, and electro-optic effect. LiNb□-yTayO3 However, single crystal substrates with ◯≦y≦1 are widely used.

さらに最近は、光学損傷に強い基板として前記3者のい
ずれかにMgをトープした基板、すなわち一般式 %式%) 例えば光偏向器の場合は、従来、特開昭6015601
5公報に記載された第2図のように、光軸と垂直な方向
に弾性表面波(SAW)24を伝搬させ、導波光25を
光軸から左右に偏向させるものが主流であった。ところ
が、最近は第3図に示すように、アイ・イー・イー・イ
ーのインテグレーテッド・ガイデッド・ウェーブ・オプ
テイクスのプロシーディングペーパーTuAA4−1(
1989) (I EEE、 Integrated 
GuidedWave 0ptics paper  
TuAA4−1  (1989))の第138頁から第
141頁に記載されているように、弾性表面波を光軸3
3方向に伝搬させて導波光を基板31の方向に回折させ
るとともに、その射出角を弾性表面波励振用の電極34
へ印加する交流電圧の周波数により変化させる、新しい
方式のものが提案された。
Furthermore, recently, as a substrate resistant to optical damage, a substrate doped with Mg in one of the above three types, that is, a general formula (% formula %), has been developed.
As shown in FIG. 2 described in Publication No. 5, the mainstream was to propagate surface acoustic waves (SAW) 24 in a direction perpendicular to the optical axis and deflect guided light 25 from the optical axis to the left and right. However, recently, as shown in Figure 3, IEE's Integrated Guided Wave Optics Proceedings Paper TuAA4-1 (
1989) (IEEE, Integrated
GuidedWave 0ptics paper
TuAA4-1 (1989)), pages 138 to 141, surface acoustic waves are
The guided light is propagated in three directions and diffracted in the direction of the substrate 31, and the emission angle is adjusted by the surface acoustic wave excitation electrode 34.
A new method was proposed that changes the frequency of the AC voltage applied to the

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では基板としてY cutのLiNbO3
を用いており、さらに光導波路を、まずチタン(T1)
を高温で熱拡散させたのち、上記基板を安息香酸(C,
H5COOH)やピロリン酸(H,P2O7)等の弱酸
およびその弱酸のリチウム塩混合物中で低温熱処理し、
基板表面近傍のリチウムイオン(Li”)の一部を弱酸
中のプロトン(H+)と置換するプロトン交換法といわ
れる方法で作製している。上記方法では、 (1)Tiという遷移金属が注入されるため、光学損傷
のしきい値が低い。
In the above conventional technology, Y cut LiNbO3 is used as the substrate.
The optical waveguide is first made of titanium (T1).
After thermally diffusing the above substrate at high temperature, the substrate is treated with benzoic acid (C,
Low temperature heat treatment in a mixture of weak acids such as H5COOH) and pyrophosphoric acid (H, P2O7) and lithium salts of the weak acids,
It is fabricated using a method called the proton exchange method, in which a portion of the lithium ions (Li") near the substrate surface is replaced with protons (H+) in a weak acid. In the above method, (1) a transition metal called Ti is implanted. therefore, the threshold for optical damage is low.

(2)プロトン交換処理を行うため、LiNb○3結晶
固有の圧電効果、電気光学効果および音響光学効果が大
きく低下し、光偏向効率が小さい。
(2) Since the proton exchange treatment is performed, the piezoelectric effect, electro-optic effect, and acousto-optic effect inherent to the LiNb*3 crystal are greatly reduced, and the light deflection efficiency is low.

という問題点がある。このため、上記従来技術では光導
波路を第3図に示すようにチャネル化し、導波光と弾性
表面波との相互作用により効率を高める工夫がされてい
るが、チャネル幅40μmに対し導波路の厚さが数μm
と小さいため、射出光に大きな収差を生じ、光ヘッド等
の精密光学系には適用できないという問題があった。
There is a problem. For this reason, in the above-mentioned conventional technology, the optical waveguide is made into a channel as shown in Fig. 3, and an attempt is made to increase the efficiency through the interaction between the guided light and the surface acoustic wave. A few μm long
Because of its small size, large aberrations occur in the emitted light, which poses a problem that it cannot be applied to precision optical systems such as optical heads.

本発明は、電気光学効果、圧電効果、光弾性効果にすぐ
れた弾性表面波と導波光との相互作用が大きく改良され
た光導波路とその製造方法を得て、上記光導波路を用い
た光偏向装置や光集積ヘッドを開発し、さらに上記光集
積ヘッドを用いた光情報記録再生装置を得ることを目的
とする。
The present invention provides an optical waveguide with excellent electro-optic effects, piezoelectric effects, and photoelastic effects and greatly improved interaction between surface acoustic waves and guided light, and a method for manufacturing the same, and optical deflection using the optical waveguide. The purpose of the present invention is to develop a device and an optical integrated head, and further to obtain an optical information recording/reproducing device using the above-mentioned optical integrated head.

〔課題を解決するための手段〕[Means to solve the problem]

上記の電気光学効果、圧電効果、光弾性効果にすぐれた
弾性表面波と導波光との相互作用が大きく改良された光
導波路は、 (1)下記の一般式で表せるニオブ酸リチウム、タンタ
ル酸リチウム、もしくはこれら両者の混晶系 一般式 L x N b 1− y T a y O3
ただし、0≦y≦1ないし、これらにマグネシウムが添
加された一般式Ljxl’/igzNb+−,TayO
,、ただし0≦X、y、Z≦1からなる単結晶基板の表
層部に、基板内のリチウムイオンLi+の一部がプロト
ンH1とイオン交換して形成された基板より屈折率が高
い変性層を、光導波層として有するプロトン交換光導波
路において、上記基板の屈折率nSと光導波層の屈折率
n(7)差をΔn(=n  ns)とし、上記光導波層
の表面からの深さをxlとしたとき、上記光導波層の屈
折率nがその表面から深さx1方向に連続的に漸次減少
し、上記基板との界面において実質的にΔn=0を満足
する屈折率分布を有し、表面におけるΔn=Δnoが0
.035より大きく、かつΔnが上記波長においてΔn
sの1/3となる深さaが、不等式Δno≦0.015
a+0.005を満たすプロトン交換光導波路によって
達成される。また、 (2)上記光導波層における表面から深さ方向yのプロ
トンH+によるリチウムイオンLi+のイオン交換濃度
プロファイルが、誤差関数的に変化し、その表面から深
さy方向に上記イオン交換濃度が連続的に漸次減少した
濃度分布を有する上記(1)記載のプロトン交換光導波
路によって達成できる。
Optical waveguides with greatly improved interaction between surface acoustic waves and guided light with excellent electro-optical effects, piezoelectric effects, and photoelastic effects are: (1) Lithium niobate and lithium tantalate that can be expressed by the following general formula: , or the general formula of a mixed crystal system of both: L x N b 1- y T a y O3
However, 0≦y≦1 or the general formula Ljxl'/igzNb+-, TayO in which magnesium is added
,, However, on the surface layer of a single crystal substrate consisting of 0≦X, y, and Z≦1, a modified layer having a refractive index higher than that of the substrate is formed by ion-exchanging some of the lithium ions Li+ with protons H1 in the substrate. In a proton exchange optical waveguide having as an optical waveguide layer, the difference between the refractive index nS of the substrate and the refractive index n(7) of the optical waveguide layer is Δn (=n ns), and the depth from the surface of the optical waveguide layer is When xl is the refractive index n of the optical waveguide layer, the refractive index n of the optical waveguide layer continuously and gradually decreases from the surface in the depth x1 direction, and has a refractive index distribution that substantially satisfies Δn=0 at the interface with the substrate. and Δn=Δno at the surface is 0
.. 035 and Δn is larger than Δn at the above wavelength
The depth a, which is 1/3 of s, satisfies the inequality Δno≦0.015
This is achieved by a proton exchange optical waveguide that satisfies a+0.005. (2) The ion exchange concentration profile of lithium ions Li+ by protons H+ in the depth direction y from the surface of the optical waveguide layer changes in accordance with an error function, and the ion exchange concentration increases in the depth direction from the surface in the y direction. This can be achieved by using the proton exchange optical waveguide described in (1) above, which has a concentration distribution that gradually decreases continuously.

(3)上記変成層からなる光導波層の結晶格子定数d′
と上記単結晶基板の結晶格子定数dとの差Δd=d’−
dが、上記光導波層における表面から深さ方向yに誤差
関数的に変化し、表面から深さy方向に、上記Δdが連
続的に漸次減少した結晶格子定数分布を有する上記(1
)記載のプロトン交換光導波路によって達成される。
(3) Crystal lattice constant d' of the optical waveguide layer consisting of the above metamorphic layer
and the crystal lattice constant d of the above single crystal substrate Δd=d'−
The above (1
This is achieved by the proton exchange optical waveguide described in ).

また、上記光導波路の製造方法としては、(4)弱酸と
弱酸のリチウム塩との混合溶液中で、下記の一般式で表
せるニオブ酸リチウム、タンタル酸リチウム、もしくは
これら両者の混晶系 一般式 LiNb1−yTaxO3 ただし、○≦y≦
1ないし、これらにマグネシウムを添加した一般式L 
jx M g z N b y T a x −y○3
、(O≦x、y、z≦1)からなる単結晶基板を熱処理
して、その表層部のリチウムイオンLi+の一部をプロ
トンH1でイオン交換して、基板より屈折率が高い変性
層を光導波層として形成するプロトン交換光導波路の製
造方法において、上記弱酸として解離度10−3以下の
有機酸とその酸のリチウム塩との混合溶液を用いて加熱
処理し、上記単結晶基板表層部のリチウムイオンLi+
の一部をプロトンH+でイオン交換し、ついで、上記単
結晶基板を大気中あるいは酸素雰囲気中で、375℃〜
400℃で少なくともt≧2T2(時間)以上熱処理す
ることにより、上記イオン交換処理により基板中に注入
されたプロトンH+を上記基板中へ熱拡散して、上記基
板の屈折率nSと光導波層の屈折Inとの差をΔn (
= n−〇、)とし、上記光導波層の表面からの深さを
x1としたとき、上記光導波層の屈折率nがその表面か
ら深さx1方向に連続的に漸次減少し、上記基板との界
面において実質的にΔn=oを満足し、表面におけるΔ
n=Δnoが0.035より大きく、かつ、ΔBがΔn
oの1/3となる深さy。が3μm以上であるプロトン
交換光導波路の製造方法によって達成される。なお、上
記弱酸としては解離度10−5以下の有機酸がより好ま
しい。
In addition, as a method for manufacturing the optical waveguide, (4) in a mixed solution of a weak acid and a lithium salt of a weak acid, lithium niobate, lithium tantalate, or a mixed crystal system of both, which can be expressed by the following general formula; LiNb1-yTaxO3 However, ○≦y≦
1 or general formula L in which magnesium is added to these
jx M g z N b y T a x -y○3
, (O≦x, y, z≦1) is heat-treated, and a portion of the lithium ions Li+ in the surface layer is ion-exchanged with protons H1 to form a modified layer with a higher refractive index than the substrate. In the method for manufacturing a proton exchange optical waveguide formed as an optical waveguide layer, the surface layer portion of the single crystal substrate is heat-treated using a mixed solution of an organic acid having a degree of dissociation of 10-3 or less and a lithium salt of the acid as the weak acid. Lithium ion Li+
A part of the is ion-exchanged with proton H+, and then the single crystal substrate is heated at 375°C in air or oxygen atmosphere.
By performing heat treatment at 400° C. for at least t≧2T2 (hours), the protons H+ injected into the substrate by the ion exchange treatment are thermally diffused into the substrate, thereby increasing the refractive index nS of the substrate and the optical waveguide layer. The difference from the refraction In is Δn (
= n−〇,), and when the depth from the surface of the optical waveguide layer is x1, the refractive index n of the optical waveguide layer gradually decreases continuously from the surface in the depth x1 direction, and the substrate substantially satisfies Δn=o at the interface with
n=Δno is greater than 0.035 and ΔB is Δn
The depth y is 1/3 of o. This is achieved by a method for manufacturing a proton exchange optical waveguide in which the diameter is 3 μm or more. In addition, as the weak acid, an organic acid having a degree of dissociation of 10-5 or less is more preferable.

