JPH0212135A - Second harmonic wave generating element - Google Patents

Second harmonic wave generating element

Info

Publication number
JPH0212135A
JPH0212135A JP16080488A JP16080488A JPH0212135A JP H0212135 A JPH0212135 A JP H0212135A JP 16080488 A JP16080488 A JP 16080488A JP 16080488 A JP16080488 A JP 16080488A JP H0212135 A JPH0212135 A JP H0212135A
Authority
JP
Japan
Prior art keywords
single crystal
linbo3
laser light
waveguide layer
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16080488A
Other languages
Japanese (ja)
Inventor
Masaya Yamada
雅哉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP16080488A priority Critical patent/JPH0212135A/en
Publication of JPH0212135A publication Critical patent/JPH0212135A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure

Abstract

PURPOSE:To allow the generation of the second harmonic wave of semiconductor laser light by an LiNbO3 material by providing a waveguide layer consisting of LiNbO3 on a single crystal substrate layer consisting of LiTaO3. CONSTITUTION:The laser light having 0.82-0.84mum wavelength is determined as the light source wave of a basic wave. The LiNbO3 crystal waveguide layer 2 having 3.7-9.0mum film thickness is formed on the LiTaO3 single crystal substrate 1 and the incident angle of the laser light on the optical axis (Z axis) of the crystal is set at + or -0-+ or -35 deg.. The most preferable condition of the second harmonic wave generating element is the case in which the film thickness of the LiNbO3 crystal waveguide layer is 3.7-3.8mum and the incident angle of the laser light on the optical axis (Z axis) of the single crystal of the LiTaO3 is 0 deg.+ or -0.5 deg.. The generation of the second harmonic wave of the semiconductor laser light of 0.8mum band by the LiNbO3 is enabled in this way and the wide utilization of the element to optical disk memories and CD players, etc., is possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光デイスクメモリやCDプレーヤ等に使用さ
れる第2高調波発生(SHG)素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a second harmonic generation (SHG) element used in optical disk memories, CD players, and the like.

(従来の技術) 第2高調波発生(SHG)素子とは、非線形光学効果を
もつ光学結晶材料の非線形光学効果を利用して波長λの
レーザを1/2λの波長に変換する素子であって、出力
する光の波長が1/2となり、記録密度を4倍にするこ
とができるため、光デイスクメモリを始めとして、CD
プレーヤ、レーザプリンタ。
(Prior Art) A second harmonic generation (SHG) element is an element that converts a laser beam of wavelength λ to a wavelength of 1/2λ by utilizing the nonlinear optical effect of an optical crystal material having a nonlinear optical effect. , the wavelength of the output light is halved, and the recording density can be quadrupled.
player, laser printer.

フォトリソグラフィー等に応用されつつある。It is being applied to photolithography, etc.

従来、SHG素子には、高出力レーザを光源とし、非線
形光学結晶のバルク単結晶が用いられてきた。
Conventionally, a bulk single crystal of a nonlinear optical crystal has been used in an SHG element using a high-power laser as a light source.

しかし、近年、光デイスク装置、レーザプリンタ等の装
置全体を小型化する要求が強いこと、ガスレーザは光変
調のため外部に変澗器が必要であるのに対し、半導体レ
ーザは直接変調が可能であること、及び半導体レーザは
ガスレーザに比べて安価で取扱が容易であること等の理
由により、光源としてガスレーザに代えて半導体レーザ
が主に用いられるようになっている。
However, in recent years, there has been a strong demand for miniaturization of entire devices such as optical disk devices and laser printers, and while gas lasers require an external transformer for optical modulation, semiconductor lasers can be directly modulated. For these reasons, and because semiconductor lasers are cheaper and easier to handle than gas lasers, semiconductor lasers have come to be mainly used as a light source instead of gas lasers.