さらにまた、上記光導波路を用いた光偏向装置は、 (5)光学基板上に光導波路が形成された上記(1)か
ら(3)までのいずれかに記載した光導波路と、上記光
導波路の外部から光導波路内へ光を結合する手段と、上
記光導波路内を伝搬する導波光を基板外へ射出させ、か
つ、上記射出光が基板表面となす角を変化させる機能を
もつ弾性表面波を励振する電極とからなる光偏向器によ
って達成される。また、(6)上記光導波路内に光を結
合する手段と、上記光導波路から伝搬する導波光を基板
外へ射出させ、かつ、射出光が基板表面となす角を変化
させる機能をもつ弾性表面波を励振する電極とからなる
、上記(5)記載の光偏向装置によって達成される。
Furthermore, an optical deflection device using the above optical waveguide includes: (5) the optical waveguide described in any one of (1) to (3) above, in which the optical waveguide is formed on an optical substrate; A means for coupling light from the outside into the optical waveguide, and a surface acoustic wave having a function of emitting the guided light propagating within the optical waveguide to the outside of the substrate and changing the angle that the emitted light makes with the surface of the substrate. This is achieved by an optical deflector consisting of an exciting electrode. (6) a means for coupling light into the optical waveguide, and an elastic surface having a function of emitting the guided light propagating from the optical waveguide to the outside of the substrate and changing the angle that the emitted light makes with the substrate surface. This is achieved by the optical deflection device described in (5) above, which comprises an electrode that excites waves.

上記光導波路を用いた光集積ヘッドは、(7)レーザ光
源と、このレーザビームを光学基板上に設けた光導波路
に導いた導波光を、さらに光導波路外部空間に配置した
光記録媒体の記録、再生面上に集光し、上記記録、再生
面がらの反射光を受光、検出する手段とを備えた光ヘッ
ドであって、上記光学基板上に光導波路が形成された上
記(1)ないしく3)のいずれかに記載した光導波路と
、レーザビームの波長変動によるレーザビームの光導波
路に対する結合効率の低下を防止する第1の回折格子と
、レーザビームを上記光導波路に結合するクレーティン
グカップラと、上記光導波路上に設けられ、光導波路内
を伝搬する導波光を基板外に射出させ、かつ、射出光が
基板表面となす角を変化させる機能をもつ弾性表面波を
励振させる電極と、上記射出光の対比方向のレーザ波長
変動に伴う変化を防止する第2の回折格子と、上記射出
光を導波路外部の一点に集束させるレンズ手段を有する
ことにより達成され、 (8)上記記録媒体からの反射光を受光、検出する光素
子を構成する集光ビームスプリッタとして、不等間隔曲
線形状の回折格子を、上記光導波路上のグレーティング
カップラと弾性表面波励振用の電極との間に配設した、
上記(8)記載の光集積ヘッドによって達成され、また
、 (9)レーザ光源と、このレーザビームを光学基板上の
光導波路に導いた導波光を、さらに光導波路外部空間に
配置した光記録媒体の記録、再生面上に集光し、上記記
録、再生面からの反射光を受光、検出する手段とを備え
た光ヘッドであって、上記光学基板上に光導波路が形成
された上記(1)ないしく4)のいずれかに記載した光
導波路と、レーザビームの波長変動によるレーザビーム
の光導波路に対する結合効率の低下を防止する第1の回
折格子と、レーザビームを上記光導波路に結合する第1
のグレーティングカップラと、上記光導波路上に設けら
れ、上記導波光を光導波層の外部に射出させるとともに
、基板表面と上記射出光とがなす角を変化させる弾性表
面波励振用の電極と、同じく上記光導波路上の第1グレ
ーテイングカツプラと弾性表面波励振用の電極との間に
設けられた、トラッキング誤差検出用の平面回折格子と
、上記光導波層が形成されている面と反対側の基板上に
、対向する上記第1のグレーティングカップラと弾性表
面波励振用の電極との間に設けられた、不等間隔曲線形
状の回折格子からなる集光ビームスプリッタと、上記射
出光の射出方向のレーザ波長の変動に伴う変化を防止し
、かつ、上記射出光を反射する反射形の第2の回折格子
と、該第2の回折格子からの反射光を、上記光記録媒体
の記録、再生面上へ集束させるレンズ手段を備え、上記
レンズ手段により集束された反射光を、上記光記録媒体
の記録、再生面に照射し、その反射信号光を上記レンズ
手段を通して第2の回折格子で反射させて基板内に入射
させ、これを上記光導波層側の基板面で全反射させて、
上記集光ビームスプリッタに入射させ2分割して集光し
、集光された上記反射信号光を受光素子で検出すること
により達成される。さらに、 (10)上記反射形の第2の回折格子と、該第2の回折
格子からの反射光を上記光記録媒体の記録、再生面上へ
集束させるレンズ手段とからなる光学系を、上記光導波
層が形成された基板側本体と光学的に結合しながら分離
独立させ、アクチュエータに搭載し、ヘッドの可動部と
した、上記(9)記載の光集積ヘッドにより達成される
The optical integrated head using the above-mentioned optical waveguide includes (7) a laser light source, a guided light that guides the laser beam to an optical waveguide provided on an optical substrate, and recording of an optical recording medium in which the guided light is further arranged in a space outside the optical waveguide. , an optical head comprising means for condensing light onto a reproducing surface and receiving and detecting light reflected from the recording and reproducing surface, wherein an optical waveguide is formed on the optical substrate; The optical waveguide according to any one of item 3), a first diffraction grating that prevents a reduction in coupling efficiency of the laser beam to the optical waveguide due to wavelength fluctuation of the laser beam, and a crating that couples the laser beam to the optical waveguide. a coupler, and an electrode that is provided on the optical waveguide and excites a surface acoustic wave that has the function of emitting guided light propagating within the optical waveguide to the outside of the substrate and changing the angle that the emitted light makes with the substrate surface. , is achieved by having a second diffraction grating that prevents a change in the contrasting direction of the emitted light due to a laser wavelength fluctuation, and a lens means that focuses the emitted light to a point outside the waveguide, (8) the above recording. As a condensing beam splitter that constitutes an optical element that receives and detects reflected light from a medium, a diffraction grating with an irregularly spaced curved shape is installed between the grating coupler on the optical waveguide and the surface acoustic wave excitation electrode. arranged,
This is achieved by the optical integrated head described in (8) above, and (9) an optical recording medium comprising a laser light source, a guided light beam guided from the laser beam to an optical waveguide on an optical substrate, and further arranged in a space outside the optical waveguide. An optical head comprising a means for condensing light onto a recording/reproducing surface and receiving and detecting reflected light from the recording/reproducing surface, the optical head having an optical waveguide formed on the optical substrate (1). ) or 4), a first diffraction grating that prevents a reduction in coupling efficiency of the laser beam to the optical waveguide due to wavelength fluctuation of the laser beam, and a laser beam coupled to the optical waveguide. 1st
a grating coupler, and an electrode for surface acoustic wave excitation provided on the optical waveguide to emit the guided light to the outside of the optical waveguide layer and to change the angle between the substrate surface and the emitted light; A plane diffraction grating for tracking error detection, provided between the first grating coupler on the optical waveguide and the electrode for surface acoustic wave excitation, and a side opposite to the surface on which the optical waveguide layer is formed. a condensing beam splitter comprising a diffraction grating having an unevenly spaced curved shape, provided on the substrate between the first grating coupler and the surface acoustic wave excitation electrode facing each other; a reflective second diffraction grating that prevents changes due to fluctuations in the laser wavelength in the direction and reflects the emitted light, and records the reflected light from the second diffraction grating on the optical recording medium; A lens means for focusing onto a reproduction surface is provided, the reflected light focused by the lens means is irradiated onto the recording/reproduction surface of the optical recording medium, and the reflected signal light is transmitted through the lens means to a second diffraction grating. It is reflected and incident on the substrate, and is totally reflected on the substrate surface on the optical waveguide layer side.
This is achieved by making the light incident on the focused beam splitter and focusing the light into two parts, and detecting the focused reflected signal light with a light receiving element. Furthermore, (10) an optical system comprising the reflective second diffraction grating and a lens means for focusing the reflected light from the second diffraction grating onto the recording/reproducing surface of the optical recording medium; This is achieved by the optical integrated head described in (9) above, which is optically coupled to the main body on the substrate side on which the optical waveguide layer is formed, separated and independently mounted, and mounted on an actuator to serve as a movable part of the head.

上記光集積ヘッドを用いた光情報記録再生装置は、 (11)光記録媒体を回転駆動する回転駆動制御手段と
、上記回転する光記録媒体面と所定間隔をおいて上記光
記録媒体の半径方向に走査駆動することにより、光情報
の記録、再生を行う光ヘッドおよび光ヘッドを搭載し走
査駆動するアクチュエータとを備えた光情報記録再生装
置において、上記アクチュエータに搭載される光ヘッド
を、上記(7)ないしく10)のいずれかに記載した光
集積ヘッドで構成した光情報記録再生装置によって達成
される。
The optical information recording/reproducing apparatus using the optical integrated head includes: (11) a rotational drive control means for rotationally driving an optical recording medium; In an optical information recording and reproducing apparatus, the optical head mounted on the actuator is equipped with an optical head that records and reproduces optical information by scanning and driving the optical head, and an actuator that carries the optical head and drives the optical head in a scanning manner. This is achieved by an optical information recording/reproducing device configured with the optical integrated head described in any one of 7) to 10).

〔作用〕[Effect]

本発明はつぎに示すような作用で、電気光学効果、光弾
性効果、圧電効果にすぐれ、弾性表面波と導波光の相互
作用が大きい光導波路ならびに光偏向器を得ることが可
能になる。
The present invention has the following effects, making it possible to obtain an optical waveguide and an optical deflector that have excellent electro-optic effects, photoelastic effects, and piezoelectric effects, and have a large interaction between surface acoustic waves and guided light.

以下、結晶基板としてはLiNbO3を代表例として説
明する。
Hereinafter, LiNbO3 will be explained as a representative example of the crystal substrate.

L コ−N b○3は三方晶系の一軸性結晶であり、そ
の異方軸を2軸とし、六方晶表示で(211○)方向を
y軸、y軸とy軸に垂直で右手系を構成するようにy軸
をとる。今後、テンソル表示が便利と考え、y軸をX、
軸、y@をX2軸、y軸をX3軸と書く。この直交座標
系に対し、誘電率テンソルは対角成分だけゼロでなく、 と書くことができる。(ただしε□□=ε2□)。誘電
率テンソルの逆テンソルを CB]= (E〕−”            (2)
と定義すると、上記の座標系に対し となる。
L co-N b○3 is a trigonal uniaxial crystal, with its anisotropic axis as two axes, and the (211○) direction in hexagonal crystal display as the y-axis, and the y-axis and the right-handed system perpendicular to the y-axis. The y-axis is taken so as to compose the . In the future, I think that tensor display will be convenient, and I will change the y-axis to
The axes, y@, are written as the X2 axis and the y axis as the X3 axis. For this orthogonal coordinate system, the dielectric constant tensor is not only zero in its diagonal components, but can be written as . (However, ε□□=ε2□). The inverse tensor of the permittivity tensor is CB] = (E]-” (2)
When defined, it becomes for the above coordinate system.

LiNbO3に歪み〔S〕や静電場ECが加わるとテン
ソルCB)に変化が生じる。これを〔ΔB〕と書くと、
光弾性効果は ΔB ij”  Σ P :Jkqskg      
    (4)1g タタシ、PijkQは光弾性テンソル、uQは媒質ノ変
位と書け、電気光学効果は ΔB i j ”Σr;JbE:        (6
)ただし、rijkは電気光学テンソルと書ける。この
両者が存在する場合には △B ij”ΣP i jkQ S kQ+Σr;Jk
E:   (7)k 見              
  秘となる。
When a strain [S] or an electrostatic field EC is applied to LiNbO3, a change occurs in the tensor CB). If we write this as [ΔB],
The photoelastic effect is ΔB ij” Σ P : Jkqskg
(4) 1 g, PijkQ is the photoelastic tensor, uQ is the displacement of the medium, and the electro-optic effect is ΔB i j ”Σr; JbE: (6
) However, rijk can be written as an electro-optic tensor. If both of these exist, △B ij”ΣP i jkQ S kQ+Σr; Jk
E: (7)k look
Become a secret.

さて、LiNb0.基板に例えば交差型電極(I nt
er −Digital Transducer : 
I D Tと以下略称する)を用いて弾性表面波(SA
W)を発生させ、その表面を伝搬させた場合を考える。
Now, LiNb0. For example, a crossed electrode (I nt
er-Digital Transducer:
Surface acoustic waves (SA
Consider the case where W) is generated and propagated on its surface.

弾性表面波は歪みが波となって基板表面を伝搬するもの
であるから、歪み〔S〕を伴う。また、歪み〔S〕によ
り電圧場E。が発生する。したがって、SAWにより(
7)式で示されるΔB ijが誘起される。
Since surface acoustic waves propagate on the substrate surface in the form of distortion, they are accompanied by distortion [S]. Also, the voltage field E due to the strain [S]. occurs. Therefore, by SAW (
7) ΔB ij expressed by the formula is induced.

特に第4図に示すようにX1軸に垂直に切断した基板1
(Xcut基板)を用いる場合を考える。
In particular, the substrate 1 cut perpendicularly to the X1 axis as shown in FIG.
(Xcut board) is used.

IDT2はX2軸と垂直な方向に配置され、SAWは−
x2方向に伝搬する。光導波路4にTE波(X3軸方向
に偏向した光波)を導波させる。伝搬するSAWにより
テンソル〔ΔB〕の非対角成分が生しる。これを具体的
に書き下すと次式になる。
IDT2 is placed in the direction perpendicular to the X2 axis, and the SAW is -
Propagates in the x2 direction. A TE wave (a light wave polarized in the X3 axis direction) is guided through the optical waveguide 4. The propagating SAW produces off-diagonal components of the tensor [ΔB]. If we write this down concretely, it becomes the following formula.

ΔB1.=2P工313S13+2P□312S工2+
2r0.、E丁        (8)このような〔Δ
B〕の非対角成分が生しると、上記TE波とこれに垂直
な方向(x1軸方向)に偏光したTM波との間に、モー
ト結合が生しる。
ΔB1. =2P work 313S13+2P□312S work 2+
2r0. , E-cho (8) Such [Δ
When the off-diagonal component of [B] occurs, mote coupling occurs between the TE wave and the TM wave polarized in the direction perpendicular to the TE wave (x1 axis direction).

特にTM波が放射モードとなるように屈折率が調整され
ている場合は、基板外に光を取り出すことができる。射
出光の出射角度θはSAWの波長へで決まる。すなわち
、 ん N:導波TEモードの実効屈折率、m:整数、no: 
LiNb○、の常屈折率である。
In particular, when the refractive index is adjusted so that the TM wave is in the radiation mode, light can be extracted outside the substrate. The emission angle θ of the emitted light is determined by the wavelength of the SAW. That is, N: effective refractive index of guided TE mode, m: integer, no:
It is the ordinary refractive index of LiNb○.

SAWの波長はIDT’に印加する高周波電圧の周波数
により変化できるため、高周波電圧の周波数によって射
出角θ、すなわち光の方向が制御でき、光偏向器として
動作する。上記光偏向器の効率ηは近似的に次式で表さ
れる。
Since the wavelength of the SAW can be changed by the frequency of the high-frequency voltage applied to the IDT', the emission angle θ, that is, the direction of the light, can be controlled depending on the frequency of the high-frequency voltage, and the SAW operates as an optical deflector. The efficiency η of the optical deflector is approximately expressed by the following equation.

η=1−e−”L(10) ここで、LはSAWの伝搬長であり、αは放射損失係数
と呼ばれる定数であり、次式で表される。
η=1−e−”L(10) Here, L is the propagation length of the SAW, and α is a constant called a radiation loss coefficient, which is expressed by the following equation.

ここで、ne:LiNbO2の異常屈折率、ω:光の角
周波数、P二導波光パワー、El(xl): TM放射
モードの電場分布、E3(x工): TE放射モートの
電場分布である。上記(10)、 (11)、 (12
)式より明らかなように、大きなηを得るためにはα、
すなわちCを大きくする必要がある。大きなCを得るた
めには、(12)式より(12)式の積分(以下、これ
を重なり積分と呼ぶ)の値を大きくする必要がある。そ
のためには (T  E□(x+)+ Ei(xx)の重なりを大き
くすること (^ 大きなΔB ijの値 が必要である。
Here, ne: extraordinary refractive index of LiNbO2, ω: angular frequency of light, P2 waveguide optical power, El(xl): electric field distribution of TM radiation mode, E3(x): electric field distribution of TE radiation mode. . (10), (11), (12) above
) As is clear from the formula, in order to obtain a large η, α,
That is, it is necessary to increase C. In order to obtain a large C, it is necessary to make the value of the integral of equation (12) larger than that of equation (12) (hereinafter referred to as overlap integral). To achieve this, it is necessary to increase the overlap of (TE□(x+)+Ei(xx)) (^) and a large value of ΔB ij.

■を実現するためには導波路構造の最適化を行う必要が
ある。例えば小野前らの文献(電子通信学会論文誌、V
oQ、、 J 64−C,N014゜pp288〜29
4.(1981))によれば、大きなαを得るためには
、異方性の物質(常屈折率n[11と異常屈折率ne1
をもつ)基板上に、やはり異方性物質(常屈折率n。2
と異常屈折率ne2をもつ)薄膜が形成された光導波路
において、noよとnelおよびn。2とne2の大小
関係がそれぞれ反対であればよいということが知られて
いる。例えばno工)nelならばn。2くn。2であ
って、かつ、光導波路構造となるためには、nO1< 
n [12またはn el< n e2が満たされねば
ならない。これは、上記のような光導波路構造において
は、電場E3(x□)とE工(Xl)との重なりを大き
くできるからである。
In order to achieve (2), it is necessary to optimize the waveguide structure. For example, the literature by Onomae et al. (Transactions of the Institute of Electronics and Communication Engineers, V
oQ,, J 64-C, N014゜pp288-29
4. (1981)), in order to obtain a large α, an anisotropic material (ordinary refractive index n[11 and extraordinary refractive index ne1
Also, an anisotropic material (having an ordinary refractive index n.2
In an optical waveguide formed with a thin film (having an extraordinary refractive index ne2), no yo, nel and n. It is known that it is sufficient that the magnitude relationship between 2 and ne2 is opposite to each other. For example, if it is nel, then n. 2kn. 2, and in order to form an optical waveguide structure, nO1<
n [12 or n el < n e2 must be satisfied. This is because in the optical waveguide structure as described above, the overlap between the electric field E3 (x□) and the electric field E (Xl) can be increased.

最近、プロトン交換法を用いて作製した光導波路では、
LiNbO3基板とプロトン交換層のn。とnoの分散
関係が反対であることが発見された。
Recently, optical waveguides fabricated using proton exchange method,
n of LiNbO3 substrate and proton exchange layer. It was discovered that the dispersion relationships of and no are opposite.

プロトン交換LiNb○、光導波路は、きわめて容易に
、かつ安価に光導波路が作製できるため、前記アイ・イ
ー・イー・イーに記されたHjnkovの文献に示され
る第3図のような光偏向器が作製可能になったのである
Since proton-exchanged LiNb○ optical waveguides can be produced very easily and at low cost, optical deflectors such as the one shown in Figure 3 shown in the literature by Hjnkov described in the above-mentioned I.E. has become possible to produce.

しかし、LiNbO2にプロトン交換を行うと、光弾性
係数Pi、jkQや電気光学係数rijkがきわめてl
」\さくなることが知られている。例えば、胡らの文献
(電子情報通信学会技術報告○QE86−119 、 
pp、15−22)によれば、r333はプロトン交換
後交換前の約1/15になるとされている。このため、
上記条件■が満足されてもΔB13が小さくなるため、
条件■が満足されないという問題があった。
However, when proton exchange is performed on LiNbO2, the photoelastic coefficients Pi, jkQ and the electro-optic coefficient rijk become extremely low.
”\It is known that the temperature decreases. For example, the literature by Hu et al. (IEICE technical report ○QE86-119,
pp. 15-22), it is said that r333 becomes about 1/15 of the value before proton exchange after proton exchange. For this reason,
Even if the above condition (■) is satisfied, ΔB13 becomes small, so
There was a problem that condition (■) was not satisfied.

本発明では従来第5図(a)に示すようであった屈折率
分布を第5図(b)のようにすることにより、電気光学
係数rijkおよび光弾性係数P;Jkiの低下を抑止
して、条件(茎を満足させるとともに、波長λ=633
nmの光に対する表面の異常屈折率へ〇の変化電入no
を0.035より大きく、かつ、ΔnがΔnoの1/3
になる深さaを所定の不等式を満たすようにすることに
より、■の条件も満足させることを可能にした。
In the present invention, by changing the refractive index distribution, which was conventionally shown in FIG. 5(a), to the one shown in FIG. 5(b), a decrease in the electro-optic coefficient rijk and the photoelastic coefficient P; Jki can be suppressed. , conditions (stalks are satisfied and the wavelength λ=633
〇 change in the extraordinary refractive index of the surface for nm light
is larger than 0.035, and Δn is 1/3 of Δno
By making the depth a satisfy a predetermined inequality, it is also possible to satisfy the condition (2).

第6図にΔnoの値をパラメータにしたaとで定義され
る■。veyQapの値の関係を示した。第6図より、
Δnsが大きい程、あるいはaが小さい程■。verQ
apの値が大きいことが判る。しかし、aを小さくしす
ぎるとΔB13の値が急速に低下するため、(12)式
のCの値が小さくなる。バルク値に近いΔB、3を得る
ためには、第6図の破線の右下の部分にaとΔnoの値
が入るように光導波路を作製する必要がある。従って、
大きな工。verQapと大きなΔBよ、の値を得るた
めには、ΔnoとaがΔno≧0.035かつ Δno≦0.015 a+0.005を満足するように
光導波路を作製すれば、大きな光偏向効率ηをもつ光偏
向器を構成することができる。
In FIG. 6, the value of Δno is defined as a and the value of Δno is a parameter. The relationship between the values of veyQap is shown. From Figure 6,
The larger Δns or the smaller a, ■. verQ
It can be seen that the value of ap is large. However, if a is made too small, the value of ΔB13 will drop rapidly, and therefore the value of C in equation (12) will become small. In order to obtain ΔB, 3 close to the bulk value, it is necessary to fabricate the optical waveguide so that the values of a and Δno fall in the lower right portion of the broken line in FIG. Therefore,
big craft. In order to obtain the values of verQap and large ΔB, if the optical waveguide is manufactured so that Δno and a satisfy Δno≧0.035 and Δno≦0.015 a+0.005, a large optical deflection efficiency η can be obtained. It is possible to construct an optical deflector with

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による光偏向器の一実施例を示す斜視図
、第2図は従来のB ragg型光偏向器の斜視図、第
3図は従来のコリニア型光偏向器の斜視図、第4図は光
偏向器の原理を説明する図で、(a)は平面図、(b)
は断面図、第5図は光導波路屈折率分布を示す図で、(
a)は従来のものを示す図、(b)は本発明によるもの
を示す図、第6図は拡散深さa、表面屈折率変化量Δn
oと重なり積分工。verQう、の関係を示す図、第7
図は光導波路の屈折率分布を示す図で、(a)は熱処理
前を示す図、(b)は熱処理後を示す図、第8図は第1
図に示す光偏向器を搭載した光集積ヘッドの構成を示す
図、第9図は上記光集積ヘッドの製造プロセス工程図、
第10図は上記光集積ヘッドに塔載する収差補正用回折
格子の製造プロセス工程図、第11図は上記第8図に示
す光集積ヘッドを搭載した光情報・記憶再生装置の構成
図である。
FIG. 1 is a perspective view showing an embodiment of the optical deflector according to the present invention, FIG. 2 is a perspective view of a conventional Bragg type optical deflector, and FIG. 3 is a perspective view of a conventional collinear type optical deflector. Figure 4 is a diagram explaining the principle of the optical deflector, (a) is a plan view, (b)
is a cross-sectional view, and Figure 5 is a diagram showing the refractive index distribution of the optical waveguide.
a) is a diagram showing the conventional one, (b) is a diagram showing the one according to the present invention, and FIG. 6 is a diagram showing the diffusion depth a and the surface refractive index change Δn.
Overlapping integral with o. Diagram showing the relationship between verQu, 7th
The figures show the refractive index distribution of the optical waveguide. (a) is the diagram before heat treatment, (b) is the diagram after heat treatment, and FIG.
A diagram showing the configuration of an optical integrated head equipped with the optical deflector shown in the figure, FIG. 9 is a manufacturing process diagram of the optical integrated head,
FIG. 10 is a manufacturing process diagram of the aberration correction diffraction grating mounted on the optical integration head, and FIG. 11 is a configuration diagram of an optical information/storage/reproduction device equipped with the optical integration head shown in FIG. 8. .