半導体レーザを光源とする場合、数mWから数十mWの
入力光で高い変換効率を得る必要上、薄膜導波路構造の
SHG素子が用いられる。すなわち、薄膜導波路を用い
た第2高調波光の発生は、■薄膜に集中した光のエネル
ギーを利用できること、■光波が薄膜内に閉じ込められ
、広がらないために長い距離にわたって相互作用を行な
わせ得ること、■バルクでは位相整合できない物質でも
薄膜のモード分散を利用することにより位相整合ができ
ること、などの利点を有するからである(深山、宮崎;
電子通信学会技術研究報告、0QE75−6 (197
5)、宮崎、星野、赤尾;電磁界理論研究会資料、EM
T−78−5(1978))。
When a semiconductor laser is used as a light source, an SHG element having a thin film waveguide structure is used because it is necessary to obtain high conversion efficiency with input light of several mW to several tens of mW. In other words, the generation of second harmonic light using a thin film waveguide has the following advantages: (1) it is possible to utilize the energy of light concentrated in the thin film, and (2) the light waves are confined within the thin film and do not spread, allowing interaction to occur over long distances. This is because it has the advantage of being able to achieve phase matching even in materials that cannot be phase matched in the bulk by utilizing mode dispersion in thin films (Miyama, Miyazaki;
Institute of Electronics and Communication Engineers Technical Research Report, 0QE75-6 (197
5), Miyazaki, Hoshino, Akao; Electromagnetic Field Theory Study Group Materials, EM
T-78-5 (1978)).

ところで、非線形光学効果をもつ光学結晶材料としては
、ニオブ酸リチウム(LiNbOa )、タンタル酸リ
チウム(LiTaO,)、KTiOPO4,KNbO,
、Ha、 NaNb、0.s、 Ba、LiNb、0.
s等があるが、上記のように薄膜導波路構造とするため
には、光導波路を形成することが必要である。そして、
良質な光導波路を形成できる材料としては、LiNbO
3が最も適している。
By the way, optical crystal materials with nonlinear optical effects include lithium niobate (LiNbOa), lithium tantalate (LiTaO,), KTiOPO4, KNbO,
, Ha, NaNb, 0. s, Ba, LiNb, 0.
However, in order to obtain a thin film waveguide structure as described above, it is necessary to form an optical waveguide. and,
LiNbO is a material that can form a high-quality optical waveguide.
3 is the most suitable.

しかし、従来のLiNbO3材料を使用し、Ti拡散、
プロトン交換、外拡散等の方法で光導波路を形成した場
合、半導体レーザ光源波長(λ=0.82〜0.84μ
m)でSHGを行なうための位相整合を取ることができ
ないという問題があった(山田、宮崎;電子情報通信学
会技術研究報告、MW87〜113 (1988) )
 。
However, using conventional LiNbO3 material, Ti diffusion,
When an optical waveguide is formed using methods such as proton exchange and external diffusion, the wavelength of the semiconductor laser light source (λ = 0.82 to 0.84 μ
(Yamada, Miyazaki; Institute of Electronics, Information and Communication Engineers Technical Research Report, MW87-113 (1988))
.

すなわち、位相整合とは、入射レーザ光の導波路中での
屈折率(実効屈折率)と、第2高調波光の実効屈折率と
を一致させることであるが、物質の屈折率は、一般に波
長によって変化するため、入射レーザ光波長を変化させ
ることによって、位相整合条件も変化し、LiNbO3
材料の場合には0.82〜0.84μmの半導体レーザ
光源波長では位相整合が不可能になるのである。
In other words, phase matching is to match the refractive index (effective refractive index) of the incident laser light in the waveguide with the effective refractive index of the second harmonic light, but the refractive index of a material generally varies depending on the wavelength. Therefore, by changing the wavelength of the incident laser light, the phase matching condition also changes, and LiNbO3
In the case of materials, phase matching becomes impossible at a semiconductor laser light source wavelength of 0.82 to 0.84 μm.

(解決すべき課題) 本発明者は、LiNbO3材料を使用し、半導体レーザ
光源を用いて、基本波光と第2高調波光の位相整合をと
れるように種々検討した結果、基板としてLiTa0□
を用い、その上にLiNbO3薄膜を形成し。
(Problems to be Solved) As a result of various studies using LiNbO3 material and a semiconductor laser light source to achieve phase matching between the fundamental wave light and the second harmonic light, the inventor found that LiTa0□ as a substrate.
was used to form a LiNbO3 thin film thereon.