第1実施例 第1図は本発明に基づき製造した光導波路上に作製され
た弾性表面波(SAW)を用いた光偏向器の一構成例を
示すものである。第1図において、1はX cut L
iNbO3単結晶基板、2はプロトン交換光導波層、3
は導波光、4はSAW、5はSAW励振用IDT、6は
射出光、7はSAW励振用の高周波電源、8は集光レン
ズ、9は光の偏向走査方向、10は弾性表面波の吸収材
を表す。
First Embodiment FIG. 1 shows an example of the configuration of an optical deflector using surface acoustic waves (SAW) manufactured on an optical waveguide according to the present invention. In Figure 1, 1 is X cut L
iNbO3 single crystal substrate, 2 is a proton exchange optical waveguide layer, 3
is guided light, 4 is SAW, 5 is IDT for SAW excitation, 6 is emission light, 7 is high frequency power supply for SAW excitation, 8 is condenser lens, 9 is polarization scanning direction of light, 10 is surface acoustic wave absorption Represents material.

つぎに光導波層2の構成ならびにその製造方法を記載す
るが、製造方法についてはプロトン交換法による第1の
製造段階と、その後の熱処理を含む第2の製造段階とに
分けて説明する。
Next, the structure of the optical waveguide layer 2 and its manufacturing method will be described, and the manufacturing method will be explained separately into a first manufacturing step using a proton exchange method and a second manufacturing step including a subsequent heat treatment.

(1)プロトン交換法による第1の製造段階:まず、L
iNb○3単結晶のX軸に直交してカットした、いわゆ
るx cutのLiNb○、ウェーハを準備し、その−
面を使用レーザ光波長λの1/10程度まで研磨し基板
とする。なお、上記結晶基板の遷移金属不純物濃度はで
きるかぎり小さいことが望ましい。現在市販されている
高純度のLiNb01基板ではFeの濃度が0.O5p
pm程度であり、この高純度LiNbO3基板を用いれ
ば、光学損傷のしきい値が約1桁上がることを確認して
いる。上記基板1を光学研磨後、トリクロロエチレン、
イソプロピルアルコール、エタノール、純水中で超音波
洗浄を行い、ついで窒素ブローして乾燥させた。
(1) First production step by proton exchange method: First, L
A so-called x-cut LiNb○ wafer, which is cut perpendicular to the X-axis of the iNb○3 single crystal, is prepared, and its −
The surface is polished to about 1/10 of the wavelength λ of the laser beam used, and used as a substrate. Note that it is desirable that the transition metal impurity concentration of the crystal substrate be as low as possible. Currently commercially available high-purity LiNb01 substrates have an Fe concentration of 0. O5p
pm, and it has been confirmed that the use of this high-purity LiNbO3 substrate increases the optical damage threshold by about one order of magnitude. After optically polishing the substrate 1, trichlorethylene,
Ultrasonic cleaning was performed in isopropyl alcohol, ethanol, and pure water, followed by nitrogen blowing and drying.

つぎに、上記基板1に対し、つぎに記すようなプロトン
交換処理を行った。プロトン交換処理は、石英製の容器
内に入れて行った。プロトン交換源の弱酸としては、安
息香酸をはじめとするカルボン酸と、ピロリン酸等のリ
ン酸がある。本実施例においては、解離定数6X10−
5の安息香酸と安息香酸リチウムとの混合物を用いた。
Next, the substrate 1 was subjected to proton exchange treatment as described below. The proton exchange treatment was carried out in a quartz container. Weak acids as proton exchange sources include carboxylic acids such as benzoic acid and phosphoric acids such as pyrophosphoric acid. In this example, the dissociation constant is 6×10−
A mixture of benzoic acid and lithium benzoate in No. 5 was used.

なお、上記混合率Mは次式で定義され、本実施例ではM
=1とした。
The mixing ratio M is defined by the following formula, and in this example, M
= 1.

つまり、石英容器中へ前記基板とともに安息香酸リチウ
ムを1.92 g、安息香酸を181.35gいれて十
分混合し、235℃で15分間熱処理した。上記熱処理
後、石英容器中から取出した基板をエタノールおよび純
水で超音波洗浄した。このようにしてLiNb○、基板
1の表面層にプロトン交換法による厚さ0.9μmの光
導波路2を形成した。このようにして得られた光導波路
の光学特性を調へるため、ルチルプリズムで波長λ=6
33nmのHe−Neレーザ光を光導波路2内のy軸方
向へ伝搬させたところ、上記光導波路にはTEo、TE
lの2つのモードが励振され、導波光の実効屈折率はそ
れぞれ2.2886および2.2251であった。また
、光伝搬損失を通常の2プリズム法で調べた結果、TE
oモードのそれは3dB/cmであり、同じ波長のレー
ザ光による光学損傷のしきい値は約750W/cm2で
あった。
That is, 1.92 g of lithium benzoate and 181.35 g of benzoic acid were placed together with the substrate into a quartz container, thoroughly mixed, and heat treated at 235° C. for 15 minutes. After the heat treatment, the substrate taken out from the quartz container was ultrasonically cleaned with ethanol and pure water. In this way, an optical waveguide 2 with a thickness of 0.9 μm was formed on the surface layer of the LiNb◯ substrate 1 by the proton exchange method. In order to adjust the optical characteristics of the optical waveguide obtained in this way, we used a rutile prism to
When a 33 nm He-Ne laser beam was propagated in the y-axis direction within the optical waveguide 2, TEo, TE
Two modes of l were excited, and the effective refractive index of the guided light was 2.2886 and 2.2251, respectively. In addition, as a result of investigating the optical propagation loss using the usual two-prism method, we found that TE
The o-mode was 3 dB/cm, and the threshold for optical damage caused by laser light of the same wavelength was about 750 W/cm2.

また、光導波路に注入されたプロトンの濃度プロファイ
ルを調べるためS I M S (S econdar
yIon Mass S pectroscopy)に
よって分析を行った結果、深さ0.9μmの付近でプロ
トン濃度がステップ型に変化していることが判った。し
たかって、この段階での光導波路の屈折率分布を周知の
逆WKB法によって推定すると、第7図(a、)に示す
ようになり、注入プロトンの濃度プロファイルと屈折率
のプロファイルはよい一致を示す。
In addition, in order to investigate the concentration profile of protons injected into the optical waveguide, we used SIMS (Secondar
As a result of analysis using yIon Mass Spectroscopy, it was found that the proton concentration changed in a step-like manner around a depth of 0.9 μm. Therefore, if the refractive index distribution of the optical waveguide at this stage is estimated by the well-known inverse WKB method, it will be as shown in Figure 7(a), and the concentration profile of the injected protons and the refractive index profile are in good agreement. show.

つぎに、上記プロトン交換処理を施して基板表層部に形
成した光導波路2上に、弾性表面波励振用のIDT5を
形成し、光偏向器を作製するとともにその評価を行った
。なお、本実施例のx cutLiNb○3のx2軸方
向(導波光の進行方向)の弾性表面波速度は3696 
m /secであり、IDT5のピッチA=16.8μ
mである。また、IDTの幅は4.3111mであり、
SAWの伝搬長は20mmである。このとき、中心周波
数はf。=220M Hzであり、回折次数mは+1次
を利用し、出射角θは6度、偏向角は空気中で4.5m
radである。
Next, an IDT 5 for surface acoustic wave excitation was formed on the optical waveguide 2 formed on the surface layer of the substrate by performing the above proton exchange treatment, and an optical deflector was manufactured and evaluated. Note that the surface acoustic wave velocity in the x2 axis direction (progressing direction of the guided light) of x cutLiNb○3 in this example is 3696.
m/sec, and the pitch A of IDT5 = 16.8μ
It is m. In addition, the width of IDT is 4.3111m,
The propagation length of the SAW is 20 mm. At this time, the center frequency is f. = 220 MHz, the diffraction order m uses the +1st order, the output angle θ is 6 degrees, and the deflection angle is 4.5 m in air.
It is rad.

得られた光偏向器の電気−音響変換特性を調へるため、
ネットワークアナライザを用いて放射コンダクタンスを
測定し、実効的な電気機械結合係数Kを測定し、プロト
ン交換処理を行わないバルク基板上に作製したものと比
較した。測定の結果、実効的なKの値は、本実施例のプ
ロトン交換光導波路に作製した弾性表面波励振用電極の
場合、比較例のバルク基板上に作製したものの約20%
であった。
In order to investigate the electro-acoustic conversion characteristics of the obtained optical deflector,
The radiation conductance was measured using a network analyzer, and the effective electromechanical coupling coefficient K was measured, and compared with that produced on a bulk substrate without proton exchange treatment. As a result of the measurement, the effective K value in the case of the surface acoustic wave excitation electrode fabricated on the proton exchange optical waveguide of this example was approximately 20% of that of the electrode fabricated on the bulk substrate of the comparative example.
Met.

さらに、光導波路中にλ”633r+rr+のHeNe
レーザ光をプリズムカップラによって結合し、TE1波
を励振して光偏向器の特性を調へた。中心周波数におけ
る光偏向効率ηは僅か0.1%であった。これは光導波
層における電気光学係数r’jkおよび光弾性係数Pi
jkQが非常に小さく、(12)式のCの値が非常に小
さくなるためである。
Furthermore, λ”633r+rr+ of HeNe is added to the optical waveguide.
Laser light was coupled by a prism coupler and the TE1 wave was excited to adjust the characteristics of the optical deflector. The optical deflection efficiency η at the center frequency was only 0.1%. This is the electro-optic coefficient r'jk and photoelastic coefficient Pi in the optical waveguide layer.
This is because jkQ is very small, and the value of C in equation (12) becomes very small.

(2)プロトン交換後における熱処理工程を含む第2の
製造段階: つぎに上記第1の製造段階でプロトン交換処理した基板
を熱拡散炉に入れ、大気中400℃で65分間熱処理し
たのち急冷した。
(2) Second manufacturing step including heat treatment step after proton exchange: Next, the substrate subjected to the proton exchange treatment in the first manufacturing step was placed in a thermal diffusion furnace, heat treated in the atmosphere at 400°C for 65 minutes, and then rapidly cooled. .