これに導波路を設けることにより位相整合が可能となる
ことを見出し、本発明を完成するに至ったもので、本発
明の目的は、LiNbO3材料により、半導体レーザ光
の第2高調波発生が可能な素子を提供するにある。
It was discovered that phase matching was possible by providing a waveguide in this material, and the present invention was completed.The purpose of the present invention is to make it possible to generate the second harmonic of semiconductor laser light using LiNbO3 material. The goal is to provide a unique element.

(課題を解決するための手段) 本発明は、波長が0.82〜0.84μmのレーザ光を
基本波光源波長とし、LiTaO3単結晶基板上に膜厚
が3.7〜9.0μmのLiNbO3結晶導波層が形成
されてなり、結晶の光学軸(Z軸)に対するレーザ光の
入射角を±O″〜±35°に設定したことを特徴とする
第2高調波発生素子である。
(Means for Solving the Problem) The present invention uses a laser beam having a wavelength of 0.82 to 0.84 μm as a fundamental wave light source wavelength, and a LiNbO3 film with a thickness of 3.7 to 9.0 μm on a LiTaO3 single crystal substrate. This is a second harmonic generation element characterized in that a crystal waveguide layer is formed and the incident angle of laser light with respect to the optical axis (Z axis) of the crystal is set to ±35°.

すなわち、本発明の第2高調波発生素子の層構造を図示
すると、第1図のようになり、LiTaO3よりなる単
結晶基板層1の上にLiNbO3よりなる導波層2を設
け、更に導波層2の上面に空気の上層部3の三層誘電体
導波路を構成するものであって、各層における屈折率は
、第1表に示すようなものである。
That is, the layered structure of the second harmonic generation element of the present invention is shown in FIG. 1, in which a waveguide layer 2 made of LiNbO3 is provided on a single crystal substrate layer 1 made of LiTaO3, and A three-layer dielectric waveguide is constructed with an air upper layer 3 on the upper surface of the layer 2, and the refractive index of each layer is as shown in Table 1.

第  1  表 基本波波長 0.83μm 表中、no 、 neはそれぞれ、常光線、異常光線に
対する屈折率である。また、Vは基本波、2vは第2高
調波を示す。
Table 1: Fundamental wave wavelength: 0.83 μm In the table, no and ne are the refractive indexes for ordinary rays and extraordinary rays, respectively. Further, V indicates a fundamental wave, and 2v indicates a second harmonic.

なお、実際の導波層及び基板層の屈折率は、導波路の作
成方法により多少変動するため、ここに示した値は代表
例であり、絶対的なものではない。
Note that the actual refractive index of the waveguide layer and the substrate layer varies somewhat depending on the method of creating the waveguide, so the values shown here are representative examples and are not absolute.

第1表の屈折率の値を用いて第2高調波発生についての
位相整合条件を計算したところ、位相整合角(結晶の光
学軸に対するレーザ光の入射角)の範囲がθ〜35°、
そのときの導波層の膜厚は3.7〜9μmとなる。
When the phase matching conditions for second harmonic generation were calculated using the refractive index values in Table 1, the range of the phase matching angle (the angle of incidence of the laser beam with respect to the optical axis of the crystal) was θ to 35°,
The thickness of the waveguide layer at that time is 3.7 to 9 μm.

そして、本発明の第2高調波発生素子の最も好ましい条
件としては、LiNbO3結晶導波層の膜厚が3.7〜
3.8 μm、 LiTaO3単結晶の光学軸(Z軸)
に対するレーザ光の入射角がO°±0.5°である場合
である。なお、この場合、各層の屈折率は第1表に示し
た値であることが好ましい。
The most preferable condition for the second harmonic generation element of the present invention is that the thickness of the LiNbO3 crystal waveguide layer is 3.7~
3.8 μm, optical axis (Z axis) of LiTaO3 single crystal
This is a case where the incident angle of the laser beam with respect to the laser beam is 0°±0.5°. In this case, the refractive index of each layer is preferably the value shown in Table 1.

この場合、単結晶基板層の結晶の光学軸(Z軸)の方位
に対するレーザ光の入射角は、約0°(光軸方向伝搬)
であるため、入射角の許容誤差範囲が広くなるという利
点を有する。
In this case, the incident angle of the laser beam with respect to the optical axis (Z-axis) direction of the crystal of the single crystal substrate layer is approximately 0° (propagation in the optical axis direction).
Therefore, it has the advantage of widening the tolerance range of the incident angle.