このようにして製造した光導波路の特性を調べるため、
再び上記(1)と同様に、ルチルプリズムで波長λ=6
33nmのHe−Neレーザ光を導波路内に導き、y軸
方向へ伝搬させた。導波路には3本のTEモードが励振
され、TEoモードの実効屈折率は2.2291となり
、逆WKB法によって光導波層の深さ方向の屈折率分布
を推定すると、第5図(b)のようになり、誤差関数形
状のプロファイルとなった。第5図(b)から明らかな
ように、屈折率はその表面で高く光導波層の深さ方向に
行くにしたがい連続的に漸次減少し、滑らかな減衰曲線
分布をたどり、基板との界面では実質的に基板の屈折率
に近づいている。
In order to investigate the characteristics of the optical waveguide manufactured in this way,
Again, similar to (1) above, the wavelength λ = 6 with a rutile prism.
A 33 nm He-Ne laser beam was guided into the waveguide and propagated in the y-axis direction. Three TE modes are excited in the waveguide, and the effective refractive index of the TEo mode is 2.2291. When the refractive index distribution in the depth direction of the optical waveguide layer is estimated by the inverse WKB method, it is shown in Fig. 5 (b). This is the profile of the error function shape. As is clear from Figure 5(b), the refractive index is high at the surface and gradually decreases as you go deeper into the optical waveguide layer, following a smooth attenuation curve distribution, and at the interface with the substrate. It is substantially approaching the refractive index of the substrate.

また、2プリズム法によりTEoモードの光伝搬損失α
を測定した結果、α=0.3dB/cmというTi拡散
光導波路と同等の値が得られ、熱処理前の上記第1の製
造段階での3dB/cmに比べ飛躍的に改善された。
In addition, by the two-prism method, the optical propagation loss α of the TEo mode
As a result of measurement, a value of α=0.3 dB/cm, which is equivalent to that of the Ti-diffused optical waveguide, was obtained, which was a dramatic improvement compared to 3 dB/cm at the first manufacturing stage before heat treatment.

また、上記(1)の第1の製造段階において実施したよ
うに、光偏向器の特性を調へるため、光導波路上に弾性
表面波励振用のくし形電極を作成し、ネットワークアナ
ライザを用いて2方向の弾性表面波の実効的な電気機械
結合係数Kを測定したところ、プロトン交換処理を行わ
ないバルク基板上に作製した比較例の約95%の値であ
り、熱処理前の場合の約20%に比べ飛躍的に向上した
In addition, as carried out in the first manufacturing step in (1) above, in order to adjust the characteristics of the optical deflector, comb-shaped electrodes for surface acoustic wave excitation were created on the optical waveguide, and a network analyzer was used to adjust the characteristics of the optical deflector. When we measured the effective electromechanical coupling coefficient K of surface acoustic waves in two directions, we found that it was about 95% of the value of a comparative example fabricated on a bulk substrate without proton exchange treatment, and about 95% of the value before heat treatment. This is a dramatic improvement compared to 20%.

さらにまた、同じ波長のレーザ光によるTEoモートの
光学損傷のしきい値は約600W/cm2であり、熱処
理前の値750W/cm2に比へ若干減少したものの良
好な特性値が得られた。
Furthermore, the threshold value of optical damage of the TEo mote caused by laser light of the same wavelength was approximately 600 W/cm2, which was slightly lower than the value before heat treatment of 750 W/cm2, but good characteristic values were obtained.

さらに、注入プロトンの光導波層の深さy方向の濃度分
布が熱処理によりどのように変化するかを調べるため、
SIMSで分析したところ、その濃度分布は誤差関数型
となり、第5図(b)の屈折率分布曲線とよい一致を示
した。
Furthermore, in order to investigate how the concentration distribution of injected protons in the depth y direction of the optical waveguide layer changes due to heat treatment,
When analyzed by SIMS, the concentration distribution had an error function type, and showed good agreement with the refractive index distribution curve shown in FIG. 5(b).

また、上記光偏向器の光偏向効率を調べるため、波長λ
−0,633μmのHe−Neレーザ光をプリズムカッ
プラを用いて上記熱処理により得られたプロトン交換光
導波層2内へ導き、y軸方向へ伝搬させ、Z軸方向へ伝
搬する弾性表面波用電極5へO〜IWの電力を投入して
光偏向効率を測定した。この測定により、電力0.5 
Wで60%の回折効率を得た。この値は前記文献の80
%には若干劣るものの、前記文献のIDT幅が40μm
であるのに対して、本実施例では4.3mmと約100
倍であり、弾性表面波の密度が1 / 、+−00であ
るから、実質的な効率は前記文献の光偏向器の約75倍
である。
In addition, in order to investigate the optical deflection efficiency of the above optical deflector, we also investigated the wavelength λ
-0,633 μm He-Ne laser light is guided into the proton exchange optical waveguide layer 2 obtained by the above heat treatment using a prism coupler, propagated in the y-axis direction, and propagated in the Z-axis direction.Surface acoustic wave electrode The optical deflection efficiency was measured by inputting a power of O to IW to No. 5. This measurement shows that the power is 0.5
A diffraction efficiency of 60% was obtained with W. This value is 80 in the above document.
%, but the IDT width in the above document is 40 μm.
In contrast, in this example, the diameter is 4.3 mm, which is approximately 100 mm.
Since the surface acoustic wave density is 1/2, +-00, the actual efficiency is about 75 times that of the optical deflector in the above-mentioned document.

このように、上記(1)の方法で製造された光偏向器に
比へ、本実施例の光偏向器がきわめて高い光偏向効率を
有する理由は、上記熱処理により電気光学係数rijk
、光弾性係数P;JkuがバルクL i N b○3並
に回復し、大きなΔB1.の値が得られたためである。
As described above, the reason why the optical deflector of this example has extremely high optical deflection efficiency compared to the optical deflector manufactured by the method (1) above is that the electro-optic coefficient rijk is
, photoelastic coefficient P; Jku recovered to the same level as bulk L i N b○3, and a large ΔB1. This is because the value of .

なお、上記熱処理工程を含む第2の製造段階にあ・いて
、熱処理条件は熱処理前のプロトン交換層の厚さT(μ
m)と深い関係があることが判った。
In addition, in the second manufacturing stage including the above heat treatment step, the heat treatment conditions are the thickness T (μ
It was found that there is a deep relationship with m).

すなわち、上記条件 Δn。≧0.035.八ns≦0.015 a +O0
O○5を満足し、かつ、屈折率分布を誤差関数型にする
ためには、熱処理温度を375℃〜400℃とし、かつ
、熱処理時間t (時間)を、少なくともし≧2T2に
しなければならない。しかし、tを長くしすぎると、Δ
noが0.035より小さくなるため、できるだけt≧
2T2(時間)熱処理することが望ましい。
That is, the above condition Δn. ≧0.035. 8ns≦0.015 a +O0
In order to satisfy O○5 and make the refractive index distribution into an error function type, the heat treatment temperature must be 375°C to 400°C, and the heat treatment time t (hours) must be at least 2T2. . However, if t is made too long, Δ
Since no is smaller than 0.035, t≧ as much as possible
It is desirable to perform heat treatment for 2T2 (hours).

第2実施例 第8図は第1図に示した光偏向器を搭載した薄膜光集積
光ヘッドの一実施例を示す図である。第8図において、
1はLiNb○3単結晶基板、2はプロトン交換光導波
層、81は半導体レーザ、82はコリメートレンズ、8
4はビーム成形用プリズム、85はレーザ光の波長変動
による光導波層2へのレーザ光結合効率の低下を防止す
る透過形回折格子、86はレーザ光を光導波層2に結合
する直線形状のグレーティングカップラ、3は導波光、
87はトラッキング誤差信号作製用3スポツトビームを
作成するための平面回折格子、4は弾性表面波(SAW
)で、これは導波光3を基板1内に射出させ、かつ射出
光6の射出角度を変化させる作用を有する。5はSAW
励振用のIDT、89はビーム成形用プリズム、810
は半導体レーザ光の波長変動による射出光6の方向変化
を抑止するための反射型回折格子、811は射出光6を
光デイスク813上に結像させる対物レンズ、88は反
射信号光を2分割し、かつ、ホトダイオード83上に集
光する集光ビームスプリッタである。
Second Embodiment FIG. 8 is a diagram showing an embodiment of a thin film integrated optical head equipped with the optical deflector shown in FIG. 1. In Figure 8,
1 is a LiNb○3 single crystal substrate, 2 is a proton exchange optical waveguide layer, 81 is a semiconductor laser, 82 is a collimating lens, 8
4 is a beam shaping prism, 85 is a transmission type diffraction grating that prevents a decrease in laser beam coupling efficiency to the optical waveguide layer 2 due to wavelength fluctuation of the laser beam, and 86 is a linear shaped prism that couples the laser beam to the optical waveguide layer 2. Grating coupler, 3 is waveguide light,
87 is a plane diffraction grating for creating a three-spot beam for creating a tracking error signal, and 4 is a surface acoustic wave (SAW).
), which has the effect of emitting the guided light 3 into the substrate 1 and changing the emission angle of the emitted light 6. 5 is SAW
IDT for excitation, 89 is a beam shaping prism, 810
811 is a reflection type diffraction grating for suppressing the direction change of the emitted light 6 due to wavelength fluctuation of the semiconductor laser beam; 811 is an objective lens for forming an image of the emitted light 6 on an optical disk 813; and 88 is for dividing the reflected signal light into two parts. , and is a condensing beam splitter that condenses light onto the photodiode 83.

つぎに、上記光集積ヘッドの作製方法を第9図および第
10図を用いて詳記する。まず、第9図に示す製造工程
図に従って説明する。第9図(a)に示すように、X 
cut LiNbO3基板1(3インチφX3mm厚)
の両面を0.78μmのレーザ光波長λの1/10まで
研磨し、その表面付近に(b)に示すように、上記第1
の製造段階およびその後の(2)に示す熱処理工程を含
む第2の製造段階に従い、プロトン交換光導波層2を作
製する。
Next, a method for manufacturing the optical integrated head will be described in detail with reference to FIGS. 9 and 10. First, explanation will be given according to the manufacturing process diagram shown in FIG. As shown in FIG. 9(a),
cut LiNbO3 substrate 1 (3 inch φ x 3 mm thickness)
Both sides of the 0.78 μm laser beam wavelength λ were polished to 1/10 of the wavelength λ of the laser beam, and as shown in (b) near the surface, the first
The proton exchange optical waveguide layer 2 is manufactured according to the second manufacturing step including the manufacturing step and the subsequent heat treatment step shown in (2).

つぎに(C)に示すように、光導波層2上にバッファ層
として光学ガラス層91 (コーニング社製、商品名7
059)を、スパッタリングによって10nrn成膜し
た。スパッタリング条件は、高周波パワー100W、ア
ルゴンガス圧0.35Pa、スパッタリング速度0.2
nm/secである・さらに、(d)に示すように上記
バッファ層91上に装荷層(回折格子形成用)としてT
i02層92を反応性スパッタリングにより1100n
形成した。スパッタリング条件は、ターゲットとしてT
iO2を用いスパッタリングガスとしてアルゴン(Ar
)と酸素(02)を用い、Arと02との流量比0.7
、スパッタリングガス圧0.42Pa。
Next, as shown in (C), an optical glass layer 91 (manufactured by Corning Inc., trade name 7
059) was formed into a 10nrn film by sputtering. The sputtering conditions were: high frequency power 100W, argon gas pressure 0.35Pa, and sputtering speed 0.2.
nm/sec.Furthermore, as shown in (d), T is applied as a loading layer (for forming a diffraction grating) on the buffer layer 91.
The i02 layer 92 is formed by reactive sputtering to 1100nm.
Formed. The sputtering conditions were T as the target.
Argon (Ar) was used as sputtering gas using iO2.
) and oxygen (02), the flow rate ratio of Ar and 02 is 0.7.
, sputtering gas pressure 0.42 Pa.

高周波パワー500W、スパッタリング速度0.1nm
/secである。
High frequency power 500W, sputtering speed 0.1nm
/sec.

つぎに、(e)に示すように装荷層92およびバッファ
層91を所定の導波路型光学素子の形状に加工するため
、電子線露光用レジストとしてクロルメチル化ポリスチ
レン(商品名CMS−EX:東洋ソーダ製)93を0.
5μmの厚さにスピンコードした。さらに、(f)に示
すように上記しシスト93を130℃で20分間ブリヘ
ークしたのち、等間隔直線状の回折格子86および不等
間隔曲線形状の回折格子87の各パタンを、電子ビーム
94によって露光した。上記のようにして、第9図(g
)に示すように電子線露光後、現像を行いレジスト製マ
スク93を形成した。
Next, as shown in (e), in order to process the loading layer 92 and buffer layer 91 into the shape of a predetermined waveguide type optical element, chloromethylated polystyrene (trade name: CMS-EX: Toyo Soda Co., Ltd.) is used as a resist for electron beam exposure. )93 to 0.
It was spin coded to a thickness of 5 μm. Furthermore, as shown in (f), after the above-described cyst 93 is baked at 130° C. for 20 minutes, each pattern of the uniformly spaced linear diffraction grating 86 and the unevenly spaced curved diffraction grating 87 is formed using an electron beam 94. exposed. As described above, as shown in Fig. 9 (g
), after exposure to electron beams, development was performed to form a resist mask 93.

つぎに、(h)に示すように、イオンエツチングによっ
て装荷層92およびバッファ層91を選択的に微細加工
した。エツチングガスとしてCF、を用い、圧力3.8
Pa、高周波パワー200W、エツチング時間15m1
nとした。エツチング後上記レジストを除去した。
Next, as shown in (h), the loading layer 92 and the buffer layer 91 were selectively microfabricated by ion etching. Using CF as etching gas, pressure 3.8
Pa, high frequency power 200W, etching time 15m1
It was set as n. After etching, the resist was removed.

ついで弾性表面波用電極5を作製するため(i)に示す
ように、ポジ型ホトレジスト95を塗布し80℃で30
分プリベークした。つぎに、第8図の電極5が形成され
る部分にだけ開口をもつホトマスク(図示せず)を重ね
て露光、現像を行い、レジスト95の選択エツチングを
行った。ついで、(j)に示すように、電子線蒸着装置
によりAQ膜96を150nm成膜したのち、アセトン
中に浸漬してレジスト95を除去し、リフトオフにより
上記窓あけ部分にだけA Q膜を残した。
Next, in order to fabricate the surface acoustic wave electrode 5, as shown in (i), a positive photoresist 95 was applied and heated at 80°C for 30 minutes.
Prebaked for a minute. Next, a photomask (not shown) having an opening only in the area where the electrode 5 of FIG. 8 is to be formed is placed on top of the photomask and exposed and developed to perform selective etching of the resist 95. Next, as shown in (j), after forming an AQ film 96 to a thickness of 150 nm using an electron beam evaporation device, the resist 95 was removed by immersion in acetone, and the AQ film was left only in the above-mentioned window portion by lift-off. Ta.

その後再び(k)に示すように、ポジ型ホトレジスト9
5を塗布し、80℃で30分プリベークを行ったのち、
所定の電極形状をもち、かつ窓あけ部以外の部分を遮光
するホトマスク(図示せず)を重ねて露光、現像を行い
、140’cて20分ポスI−ベークを行った。つぎに
、(−Q)に示すように、りん酸系のエツチング液でウ
ェットエツチングを行い、電極パターン96を転写した
のちレジスト95を除去した。このようにしてAQパタ
ーン96からなる電極5を形成した。
After that, as shown in (k) again, a positive photoresist 9 is applied.
After applying 5 and pre-baking at 80℃ for 30 minutes,
A photomask (not shown) having a predetermined electrode shape and shielding parts other than the window openings was layered, exposed and developed, and post-I-baked for 20 minutes at 140'c. Next, as shown in (-Q), wet etching was performed using a phosphoric acid-based etching solution to transfer the electrode pattern 96, and then the resist 95 was removed. In this way, the electrode 5 consisting of the AQ pattern 96 was formed.

つぎに、第8図の85および810に示す回折格子の作
製法を第10図を用いて詳記する。
Next, a method for manufacturing the diffraction gratings shown at 85 and 810 in FIG. 8 will be described in detail using FIG. 10.

まず、第10図(a)に示すように、基板として光学ガ
ラス(コーニング社製、商品名BK−7ガラス)100
1を用い、その上に(b)に示すように、5102膜1
002を10μm、5iCf14と02とを原料とした
CVD法もしくは蒸着法もしくはスパッタリング法によ
り作製した。
First, as shown in FIG. 10(a), optical glass (manufactured by Corning, trade name BK-7 glass) 100 is used as a substrate.
1, and on top of that, as shown in (b), 5102 film 1
002 with a thickness of 10 μm was produced by CVD, vapor deposition, or sputtering using 5iCf14 and 02 as raw materials.

つぎに(c)に示すようにS io2膜をホトリソグラ
フィにより所定の格子形状に加工するため、ポジ型ホト
レジスト95を1μm塗布し、80℃で30分プリベー
クしたのち、所定の格子形状を描いたホトマスク(図示
せず)により露光し、クロルベンゼン中で40℃、5分
間浸漬処理を行ったのち、現像してレジスト製の格子パ
ターン95を形成した。ついで、(d)に示すようにレ
ジスト製の格子パターン95上にCr1O03を蒸着し
、アセトン中で超音波洗浄を行ってレジストを除去し、
(e)に示すようにCr製マスク1003を作製した。
Next, as shown in (c), in order to process the S io2 film into a predetermined lattice shape by photolithography, 1 μm of positive photoresist 95 was applied, prebaked at 80° C. for 30 minutes, and then a predetermined lattice shape was drawn. After exposure using a photomask (not shown) and immersion treatment in chlorobenzene at 40° C. for 5 minutes, development was performed to form a grating pattern 95 made of resist. Next, as shown in (d), Cr1O03 was deposited on the resist grid pattern 95, and the resist was removed by ultrasonic cleaning in acetone.
A Cr mask 1003 was produced as shown in (e).

その後、(f)に示すようにCF4ガスを用いたイオン
エツチングによりCrマスク1003を用いてSi○2
膜1002を選択的に微細加工したのち、Crマスク1
003をエツチング除去し、5in2膜1002の格子
パターンからなる第8図の目的とする回折格子85およ
び810を作製した。
Thereafter, as shown in (f), Si○2 was etched using a Cr mask 1003 by ion etching using CF4 gas.
After selectively finely processing the film 1002, a Cr mask 1 is formed.
003 was removed by etching, and the target diffraction gratings 85 and 810 of FIG. 8, each consisting of a grating pattern of a 5in2 film 1002, were fabricated.

上記ホトリソプラノイ技術は上記装荷層92もしくはバ
ッファ層91または弾性表面波励振用電極5の作製技術
にも応用できる。
The photolithography technique described above can also be applied to the production technique of the loading layer 92 or the buffer layer 91 or the surface acoustic wave excitation electrode 5.

最後に、上記のようにして作製した光学素子基板1、回
折格子85,810および光学ガラスブロック(コーニ
ング社製、商品名BK−7)84゜89をそれぞれ所定
の形状に切断、研磨してBK7とほぼ同し屈折率をもつ
紫外線硬化型アクリル系の接着剤で貼り合わせ、半導体
レーザ81およびホトダイオード83を実装して、第8
図に示す光集積ヘッドを作製した。
Finally, the optical element substrate 1, the diffraction gratings 85, 810, and the optical glass block (manufactured by Corning, trade name BK-7) 84°89, which were produced as described above, were cut into predetermined shapes and polished, respectively. A semiconductor laser 81 and a photodiode 83 are mounted on the eighth
The optical integration head shown in the figure was fabricated.

つぎに第8図の光集積ヘッドの作用について説明する。Next, the operation of the optical integrated head shown in FIG. 8 will be explained.

半導体レーザ81からの出射光(波長λ=0.78μm
)は、回折格子85により伝搬方向を補正されたのち、
グレーティングカップラ86により光導波層2に結合さ
れる。ついで平面回折格子87によりトラッキング誤差
信号検出用の±1次の極めて弱い回折光を生じさせる。
Emitted light from the semiconductor laser 81 (wavelength λ = 0.78 μm
) has its propagation direction corrected by the diffraction grating 85, and then
It is coupled to the optical waveguide layer 2 by a grating coupler 86 . Next, the planar diffraction grating 87 generates ±1st order extremely weak diffracted light for tracking error signal detection.

これによって、光デイスク装置の3スポツト法によるト
ラッキング誤差の信号検出が可能になる。つぎにこれら
の導波光は電極5によって生しさせられた弾性表面波4
により、基板内へ射出される。この際、電極5へ投入す
る交流電場の中心周波数を変えることにより、射出光6
を基板表面と垂直な方向に偏向させて出射角度を変化さ
せることができる。偏向された射出光6は、その伝搬方
向を反射形回折格子810により補正されたのち、対物
レンズ812により光ディスクの記録、再生面に集束さ
れる。この集束された面からの反射光(光記録情報信号
)6は、レンズ811、反射形回折格子810を通り、
基板1の表面で全反射し、その対向面に設けられた集光
ビームスプリンタ88で2分割され、5分割ホトダイオ
ード83上に集束され信号の検出が行われる。
This makes it possible to detect tracking error signals using the three-spot method of the optical disk device. Next, these guided lights are surface acoustic waves 4 generated by electrodes 5.
is injected into the substrate. At this time, by changing the center frequency of the AC electric field applied to the electrode 5, the emitted light 6
The output angle can be changed by deflecting the beam in a direction perpendicular to the substrate surface. After the propagation direction of the deflected emitted light 6 is corrected by a reflective diffraction grating 810, it is focused by an objective lens 812 onto the recording/reproducing surface of the optical disc. The reflected light (optical recording information signal) 6 from this focused surface passes through a lens 811, a reflective diffraction grating 810,
The light is totally reflected on the surface of the substrate 1, divided into two by a condensing beam splinter 88 provided on the opposite surface, and focused on a five-divided photodiode 83 for signal detection.

本光集積ヘッドの特徴は、アクチュエータに搭載するヘ
ッドの可動部分は、図示のとおり反射形回折格子810
と対物レンズ811とで構成される光学系だけとなり、
ヘッド本体を構成する残りの大半の部分が固定部を構成
することである。このアクチュエータに搭載したヘッド
の可動部光学系と、このヘッド本体を構成する固定部と
を分離し、光学的に結合させるだけでヘッド全体を構成
している。したがって、ヘッドの可動部分は軽量小形と
なり、また、入力側の光偏向は表面弾性波を発生させる
ための電極5へ投入する交流電場の中心周波数を変える
ことで行えるので、アクセス時間を大幅に短縮させるこ
とができる。
The feature of this optical integration head is that the movable part of the head mounted on the actuator is a reflective diffraction grating 810 as shown in the figure.
There is only an optical system consisting of the and objective lens 811,
Most of the remaining portions of the head body constitute a fixed portion. The entire head is constructed by simply separating the optical system of the movable part of the head mounted on this actuator and the fixed part constituting the head body and optically coupling them together. Therefore, the movable parts of the head are lightweight and compact, and the optical deflection on the input side can be achieved by changing the center frequency of the alternating current electric field applied to the electrode 5 for generating surface acoustic waves, which greatly reduces access time. can be done.

なお、この第8図に示すように光集積ヘッドを可動部と
固定部とに分離分割することなく、一体型のヘッド構成
にしてもよく、この一体型のヘッドをアクチュエータに
搭載してもよい。
Note that, as shown in FIG. 8, the optical integration head may be configured as an integrated head without being divided into a movable part and a fixed part, and this integrated head may be mounted on an actuator. .

第3実施例 第11図は第8図で示した第2実施例の光集積ヘッドを
、従来の光情報記録再生装置に応用した場合の概略を示
したものである。第11図に示す光情報記録再生装置の
特徴は、ヘッドの可動部1103を構成する反射形回折
格子810と対物レンズ811とからなる光学系だけが
、アクチュエータ1102上に搭載されている点にあり
、光集積ヘッドの本体を構成する固定部1101は、上
記可動部1103と光学的に結合されているが、物理的
には、分離分割して固定されている。したかって、ヘッ
ド全体の構成は機能により可動部1103と固定部11
01とに2分されるが、アクチュエータ1102上には
軽量小形の光学系だけが搭載されているので、アクセス
には極めて有利であり、アクセス時間を20m5ec以
下にすることができた。
Third Embodiment FIG. 11 schematically shows a case where the optical integrated head of the second embodiment shown in FIG. 8 is applied to a conventional optical information recording/reproducing apparatus. The optical information recording and reproducing apparatus shown in FIG. 11 is characterized in that only the optical system consisting of a reflective diffraction grating 810 and an objective lens 811, which constitute the movable part 1103 of the head, is mounted on the actuator 1102. The fixed part 1101 constituting the main body of the optical integrated head is optically coupled to the movable part 1103, but physically, it is separated and fixed. Therefore, the overall structure of the head consists of a movable part 1103 and a fixed part 11 depending on the function.
However, since only a light and small optical system is mounted on the actuator 1102, it is extremely advantageous for access, and the access time can be reduced to 20 m5ec or less.