次に、本発明に係る第2高調波発生素子の製造方法とし
ては、基板層の上にスパッタリングなどの公知の薄膜作
成技術を使用することによって容易に導波層を形成する
ことができる。そして、導波層上にフォトリソグラフィ
ーとRFスパッタリングによりTi導波路パターンを形
成し、これをエツチングマスクとしてイオンビームエツ
チングすることにより作成する等の方法をとることがで
きる。
Next, as a method for manufacturing the second harmonic generation element according to the present invention, a waveguide layer can be easily formed on a substrate layer by using a known thin film forming technique such as sputtering. Then, a method such as forming a Ti waveguide pattern on the waveguide layer by photolithography and RF sputtering and performing ion beam etching using this pattern as an etching mask can be used.

(実施例) 以下、本発明に係る第2高調波発生素子の作成方法を第
2図及び第3図を参照しつつ詳細に説明する。
(Example) Hereinafter, a method for manufacturing a second harmonic generating element according to the present invention will be explained in detail with reference to FIGS. 2 and 3.

[実施例1] 厚さ0.5mmのXカットLiTaO3単結晶ウェハー
をワイヤーカッターで切断して、5mm X 5mmの
基板1とした。このとき、切断方向は、それぞれ単結晶
のY軸と2軸に沿う方向とした。このLiTaO3基板
上にRF(高周波)スパッタリング法により、約4μm
の厚さのLiNbO3単結晶薄膜2を形成した。更に、
イオンビームエツチングを行ない、LiNbO3薄膜を
エツチングして厚さ3.7μmの導波層を形成した。
[Example 1] An X-cut LiTaO3 single crystal wafer with a thickness of 0.5 mm was cut with a wire cutter to obtain a substrate 1 with a size of 5 mm x 5 mm. At this time, the cutting direction was set along the Y axis and two axes of the single crystal. Approximately 4 μm thick sputtering was performed on this LiTaO3 substrate by RF (radio frequency) sputtering
A LiNbO3 single crystal thin film 2 having a thickness of . Furthermore,
Ion beam etching was performed to etch the LiNbO3 thin film to form a waveguide layer with a thickness of 3.7 μm.

このようにして、LiTaO3単結晶薄板1とLiNb
0゜単結晶薄膜2からなるスラブ型導波路を形成した。
In this way, LiTaO3 single crystal thin plate 1 and LiNb
A slab-type waveguide consisting of a 0° single crystal thin film 2 was formed.

このスラブ型導波路に対して、波長0.83μmの半導
体レーザ光を入射させたところ、波長0.415μmの
第2高調波が発生した。このときの第2高調波発生の変
換効率は半導体レーザ光入射パワー20mVに対して2
 X 10−’であった。
When a semiconductor laser beam with a wavelength of 0.83 μm was made incident on this slab type waveguide, a second harmonic with a wavelength of 0.415 μm was generated. The conversion efficiency of the second harmonic generation at this time is 2 for a semiconductor laser light incident power of 20 mV.
It was X 10-'.

[実施例2] 厚さ0.5+*+aのXカットLiTaO3単結晶ウェ
ハーをワイヤーカッターで切断して、5mm X 5m
taの基板1とした。このとき、切断方向は、それぞれ
単結晶のY軸と2軸に沿う方向とした。このLiTaO
3基板上にRF(高周波)スパッタリング法により、約
4μmの厚さのLiNbO3単結晶薄膜2を形成した。
[Example 2] An X-cut LiTaO3 single crystal wafer with a thickness of 0.5+*+a was cut with a wire cutter to 5 mm x 5 m.
It was set as the substrate 1 of ta. At this time, the cutting direction was set along the Y axis and two axes of the single crystal. This LiTaO
A LiNbO3 single crystal thin film 2 having a thickness of approximately 4 μm was formed on the 3 substrates by RF (radio frequency) sputtering.