以上本実施例では、基板がニオブ酸リチウム(T−iN
 b O3)単結晶基板の場合を代表例として説明した
が、本発明においては、その他、ニオブの一部もしくは
全部をタンタルTaで置換した結晶系LiNb1−yT
axO3系(ただし、O< y≦1)、あるいはこれに
Mgが加えられた結晶系LixMg2NbニーyTax
O3についても、同様なプロトン置換処理を行ったが、
その結果、LiNb0.の場合と同様の結果を得ること
ができた。
As described above, in this example, the substrate is lithium niobate (T-iN).
b O3) Although the case of a single crystal substrate has been described as a representative example, in the present invention, a crystal system LiNb1-yT in which part or all of niobium is replaced with tantalum Ta is also used.
axO3 system (however, O<y≦1), or a crystalline system to which Mg is added LixMg2NbnyTax
Similar proton replacement treatment was performed for O3, but
As a result, LiNb0. We were able to obtain similar results as in the case of

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による光偏向器およびその製造方法
は、下記の一般式で表されるニオブ酸リチウム、タンタ
ル酸リチウムもしくはこれら両者の混晶系で、一般式L
iNb□−,TayO3(ただし、0≦y≦1)あるい
はこれにマグネシウムを加えた一般式LixMgzNb
x−yTayO、(ただし、○≦X+Z+ y≦1)か
らなる単結晶基板の表層部に、基板内のリチウムイオン
Li+の一部がプロトンH+とイオン交換して形成され
た、基板より屈折率が高い変性層を光導波層として有す
るプロトン交換光導波路を備えた光偏向器において、上
記基板の屈折率nsと光導波層の屈折率nとの差をΔn
(=n  ns)とし、上記光導波層の表面からの深さ
をX□としたとき、上記光導波層の屈折率nが表面から
深さx1方向に連続的に漸次減少し、上記基板との界面
では実質的にΔn=○を満足する屈折率分布を有し、光
導波路におけるΔnがΔnoの1/3となる深さをaと
したとき、Δn。
As described above, the optical deflector and the method for manufacturing the same according to the present invention are manufactured by using lithium niobate, lithium tantalate, or a mixed crystal system of both of them, represented by the general formula L
iNb□-, TayO3 (however, 0≦y≦1) or the general formula LixMgzNb with magnesium added thereto
x-yTayO, (where ○≦X+Z+ y≦1) is formed on the surface layer of a single-crystal substrate by ion-exchanging some of the lithium ions Li+ with protons H+, and has a refractive index lower than that of the substrate. In an optical deflector equipped with a proton exchange optical waveguide having a highly modified layer as an optical waveguide layer, the difference between the refractive index ns of the substrate and the refractive index n of the optical waveguide layer is Δn
(=n ns) and the depth from the surface of the optical waveguide layer is X□, the refractive index n of the optical waveguide layer gradually decreases continuously from the surface in the depth x1 direction, and The interface has a refractive index distribution that substantially satisfies Δn=○, and when a is the depth at which Δn becomes 1/3 of Δno in the optical waveguide, Δn.

とaとが不等式Δns≦0.015a+0.005を満
足する光導波路を有することにより、光学損傷に強く、
しかも高効率の光機能素子を容易に作成できる光導波路
を実現可能とし、この光導波路に光偏向素子を組み込む
ことにより、高効率の光偏向装置が得られる。したがっ
て、上記光偏向装置を応用した小形軽量で高速アクセス
可能な光集積ヘッドが、さらにまた、上記光集積ヘッド
をアクチュエータに搭載した光情報記録再生装置をそれ
ぞれ実現することができる。
By having an optical waveguide where and a satisfy the inequality Δns≦0.015a+0.005, it is resistant to optical damage,
Moreover, by making it possible to realize an optical waveguide in which a highly efficient optical functional element can be easily produced, and by incorporating an optical deflection element into this optical waveguide, a highly efficient optical deflection device can be obtained. Therefore, it is possible to realize a compact, lightweight, and high-speed accessible optical integrated head using the above-mentioned optical deflection device, and also an optical information recording/reproducing device in which the above-mentioned optical integrated head is mounted on an actuator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるプロトン交換光導波路を有する光
偏向器の一実施例を示す斜視図、第2図は従来のブラッ
グ型光偏向器を示す斜視図、第3図は従来のコリニア型
光偏向器を示す斜視図、第4図は光偏向器の原理を説明
する図で、(a)は平面図、(b)は断面図、第5図(
a)は従来の光導波路の屈折率分布を示す図、(b)は
本発明による光導波路の屈折率分布を示す図、第6図は
拡散深さa、表面屈折率変化量Δnoと重なり積分I 
overQapの関係を示す図、第7図は光導波路の屈
折率分布を示す図で、(a)は熱処理前を示し、(b)
は熱処理後を示す図、第8図は上記第1図に示す光偏向
器を搭載した光集積ヘッドの構成図、第9図(、)〜(
Ω)は上記光集積ヘッドの製造工程をそれぞれ示す図、
第10図(a)〜(f)は上記光集積ヘッドに搭載する
収差補正用回折格子の製造工程をそれぞれ示す図、第1
1図は上記光集積ヘッドを搭載した光情報記録再生装置
の構成を示す図である。 1.21.31・・・基板 2.22.32・光導波層 4 、24 、34 ・−・弾性表面波(SAW)5.
23・・・弾性表面波発生電極 81・・・レーザ光源 83・・・受光素子 85・・第1の回折格子 86・・・グレーティングカップラ 87・・第2の回折格子 88・・・集光ビームスプリッタ 813・・・光記録媒体 1102・・・アクチュエータ 代理人弁理士  中 村 純之助 X+(Xl 第2 図 、21.31−幕籾 2.22.32−一尤帽1 4.24.34−一弾軽表面う皮tSAW15.23−
−−−−3草様表面波!1!1電緬81−−−−−−レ
ーでft、源 83−−−−−一受fL克子 85−−−一第1の回折格J 86−−−−2′し−ティレフ゛力、アラs7−−−−
1!J2の回拍′絡子 88−−−1光、嶋゛−ムスブj八、2813−一一九
書乙aす菓体 02−一一アクチェエータ (a) 第5 図 (pm) 第6 図 (a) 回】Σ丁=1]ト一 (b) 「〒ヲ習に1 (C) ■デ■匡ミ1 第9 図 (a) 一7]1100 第10図
Fig. 1 is a perspective view showing an embodiment of an optical deflector having a proton exchange optical waveguide according to the present invention, Fig. 2 is a perspective view showing a conventional Bragg type optical deflector, and Fig. 3 is a perspective view showing a conventional collinear type optical deflector. FIG. 4 is a perspective view showing the deflector, and FIG. 4 is a diagram explaining the principle of the optical deflector.
a) is a diagram showing the refractive index distribution of a conventional optical waveguide, (b) is a diagram showing the refractive index distribution of an optical waveguide according to the present invention, and FIG. 6 is a diagram showing the diffusion depth a, the surface refractive index change amount Δno, and the overlap integral. I
FIG. 7 is a diagram showing the refractive index distribution of the optical waveguide, (a) shows before heat treatment, (b)
8 shows the state after heat treatment, FIG. 8 is a block diagram of the optical integration head equipped with the optical deflector shown in FIG. 1, and FIGS. 9 (, ) to (
Ω) are diagrams showing the manufacturing process of the optical integrated head, respectively;
10(a) to 10(f) are diagrams showing the manufacturing process of the aberration correction diffraction grating mounted on the optical integration head, respectively.
FIG. 1 is a diagram showing the configuration of an optical information recording/reproducing apparatus equipped with the above optical integrated head. 1.21.31...Substrate 2.22.32-Optical waveguide layer 4, 24, 34...Surface acoustic wave (SAW)5.
23... Surface acoustic wave generating electrode 81... Laser light source 83... Light receiving element 85... First diffraction grating 86... Grating coupler 87... Second diffraction grating 88... Focused beam Splitter 813... Optical recording medium 1102... Actuator representative patent attorney Junnosuke Nakamura Bullet surface caries tSAW15.23-
---3 Grass-like surface waves! 1!1 Electric liner 81-----Left at source 83-----First receiver fL Katsuko 85-----First diffraction grating J 86----2' and Tire force, Ara s7---
1! J2 rotation link 88--1 Hikari, Shima-Musbu j8, 2813-119 Book 02-11 actuator (a) Fig. 5 (pm) Fig. 6 ( a) times] Σ ding = 1] To 1 (b) “〒〒〒〒 に 1 (C) ■De ■ 匡Mi 1 Fig. 9 (a) 17] 1100 Fig. 10

Claims (1)