このLiNb0゜単結晶薄膜2上に、通常のフォトリソ
グラフィー技術とRF(高周波)スパッタリング法によ
り、約4μm、幅5μmのTi薄膜からなるパターン3
を形成した。このTiパターン3をエツチングマスクと
してイオンビームエツチングを行ない、 LiNbO3
薄膜をエツチングして幅5μmのチャンネル型導波層4
を形成した。
A pattern 3 made of a Ti thin film of approximately 4 μm and a width of 5 μm is formed on this LiNb0° single crystal thin film 2 by ordinary photolithography and RF (radio frequency) sputtering.
was formed. Ion beam etching is performed using this Ti pattern 3 as an etching mask, and LiNbO3
A channel type waveguide layer 4 with a width of 5 μm is formed by etching a thin film.
was formed.

最後に、残ったTiマスクを除去してLiTaO3単結
晶薄板1とLiNbO3単結晶薄膜4からなるチャンネ
ル型導波路を形成した。
Finally, the remaining Ti mask was removed to form a channel waveguide consisting of the LiTaO3 single crystal thin plate 1 and the LiNbO3 single crystal thin film 4.

このチャンネル型導波路に対して、波長0.83μmの
半導体レーザ光を入射させたところ、波長0.415μ
mの第2高調波が発生した。このときの第2高調波発生
の変換効率は半導体レーザ光入射パワー20+5w1C
対しテ4 X 10−’ 1’あった。
When a semiconductor laser beam with a wavelength of 0.83 μm was incident on this channel type waveguide, the wavelength was 0.415 μm.
The second harmonic of m was generated. The conversion efficiency of the second harmonic generation at this time is the semiconductor laser light input power of 20+5w1C.
On the other hand, there was 4 x 10-'1'.

(効 果) 以上述べたように、LiTaO3単結晶基板上にt、1
Nbo、薄膜からなる導波層を設けることにより、従来
不可能であったLiNbO3材料による0、8μm帯半
導体レーザ光の第2高調波発生を可能にし、光デイスク
メモリやCDプレーヤ等広く利用することができる。
(Effect) As mentioned above, t, 1 on a LiTaO3 single crystal substrate
By providing a waveguide layer made of Nbo thin film, it is possible to generate the second harmonic of 0.8 μm band semiconductor laser light using LiNbO3 material, which was previously impossible, and it can be widely used in optical disk memories, CD players, etc. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る第2高調波発生素子の導波路構
造を示した説明図、第2図および第3図は、本発明に係
る第2高調波発生素子の製造工程を説明した図である。 I   LiTaO3基板 2   LJbOa薄膜 3   Ti薄膜 4   LxNbO,導波層
FIG. 1 is an explanatory diagram showing the waveguide structure of the second harmonic generation element according to the present invention, and FIGS. 2 and 3 are illustrations of the manufacturing process of the second harmonic generation element according to the present invention. It is a diagram. I LiTaO3 substrate 2 LJbOa thin film 3 Ti thin film 4 LxNbO, waveguide layer

Claims (1)

【特許請求の範囲】 1 波長が0.82〜0.84μmのレーザ光を基本波
光源波長とし、LiTaO_3単結晶基板上に膜厚が3
.7〜9.0μmのLiNbO_3結晶導波層が形成さ
れてなり、結晶の光学軸(Z軸)に対するレーザ光の入
射角を±0°〜±35°に設定したことを特徴とする第
2高調波発生素子。 2 LiNbO_3結晶導波層の膜厚3.7〜3.8μ
mである請求項第1項記載の第2高調波発生素子。 3 LiTaO_3単結晶の光学軸(Z軸)に対するレ
ーザ光の入射角が0°±0.5°である請求項第1項記
載の第2高調波発生素子。 4 LiNbO_3導波層およびLiTaO_3単結晶
基板層の屈折率が第1表に示すごとくであり、LiNb
O_3導波層の膜厚が3.7〜3.8μm、LiTaO
_3単結晶の光学軸(Z軸)に対するレーザ光の入射角
が0°±0.5°である請求項第1項記載の第2高調波
発生素子。
[Claims] 1. Laser light with a wavelength of 0.82 to 0.84 μm is used as the fundamental wave light source wavelength, and a film thickness of 3 μm is deposited on a LiTaO_3 single crystal substrate.
.. A second harmonic characterized in that a LiNbO_3 crystal waveguide layer with a thickness of 7 to 9.0 μm is formed, and the incident angle of the laser beam with respect to the optical axis (Z axis) of the crystal is set to ±0° to ±35°. Wave generating element. 2 LiNbO_3 crystal waveguide layer thickness 3.7-3.8μ
2. The second harmonic generating element according to claim 1, wherein the second harmonic generating element is m. 3. The second harmonic generating element according to claim 1, wherein the incident angle of the laser beam with respect to the optical axis (Z axis) of the LiTaO_3 single crystal is 0°±0.5°. 4 The refractive index of the LiNbO_3 waveguide layer and the LiTaO_3 single crystal substrate layer is as shown in Table 1, and the LiNbO_3
The thickness of the O_3 waveguide layer is 3.7 to 3.8 μm, LiTaO
_3 The second harmonic generating element according to claim 1, wherein the incident angle of the laser beam with respect to the optical axis (Z-axis) of the single crystal is 0°±0.5°.
JP16080488A 1988-06-30 1988-06-30 Second harmonic wave generating element Pending JPH0212135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16080488A JPH0212135A (en) 1988-06-30 1988-06-30 Second harmonic wave generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16080488A JPH0212135A (en) 1988-06-30 1988-06-30 Second harmonic wave generating element

Publications (1)

Publication Number Publication Date
JPH0212135A true JPH0212135A (en) 1990-01-17

Family

ID=15722800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16080488A Pending JPH0212135A (en) 1988-06-30 1988-06-30 Second harmonic wave generating element

Country Status (1)

Country Link
JP (1) JPH0212135A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009917A1 (en) * 1990-11-30 1992-06-11 Ibiden Co., Ltd. Thin film of lithium niobate single crystal
US5158823A (en) * 1990-06-22 1992-10-27 Ibide Co., Ltd. Second harmonic wave generating device
US5371812A (en) * 1992-01-21 1994-12-06 Ibden Co., Ltd. Waveguide type optical directional coupler
EP1176458A2 (en) * 2000-07-27 2002-01-30 Ngk Insulators, Ltd. Optical waveguide element
WO2014203931A1 (en) * 2013-06-21 2014-12-24 株式会社村田製作所 Light control element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158823A (en) * 1990-06-22 1992-10-27 Ibide Co., Ltd. Second harmonic wave generating device
WO1992009917A1 (en) * 1990-11-30 1992-06-11 Ibiden Co., Ltd. Thin film of lithium niobate single crystal
EP0515682A1 (en) * 1990-11-30 1992-12-02 Ibiden Co., Ltd. Thin film of lithium niobate single crystal
US5315432A (en) * 1990-11-30 1994-05-24 Ibiden Co., Ltd. Thin film of lithium niobate single crystal
EP0515682B1 (en) * 1990-11-30 2000-01-05 Ibiden Co., Ltd. Thin film of lithium niobate single crystal
US5371812A (en) * 1992-01-21 1994-12-06 Ibden Co., Ltd. Waveguide type optical directional coupler
EP1176458A2 (en) * 2000-07-27 2002-01-30 Ngk Insulators, Ltd. Optical waveguide element
EP1176458A3 (en) * 2000-07-27 2003-03-19 Ngk Insulators, Ltd. Optical waveguide element
WO2014203931A1 (en) * 2013-06-21 2014-12-24 株式会社村田製作所 Light control element

Similar Documents

Publication Publication Date Title
JPH05333395A (en) Optical wavelength conversion device
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPS60119522A (en) Optical waveguide
JPH0777712A (en) Local polarization control method for nonlinear optical material
JP2003270467A (en) Method of manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
JPH0212135A (en) Second harmonic wave generating element
US7405512B2 (en) Acoustic transducers having localized ferroelectric domain inverted regions
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JP2725302B2 (en) Waveguide type wavelength conversion element
US5205904A (en) Method to fabricate frequency doubler devices
TWI459110B (en) Nonlinear optical crystal optical waveguide and method for manufacturing the same
JPH04335328A (en) Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
WO2021111525A1 (en) Optical element and method for manufacturing same
JPH05232538A (en) Wavelength converting element and its production
JPH08304862A (en) Optical device
JPH03213832A (en) Second higher harmonics generating element and production thereof
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH0593931A (en) Wavelength conversion element and short wavelength laser beam source
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH0643513A (en) Wavelength converting element
JPH05297429A (en) Optical wavelength conversion element
JPH10161167A (en) Optical device
JPH08271940A (en) Production of optical device