【特許請求の範囲】 1、一般式LiNb_1_−_yTa_yO_3(ただ
し、0≦y≦1)で表せるニオブ酸リチウム、タンタル
酸リチウム、もしくはこれら両者の混晶系、あるいはこ
れにマグネシウムを加えた、一般式Li_xMg_2N
b_1_−_yTa_yO_3(ただし、0≦x、y、
z≦1)からなる単結晶基板の表層部に、基板内のリチ
ウムイオンLi^+の一部がプロトンH^+とイオン交
換して形成された、上記基板より屈折率が高い変性層を
光導波層として有するプロトン交換光導波路において、
上記基板の屈折率n_sと上記光導波層の屈折率nとの
差をΔn(=n−n_s)とし、上記光導波層の表面か
らの深さをx_1としたとき、上記光導波層の屈折率n
がその表面から深さx_1方向に連続的に漸減し、上記
基板との界面では実質的にΔn=0を満足する屈折率分
布を有し、上記光導波層におけるΔnの大きさをΔn_
0としたとき、Δn_0が0.035より大きく、かつ
ΔnがΔn_0の1/3となる深さをaとしたとき、Δ
n_0とaとが不等式Δn_0≦0.015a+0.0
05を満足することを特徴とするプロトン交換光導波路
。 2、上記プロトンH^+によるリチウムイオンLi^+
のイオン交換は、上記光導波層の表面から深さ方向yの
交換濃度プロファイルが誤差関数的に変化し、その表面
から深さy方向に連続的に漸減する濃度分布を有するこ
とを特徴とする特許請求の範囲第1項に記載したプロト
ン交換光導波路。 3、上記変成層からなる光導波層は、結晶格子定数d′
と上記単結晶基板の結晶格子定数dとの差Δd=d′−
dが、上記光導波層の表面から深さ方向yに誤差関数的
に変化し、表面から深さy方向に連続的に漸減する結晶
格子定数分布を有することを特徴とする特許請求の範囲
第1項に記載したプロトン交換光導波路。 4、弱酸と該弱酸のリチウム塩との混合液中で、一般式
LiNb_1_−_xTa_xO_3(ただし、0≦y
≦1)で表せるニオブ酸リチウム、タンタル酸リチウム
もしくはこれら両者の混晶系、あるいはこれにマグネシ
ウムを加えた一般式Li_xMg_2Nb_yTa_1
_−_xO_3(ただし、0≦x、y、z≦1)からな
る単結晶基板を熱処理して、その表層部のリチウムイオ
ンLi^+の一部をプロトンH^+でイオン交換して、
上記基板より屈折率が高い変性層を光導波層として形成
するプロトン交換光導波路の製造方法において、上記弱
酸として解離度10^−^3以下の有機酸と、上記弱酸
のリチウム塩との混合溶液を用い、加熱処理して上記単
結晶基板表層部リチウムイオンLi^+の一部をプロト
ンH^+でイオン交換して厚さT(μm)の交換層を形
成し、ついで、上記単結晶基板を大気中または酸素雰囲
気中で、少なくとも2T^2(時間)以上、375℃〜
400℃の温度範囲で熱処理することにより、上記イオ
ン交換処理によって基板中に注入したプロトンH^+を
上記基板中に熱拡散し、上記基板の屈折率n_sと光導
波層の屈折率nとの差をΔn(=n−n_s)とし、上
記光導波層の表面からの深さをyとしたとき、上記光導
波層の屈折率nが深さy方向に連続的に漸減し、上記基
板との界面で実質的にΔn=0となるような屈折率分布
の光導波層を備えたプロトン交換光導波路の製造方法。 5、特許請求の範囲第1項から第3項のいずれかに記載
した光導波路と、光導波路内に伝搬する導波光を上記光
導波路から基板外に射出させ、かつ、上記射出光が基板
表面となす角を変化させる機能をもつ弾性表面波を発生
する電極とを、備えたことを特徴とする光偏向器。 6、上記光導波路は、外部から上記光導波路内に光を結
合する手段を有することを特徴とする特許請求の範囲第
5項に記載した光偏向器。 7、特許請求の範囲第1項から第3項のいずれかに記載
した光導波路に、レーザ光源からのレーザビームを導い
た導波光を、上記光導波路の外部空間に配置した光記録
媒体の記録・再生面上に集光し、上記記録、再生面から
の反射光を受光、検出する手段を備えた光ヘッドであっ
て、上記光導波路と上記レーザビームの波長変動による
光導波路への結合効率低下を防止する第1の回折格子と
、レーザビームを上記光導波路に結合するグレーティン
グカップラと、上記導波光を光導波路から基板外に射出
させ、かつ、射出光が基板表面となす角を変化する機能
をもつ弾性表面波を発生させる電極と、上記射出方向の
レーザ波長の変動を防止する第2の回折格子と、上記射
出光を上記導波路外部の一点に集束させるレンズ手段と
を有する光集積ヘッド。 8、上記グレーティングカップラは、弾性表面波を発生
する電極との間の光導波路上で、上記光記録媒体からの
反射光を受光、検出する光素子を構成する集光ビームス
プリッタとして、不等間隔曲線形状の回折格子を、配設
したことを特徴とする特許請求の範囲第7項に記載した
光集積ヘッド。 9、上記レンズ手段は、集束した反射光を上記光記録媒
体の記録、再生面に照射し、その反射信号光を透過して
、第2の回折格子で反射させて上記基板内に入射させ、
これを上記光導波層側の基板面で全反射させ、上記集光
ビームスプリッタに入射させ2分割して集光し、該集光
された反射信号光を受光素子で検出することを特徴とす
る特許請求の範囲第8項に記載した光集光ヘッド。 10、上記反射形の第2回折格子と、該第2回折格子か
らの反射光を、上記光記録媒体の記録、再生面上に集束
するレンズ手段からなる光学系は、上記光導波層が形成
された基板側本体と、光学的に結合しながら分離独立さ
せてアクチュエータに搭載し、光ヘッドの可動部とした
ことを特徴とする特許請求の範囲第9項に記載した光集
光ヘッド。 11、光記録媒体を回転駆動する回転駆動制御手段と、
上記回転する光記録媒体面と所定の間隔を保ち、上記光
記録媒体の半径方向に走査駆動することにより光情報の
記録、再生を行う光ヘッドと、該光ヘッドを搭載して走
査駆動するアクチュエータとを備えた光情報記録再生装
置において、上記アクチュエータには、上記特許請求の
範囲第7項から第10項にそれぞれ記載したいずれかの
光集積ヘッドを搭載したことを特徴とする光情報記録再
生装置。
[Claims] 1. Lithium niobate, lithium tantalate, or a mixed crystal system of both represented by the general formula LiNb_1_-_yTa_yO_3 (0≦y≦1), or a general formula in which magnesium is added thereto. Li_xMg_2N
b_1_−_yTa_yO_3 (however, 0≦x, y,
A modified layer having a refractive index higher than that of the above substrate, which is formed by ion-exchanging some of the lithium ions Li^+ with protons H^+, is light-guided on the surface layer of a single crystal substrate consisting of z≦1). In a proton exchange optical waveguide having a wave layer,
When the difference between the refractive index n_s of the substrate and the refractive index n of the optical waveguide layer is Δn (=n-n_s), and the depth from the surface of the optical waveguide layer is x_1, the refraction of the optical waveguide layer is rate n
gradually decreases from the surface in the depth x_1 direction, and has a refractive index distribution that substantially satisfies Δn=0 at the interface with the substrate, and the magnitude of Δn in the optical waveguide layer is defined as Δn_
0, and when Δn_0 is greater than 0.035 and the depth at which Δn is 1/3 of Δn_0 is a, then Δ
n_0 and a are inequality Δn_0≦0.015a+0.0
A proton exchange optical waveguide characterized by satisfying 05. 2. Lithium ion Li^+ by the above proton H^+
The ion exchange is characterized in that the exchange concentration profile in the depth direction y from the surface of the optical waveguide layer changes like an error function, and has a concentration distribution that gradually decreases from the surface in the depth direction y. A proton exchange optical waveguide according to claim 1. 3. The optical waveguide layer consisting of the above metamorphic layer has a crystal lattice constant d'
and the crystal lattice constant d of the above single crystal substrate Δd=d′−
d has a crystal lattice constant distribution that changes in the depth direction y from the surface of the optical waveguide layer like an error function and gradually decreases continuously from the surface in the depth direction y. The proton exchange optical waveguide described in Section 1. 4. In a mixed solution of a weak acid and a lithium salt of the weak acid, the general formula LiNb_1_-_xTa_xO_3 (however, 0≦y
≦1) Lithium niobate, lithium tantalate, or a mixed crystal system of both, or a general formula Li_xMg_2Nb_yTa_1 with magnesium added thereto
A single crystal substrate consisting of ____xO_3 (0≦x, y, z≦1) is heat-treated, and a part of the lithium ions Li^+ in the surface layer is ion-exchanged with protons H^+,
In the method for manufacturing a proton exchange optical waveguide in which a modified layer having a refractive index higher than that of the substrate is formed as an optical waveguide layer, a mixed solution of an organic acid having a degree of dissociation of 10^-^3 or less as the weak acid and a lithium salt of the weak acid. A part of the lithium ions Li^+ in the surface layer of the single crystal substrate is ion-exchanged with protons H^+ by heat treatment to form an exchange layer having a thickness T (μm), and then the single crystal substrate in air or oxygen atmosphere for at least 2T^2 (hours) at 375℃~
By heat treatment in a temperature range of 400°C, the protons H^+ injected into the substrate by the ion exchange treatment are thermally diffused into the substrate, and the refractive index n_s of the substrate and the refractive index n of the optical waveguide layer are changed. When the difference is Δn (=n-n_s) and the depth from the surface of the optical waveguide layer is y, the refractive index n of the optical waveguide layer gradually decreases in the depth y direction, and the refractive index n of the optical waveguide layer gradually decreases in the depth y direction. A method for manufacturing a proton exchange optical waveguide including an optical waveguide layer having a refractive index distribution such that Δn=0 at the interface thereof. 5. The optical waveguide according to any one of claims 1 to 3, the guided light propagating within the optical waveguide is emitted from the optical waveguide to the outside of the substrate, and the emitted light is directed to the surface of the substrate. 1. An optical deflector comprising: an electrode that generates a surface acoustic wave that has the function of changing the angle formed by the surface acoustic wave; 6. The optical deflector according to claim 5, wherein the optical waveguide has means for coupling light into the optical waveguide from the outside. 7. Recording of an optical recording medium in which guided light, which is a laser beam from a laser light source, is guided to the optical waveguide according to any one of claims 1 to 3 and arranged in a space outside the optical waveguide. - An optical head equipped with a means for condensing light onto a reproduction surface and receiving and detecting reflected light from the recording and reproduction surfaces, the coupling efficiency of which is determined by the wavelength fluctuation of the optical waveguide and the laser beam. a first diffraction grating that prevents degradation; a grating coupler that couples the laser beam to the optical waveguide; and a grating coupler that emits the guided light from the optical waveguide to the outside of the substrate and changes the angle that the emitted light makes with the substrate surface. an optical integrated circuit comprising: an electrode that generates a functional surface acoustic wave; a second diffraction grating that prevents variations in the laser wavelength in the emission direction; and lens means that focuses the emitted light to a point outside the waveguide. head. 8. The grating coupler serves as a condensing beam splitter constituting an optical element that receives and detects reflected light from the optical recording medium on the optical waveguide between the surface acoustic wave generating electrode and the surface acoustic wave generating electrode. 8. The optical integration head according to claim 7, further comprising a curved diffraction grating. 9. The lens means irradiates the recording/reproducing surface of the optical recording medium with focused reflected light, transmits the reflected signal light, reflects it on a second diffraction grating, and makes it enter the substrate;
The light is totally reflected on the substrate surface on the optical waveguide layer side, and is incident on the focusing beam splitter to be divided into two and focused, and the focused reflected signal light is detected by a light receiving element. A light focusing head according to claim 8. 10. An optical system comprising the reflective second diffraction grating and a lens means for focusing the reflected light from the second diffraction grating onto the recording/reproducing surface of the optical recording medium is formed by the optical waveguide layer. 10. The optical condensing head according to claim 9, wherein the optical condensing head is mounted on an actuator while being optically coupled to and separated from the substrate-side main body, thereby forming a movable part of the optical head. 11. Rotation drive control means for rotationally driving the optical recording medium;
an optical head that records and reproduces optical information by scanning and driving in the radial direction of the optical recording medium while keeping a predetermined distance from the surface of the rotating optical recording medium; and an actuator mounted with the optical head that scans and drives the optical head. An optical information recording/reproducing apparatus comprising: an optical information recording/reproducing apparatus, wherein the actuator is equipped with any one of the optical integrated heads set forth in claims 7 to 10 above. Device.
JP02228172A 1990-08-31 1990-08-31 Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide Expired - Fee Related JP3086239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02228172A JP3086239B2 (en) 1990-08-31 1990-08-31 Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02228172A JP3086239B2 (en) 1990-08-31 1990-08-31 Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide

Publications (2)

Publication Number Publication Date
JPH04110805A true JPH04110805A (en) 1992-04-13
JP3086239B2 JP3086239B2 (en) 2000-09-11

Family

ID=16872353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02228172A Expired - Fee Related JP3086239B2 (en) 1990-08-31 1990-08-31 Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide

Country Status (1)

Country Link
JP (1) JP3086239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Also Published As

Publication number Publication date
JP3086239B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
US5481636A (en) Wavelength conversion element
JP5164192B2 (en) Optical waveguide substrate and harmonic generation device
EP0753768B1 (en) Wavelength changing device and laser beam generating apparatus
US5022729A (en) Optical waveguide and second harmonic generator
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
JPH09269430A (en) Production of optical waveguide device
EP0556599B1 (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
JP3848093B2 (en) Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
Hinkov et al. Collinear acoustical TM-TE mode conversion in proton exchanged Ti: LiNbO/sub 3/waveguide structures
JP2003270467A (en) Method of manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
US6999668B2 (en) Method for manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
US20030026573A1 (en) Optical waveguide device and coherent light source and optical apparatus using the same
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
US4946240A (en) Optical harmonic generation device
JP4084460B2 (en) Optical waveguide, optical wavelength conversion element, short wavelength light generator and optical pickup using the optical waveguide
JPH04110805A (en) Proton exchange optical waveguide and production thereof
JPH06160930A (en) Second harmonic wave generating element and second harmonic wave generator and its production
JP2851935B2 (en) Collinear optical deflector, method of manufacturing the same, optical deflector, optical integrated head, and optical information recording / reproducing device
JPH05232538A (en) Wavelength converting element and its production
JPH03260604A (en) Optical waveguide and production thereof and optical deflector constituted by using the waveguide, optical integrating head and optical information recording and reproducing device
JPH0627427A (en) Optical function element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH05173213A (en) Guidewave type second harmonic generating element
JPH0212135A (en) Second harmonic wave generating element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees