JPH08271940A - Production of optical device - Google Patents

Production of optical device

Info

Publication number
JPH08271940A
JPH08271940A JP7622295A JP7622295A JPH08271940A JP H08271940 A JPH08271940 A JP H08271940A JP 7622295 A JP7622295 A JP 7622295A JP 7622295 A JP7622295 A JP 7622295A JP H08271940 A JPH08271940 A JP H08271940A
Authority
JP
Japan
Prior art keywords
substrate
electrode
main surface
shaped
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7622295A
Other languages
Japanese (ja)
Inventor
Yuji Kishida
裕司 岸田
Shigemasa Ogasawara
茂昌 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7622295A priority Critical patent/JPH08271940A/en
Publication of JPH08271940A publication Critical patent/JPH08271940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a process for producing an optical device capable of uniformly forming good periodic fine polarization inversion structures with good reproducibility even on a relatively thick substrate which is easy to handle particularly in a process. CONSTITUTION: This process for producing the optical device comprises depositing and forming periodic electrodes 3 consisting of band-shaped electrodes 3a and frame-shaped electrodes 3b connected with both ends of the band-shaped electrodes 3a on the inner side on one main surface of the substrate 1 consisting of a nonlinear ferroelectric substance subjected to single polarization, arranging a common electrode 4 on the other main surface of the substrate 1 and impressing an electric field between the periodic electrodes 3 and the canon electrode 4 so as to generate polarization inversion in the substrate 1. The contour of the frame-shaped electrodes 3b is formed to a disk shape or a shape constituting a curved shape at the corners.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば光情報システム
等に使用される光第2高調波発生素子や光変調器などの
光デバイスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical device such as an optical second harmonic generating element or an optical modulator used in an optical information system or the like.

【0002】[0002]

【従来の技術】近年、光記録媒体に使用される半導体レ
ーザー発生手段などの光情報システム等に要求される小
型短波調コヒーレント光源として、光第2高調波発生
(以下、SHGと略記する)素子が注目されている。
2. Description of the Related Art In recent years, an optical second harmonic generating (hereinafter abbreviated as SHG) element has been used as a compact short-wave-mode coherent light source required for optical information systems such as semiconductor laser generating means used for optical recording media. Is attracting attention.

【0003】一般にSHG素子は、バルク型SHG素子
と導波路型SHG素子とに大別され、SHG素子の材料
としては、最近ではニオブ酸リチウム(LiNbO3
)、タンタル酸リチウム(LiTaO3 )、KTiO
PO4 、ニオブ酸カリウム(KNbO3 )等の無機酸化
物、種々の有機非線形材料が大きな非線形光学定数を有
するために好適に使用される。これら材料の中で、特に
LiNbO3 やLiTaO3 は導波路作製技術が確立さ
れており、かつ比較的大きな非線形光学定数を有するの
で、導波路型SHG素子として大変有望視されている。
Generally, SHG elements are roughly classified into bulk type SHG elements and waveguide type SHG elements. Recently, lithium niobate (LiNbO3) has been used as a material for the SHG elements.
), Lithium tantalate (LiTaO3), KTiO
Inorganic oxides such as PO 4 and potassium niobate (KNbO 3) and various organic nonlinear materials are preferably used because they have large nonlinear optical constants. Among these materials, LiNbO3 and LiTaO3 are particularly promising as a waveguide-type SHG element because their waveguide fabrication technology has been established and they have relatively large nonlinear optical constants.

【0004】特に、導波路型SHG素子の特徴は、以下
に述べる疑似位相整合法により非線形光学係数d33を用
いることができる点にある。d33は他の非線形光学係数
より数倍程度大きく(例えばLiNbO3 におけるd33
は、d31に比して約6倍大きい)、このため高い変換効
率の達成が可能である。また、光の閉じ込めにより長い
伝搬距離に渡って高い光強度密度を実現できる。
In particular, the characteristic of the waveguide type SHG element is that the nonlinear optical coefficient d 33 can be used by the quasi phase matching method described below. d 33 is several times larger than other nonlinear optical coefficients (for example, d 33 in LiNbO 3
Is about 6 times larger than d 31 ), and thus high conversion efficiency can be achieved. Further, by confining light, a high light intensity density can be realized over a long propagation distance.

【0005】従来より導波路型SHG素子は、素子本体
の表層に導波路がTi等の金属の熱拡散法等により作製
されている。そして、導波路の一端に角周波数ωの基本
波(伝搬定数β(ω))を入射させると、他端から基本
波を含む角周波数2ω(伝搬定数β(2ω))の波が出
射される。
In the conventional waveguide type SHG element, the waveguide is formed on the surface layer of the element body by a thermal diffusion method of a metal such as Ti. Then, when a fundamental wave (propagation constant β (ω)) of angular frequency ω is incident on one end of the waveguide, a wave of angular frequency 2ω (propagation constant β (2ω)) including the fundamental wave is emitted from the other end. .

【0006】しかし、一般に2β(ω)≠β(2ω)の
関係があるために位相整合条件が満足されず、導波路内
の任意位置から生じたβ(2ω)の素波は互いに干渉し
打ち消され、有効にSHG変換されない。
However, since the relationship of 2β (ω) ≠ β (2ω) is generally satisfied, the phase matching condition is not satisfied, and the elementary waves of β (2ω) generated from arbitrary positions in the waveguide interfere with each other and cancel each other. Therefore, SHG conversion is not performed effectively.

【0007】そこで、有効にSHG変換させるために、
基本波と高調波との伝搬定数の差を光学的な周期構造で
補償して位相整合をとる必要がある。この方法は疑似位
相整合と呼ばれ、LiNbO3 あるいはLiTaO3 等
の強誘電体結晶では、非線形光学係数の正負が誘電分極
の極性に対応する性質を利用し、周期的に分極を反転さ
せることによる光学的周期構造が注目されている。
Therefore, in order to effectively perform SHG conversion,
It is necessary to compensate for the difference in propagation constant between the fundamental wave and the harmonic with an optical periodic structure to achieve phase matching. This method is called quasi-phase matching, and in a ferroelectric crystal such as LiNbO3 or LiTaO3, the property that the positive / negative of the nonlinear optical coefficient corresponds to the polarity of the dielectric polarization is used, and the optical polarization The periodic structure is drawing attention.

【0008】この分極反転の一方法として図9に示す電
界印加法が提案されている。ここで、21は導波路22
を含むLiNbO3 もしくはLiTaO3 の基板、23
は基板上にパターニングされた周期電極、24は基板の
裏面全体に装着された共通電極、25は高圧電源であ
る。
An electric field application method shown in FIG. 9 has been proposed as one method of this polarization reversal. Here, 21 is a waveguide 22
A substrate of LiNbO3 or LiTaO3 containing 23,
Is a periodic electrode patterned on the substrate, 24 is a common electrode mounted on the entire back surface of the substrate, and 25 is a high-voltage power supply.

【0009】この方法は、例えばzカットのLiNbO
3 もしくはLiTaO3 の基板21の導波路を形成させ
た面21a(LiNbO3 では+Z面、LiTaO3 で
は−Z面)に周期電極23を、他主面に共通電極24を
設け、電界を印加した場合に周期電極23と同一パター
ンの反転分極が得られる現象を利用し、疑似位相整合に
必要な分極の周期的反転構造を得る方法である(例え
ば、M.Yamada, N.Noda,and K.Watanabe : Integrated P
hotonics Research TuC2-1 (1992)を参照)。
This method is carried out by using, for example, z-cut LiNbO.
The periodic electrode 23 is provided on the surface 21a (+ Z surface for LiNbO3, -Z surface for LiTaO3) on which the waveguide of the substrate 21 of 3 or LiTaO3 is formed, and the common electrode 24 is provided on the other main surface. This is a method of obtaining a periodically inverted structure of polarization necessary for quasi-phase matching by utilizing the phenomenon that an inverted polarization having the same pattern as that of the electrode 23 is obtained (for example, M. Yamada, N. Noda, and K. Watanabe: Integrated. P
See hotonics Research TuC2-1 (1992)).

【0010】また、非線形強誘電体から成る基板に対し
て、150℃以下の比較的低温で高電圧を与え、分極反
転を行うようにした方法が提案されている(例えば、特
開平4−335620号公報を参照)。この方法によれ
ば、反転形状の制御性に優れ、かつ表面の汚染や熱によ
る屈折率や結晶性の変化がなく、容易にしかも低コスト
で周期的微細分極反転構造が得られるものとして注目さ
れている。
Further, a method has been proposed in which a high voltage is applied to a substrate made of a non-linear ferroelectric material at a relatively low temperature of 150 ° C. or lower to perform polarization reversal (for example, Japanese Unexamined Patent Publication No. 4-335620). (See the official gazette). According to this method, the controllability of the inversion shape is excellent, and there is no change in the refractive index or crystallinity due to surface contamination or heat, and it is noted that a periodic fine polarization inversion structure can be easily obtained at low cost. ing.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来で
は周期電極の輪郭線(外周線)は矩形状が一般的であ
り、図10に示すように、このような周期電極に電圧を
印加した場合に、強誘電体材料から成る基板11の厚み
方向にかかる成分の電界強度分布によれば、周期電極の
輪郭線の接線の傾きが急激に変化する部位、すなわち角
部において電界が集中し電界強度が局所的に非常に強く
なる。このため、比較的一様に電界がかかる電極から離
れた内側において、分極反転が生じる電界強度よりもわ
ずかに大きい電界強度を設定したとしても、局所的に電
界強度が強い部位で基板11が破壊しやすいといった問
題があった。
However, in the prior art, the outline (peripheral line) of the periodic electrode is generally rectangular, and when a voltage is applied to such periodic electrode as shown in FIG. According to the electric field intensity distribution of the component applied in the thickness direction of the substrate 11 made of a ferroelectric material, the electric field is concentrated at the portion where the inclination of the tangent line of the contour line of the periodic electrode changes abruptly, that is, the electric field intensity is It becomes very strong locally. Therefore, even if an electric field strength slightly higher than the electric field strength at which polarization reversal occurs is set on the inner side away from the electrode to which the electric field is applied relatively uniformly, the substrate 11 is destroyed at the site where the electric field strength is locally high. There was a problem that it was easy to do.

【0012】また、低い電界強度で分極反転を生じさせ
るために基板厚を薄くすると、基板の物理的な強度が弱
く、プロセス上ハンドリングが著しく悪化するといった
問題があった。
Further, if the thickness of the substrate is made thin in order to cause polarization reversal at a low electric field strength, the physical strength of the substrate becomes weak, and there is a problem that handling is significantly deteriorated in the process.

【0013】本発明は上記諸問題を克服し、特にプロセ
ス上におけるハンドリングの容易な比較的厚い基板にお
いても、良好な周期微細分極反転構造を均一にかつ再現
性良く形成することが可能な光デバイスの製造方法を提
供することを目的とする。
The present invention overcomes the above-mentioned problems, and in particular, an optical device capable of forming a good periodic fine polarization inversion structure uniformly and with good reproducibility even on a relatively thick substrate which is easy to handle in the process. It aims at providing the manufacturing method of.

【0014】[0014]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明の光デバイスの製造方法は、単一分域化さ
れた非線形強誘電体から成る基板の一主面に、帯状電極
と該帯状電極の両端が内側に接続されている枠状電極と
から成る周期電極を被着形成するとともに、前記基板の
他の主面に共通電極を配置し、前記周期電極と前記共通
電極との間に電界を印加することによって前記基板に分
極反転を生ぜしめるようにした光デバイスの製造方法で
あって、前記枠状電極の輪郭は円形状もしくは角部が曲
状を成す形状であることを特徴とする。
In order to achieve the above-mentioned object, a method of manufacturing an optical device according to the present invention comprises a strip electrode and a strip electrode on one main surface of a substrate made of a non-linear ferroelectric material having a single domain. A periodic electrode composed of a frame-shaped electrode in which both ends of the strip-shaped electrode are connected to the inside is adhered and formed, and a common electrode is arranged on the other main surface of the substrate, and the periodic electrode and the common electrode are arranged. A method for manufacturing an optical device in which a polarization inversion is caused in the substrate by applying an electric field between them, wherein the outline of the frame-shaped electrode has a circular shape or a shape in which corners are curved. Characterize.

【0015】また、単一分域化された非線形強誘電体か
ら成る基板の一主面に帯状の絶縁膜を所定間隔を空けて
複数配列するとともに、該絶縁膜を含む基板の一主面を
円形状もしくは角部が曲状を成す輪郭の導電体膜で被覆
し、前記基板の他の主面に共通電極を配置し、前記導電
体膜と前記共通電極との間に電界を印加することによっ
て前記基板に分極反転を生ぜしめるようにした光デバイ
スの製造方法。
In addition, a plurality of strip-shaped insulating films are arranged at a predetermined interval on one main surface of the substrate made of a single-domain non-linear ferroelectric material, and one main surface of the substrate including the insulating film is Covering with a conductor film having a circular shape or a curved outline with corners, arranging a common electrode on the other main surface of the substrate, and applying an electric field between the conductor film and the common electrode. A method for manufacturing an optical device in which polarization reversal is caused in the substrate by the method.

【0016】また、輪郭が円形状もしくは角部が曲状を
成す形状である板状導電体の一主面に、帯状の周期電極
と帯状の絶縁膜とを交互に配列被着するとともに、単一
分域化された非線形強誘電体から成る基板の一主面に、
前記板状導電体の一主面側を載置し、前記基板の他の主
面に共通電極を配置し、前記板状導電体と前記共通電極
との間に電界を印加することによって前記基板に分極反
転を生ぜしめるようにした。
Further, strip-shaped periodic electrodes and strip-shaped insulating films are alternately arranged and deposited on one main surface of a plate-shaped conductor whose contour is circular or whose corners are curved. On the main surface of the substrate made of the non-linear ferroelectric material with one domain,
The plate-shaped conductor is placed on one main surface side, a common electrode is arranged on the other main surface of the substrate, and an electric field is applied between the plate-shaped conductor and the common electrode to form the substrate. The polarization reversal is caused.

【0017】さらに、前記絶縁膜はSiO2 またはSi
3 4 から成り、かつ厚さが5000Å以下であること
を特徴とする。
Further, the insulating film is SiO 2 or Si.
It is characterized by being made of 3 N 4 and having a thickness of 5000 Å or less.

【0018】なお、円形状とは円だけなく楕円状等の曲
線だけで構成される形状をさすものとし、角部が曲状の
形状とは曲線と直線とから成る形状をさすものとし、数
学的には輪郭線の接線の傾きが連続的に変化するものを
さす。
Note that the circular shape means a shape formed only of a curve such as an ellipse as well as a circle, and the curved shape of a corner means a shape consisting of a curve and a straight line. Specifically, it means that the slope of the tangent of the contour line changes continuously.

【0019】[0019]

【作用】本発明によれば、周期電極の輪郭が円形状もし
くは角部が曲状の形状であるので、従来のように電極の
エッジ部(角部)で発生していた電界の集中を最小限に
抑えることが可能となり、破壊電界と抗電界マージンを
大きくとることができる。
According to the present invention, since the periodic electrode has a circular contour or a curved corner, the concentration of the electric field generated at the edge (corner) of the electrode as in the prior art is minimized. It becomes possible to suppress the breakdown electric field and the coercive electric field margin to a large extent.

【0020】[0020]

【実施例】以下、図面に基づき本発明に係る実施例につ
いて説明する。図1に示す非線形強誘電体の基板1は分
極反転を行った後に光導波路を形成するSHG素子に用
いるものであるが、光変調器等の各種光デバイスの構成
要素であってもよい。
Embodiments of the present invention will be described below with reference to the drawings. The substrate 1 of the nonlinear ferroelectric substance shown in FIG. 1 is used for an SHG element that forms an optical waveguide after polarization inversion, but may be a constituent element of various optical devices such as an optical modulator.

【0021】まず、非線形強誘電体から成る基板1とし
て、SHG素子として高出力が期待できるニオブ酸リチ
ウム(LiNbO3 )の単結晶で、かつ主面1a,1b
がZ面となるように切り出した、ハンドリングが容易な
厚み約300μm のものを使用した。そして、後記する
周期電極を設ける主面1aを+Z面とし主面1bを−Z
面として、主面1aから容易に反転が生じるようにす
る。
First, as the substrate 1 made of a non-linear ferroelectric material, a single crystal of lithium niobate (LiNbO 3 ) which can be expected to have a high output as an SHG element, and the main surfaces 1a and 1b are used.
Was cut out so as to have the Z plane, and the thickness was about 300 μm for easy handling. The main surface 1a on which the periodic electrode described later is provided is the + Z surface, and the main surface 1b is -Z.
As the surface, the inversion easily occurs from the main surface 1a.

【0022】次に、例えばアルミニウムや銀等の導電性
材料を蒸着法やスパッタリング法、及びフォトリソグラ
フィにより所定形状にパターニングして周期電極である
第1の電極体3を形成した。ここで、第1の電極体3は
帯状電極3aとこの帯状電極3aの両端が内側に接続さ
れている枠状電極3bとから成るものであって、例えば
図示のごとくに枠状電極3bの輪郭を円形としている。
なお、枠状電極3bは輪郭線が連続でかつその接線の傾
きが連続的に変化するもの、すなわち、角部が無いか角
部が角張っていないもの(曲状)であればよい。
Next, a conductive material such as aluminum or silver was patterned into a predetermined shape by a vapor deposition method, a sputtering method, or photolithography to form the first electrode body 3 as a periodic electrode. Here, the first electrode body 3 is composed of a strip-shaped electrode 3a and a frame-shaped electrode 3b in which both ends of the strip-shaped electrode 3a are connected to the inside, and for example, as shown in the figure, the outline of the frame-shaped electrode 3b. Is circular.
It should be noted that the frame-shaped electrode 3b may be one having a continuous contour line and a gradient of its tangent line continuously changing, that is, one having no corners or no corners (bent shape).

【0023】さらに、基板1の他の主面1b側に第1の
電極体3に対応する側に第2の電極体4を第1の電極体
3の被着形成法と同様な方法で共通電極として成膜し
た。
Further, a second electrode body 4 is formed on the other main surface 1b side of the substrate 1 on the side corresponding to the first electrode body 3 by a method similar to the method of depositing and forming the first electrode body 3. A film was formed as an electrode.

【0024】また、上記と同様な方法で比較用基板とし
て図2に示すように第1の電極体6を矩形状の周期電極
としたものを複数作製した。
In the same manner as above, a plurality of substrates for comparison, each having a rectangular periodic electrode as the first electrode body 6 were prepared as shown in FIG.

【0025】そしてしかる後に、第1の電極体3(6)
と第2の電極体4とに接続した高電圧電源5により、1
00msec前後のパルス形電圧を第1の電極体3(6)と
第2の電極体4との間に印加した。
Then, after that, the first electrode body 3 (6)
And a second high voltage power source 5 connected to the second electrode body 4
A pulse voltage of about 00 msec was applied between the first electrode body 3 (6) and the second electrode body 4.

【0026】その結果、図2に示した比較用基板11
は、図10に示すように局所的に電界強度が強い部位が
存在し、印加した電界強度が約17kV/mm程度で絶縁
破壊が生じ、分極反転が行えたものが少なく再現性が悪
いものであった。一方、本発明に係る実施例では図3に
示すような電界強度分布を示し、電界強度の低い中央部
分と高い周縁部との差が小さく、電界強度が約22kV
/mmとなる前に分極反転が生じ、それ以上の電界を印加
すると絶縁破壊が起きた。この方法により、従来と比較
して絶縁破壊電界が約5kV/mm程度も高くなることを
確認し、再現性よく分極反転を行わせることができた。
As a result, the comparative substrate 11 shown in FIG.
As shown in FIG. 10, there is a portion where the electric field strength is locally strong, and when the applied electric field strength is about 17 kV / mm, dielectric breakdown occurs, and polarization reversal is rare and reproducibility is poor. there were. On the other hand, in the example according to the present invention, the electric field strength distribution as shown in FIG. 3 is shown, the difference between the central portion having low electric field strength and the peripheral portion having high electric field strength is small, and the electric field strength is about 22 kV.
The polarization reversal occurred before the value became / mm, and dielectric breakdown occurred when an electric field higher than that was applied. By this method, it was confirmed that the dielectric breakdown electric field was increased by about 5 kV / mm as compared with the conventional method, and polarization reversal could be performed with good reproducibility.

【0027】なお、この実施例において第1の電極体3
が被着されていない領域(分極反転させない領域)2
に、熱的・時間的に安定な性質の絶縁膜(SiO2 また
はSi3 4 )を、例えばスパッタリング法やCVD法
により所定の厚さに被着形成してもよい。この絶縁膜2
の膜厚は制御する分極反転比(分極領域の幅をa,bと
した場合に、a:bをいう)に応じて変化させることが
できるが、約5000Åより厚いと電界のかかり具合が
大きく変化するため、所望の反転が容易に得られなくな
ることが判明している。
In this embodiment, the first electrode body 3
Area where is not deposited (area where polarization is not inverted) 2
In addition, an insulating film (SiO 2 or Si 3 N 4 ) having a thermally and temporally stable property may be formed to a predetermined thickness by, for example, a sputtering method or a CVD method. This insulating film 2
The film thickness of can be changed according to the controlled polarization inversion ratio (a: b when the width of the polarization region is a, b). It has been found that the desired inversion cannot be easily obtained because it changes.

【0028】また、電界の印加は望ましくは真空中ある
いはシリコーンオイル等の絶縁油中等で行う。すなわ
ち、電極間に高電圧が印加されても放電が生じないよう
に真空中などの絶縁媒体中で行うとよいのである。
The electric field is preferably applied in vacuum or in insulating oil such as silicone oil. That is, it is advisable to carry out in an insulating medium such as vacuum so that no discharge occurs even if a high voltage is applied between the electrodes.

【0029】次に、第1の電極体3及び第2金属電極4
を相応のエッチング液(例えばアルミニウムであれば、
2 PO4 :HNO3 :CH3 COOH:H2 Oを1
6:1:2:1の割合で混合したもの)で除去する。こ
のようにして、微細でかつ均一な周期分極反転構造を長
さ約10mmに渡って形成することができた。
Next, the first electrode body 3 and the second metal electrode 4
A corresponding etching solution (for example, aluminum,
H 2 PO 4 : HNO 3 : CH 3 COOH: H 2 O 1
6: 1: 2: 1 mixture). In this way, a fine and uniform periodically poled structure could be formed over a length of about 10 mm.

【0030】次に他の実施例について説明する。上記実
施例では基板1に第1及び第2の電極体や絶縁膜を被着
形成して、この一体物に対して電界を印加するようにし
て分極反転構造を形成したが、第1の電極体及び/また
は第2の電極体を基板とは別体に用意し、第1の電極体
に絶縁膜を形成して基板を2つの金属電極で挟んで電界
を印加するようにしてもよい。また、第1の電極体を共
通電極として、この第1の電極体上にストライプ状に絶
縁膜を形成するようにしてもよい。このようにして分極
反転構造を形成した例について以下に説明する。
Next, another embodiment will be described. In the above-described embodiment, the first and second electrode bodies and the insulating film are formed by depositing on the substrate 1, and the domain-inverted structure is formed by applying the electric field to the integrated body. The body and / or the second electrode body may be prepared separately from the substrate, an insulating film may be formed on the first electrode body, and the substrate may be sandwiched between two metal electrodes to apply an electric field. Further, the first electrode body may be used as a common electrode, and the insulating film may be formed in a stripe shape on the first electrode body. An example of forming the domain-inverted structure in this way will be described below.

【0031】まず、図4に示すように第1の電極体Aを
一様電極とし、図5及び図6に示す断面図に基づきその
作製方法について説明する。導電体すなわち低抵抗で、
望ましくは堅固な電極板14を用意する。本実施例では
電極板の厚さ約0.5mmのものを使用し、その片面を鏡
面に仕上げたアルミニウムの金属チップを使用したが、
金属メッキを施した樹脂であってもよい。
First, as shown in FIG. 4, the first electrode body A is used as a uniform electrode, and its manufacturing method will be described based on the sectional views shown in FIGS. 5 and 6. A conductor or low resistance,
Preferably, a solid electrode plate 14 is prepared. In this embodiment, an electrode plate having a thickness of about 0.5 mm was used, and an aluminum metal tip whose one surface was mirror-finished was used.
It may be a resin plated with metal.

【0032】次に、この電極板14の一主面上に熱的・
時間的に安定な絶縁膜12を帯状(周期状)に厚さ50
00Å以下に被着形成した。さらに、レジストをフォト
リソグラフィにより絶縁膜12上にのみ残留させる。
Next, the main surface of the electrode plate 14 is thermally
The time-stable insulating film 12 has a thickness of 50 (strips).
Deposition was performed under 00 Å. Further, the resist is left only on the insulating film 12 by photolithography.

【0033】次に、電極板14上及びレジスト上にアル
ミニウムの金属膜15を蒸着法で作製した。なお、この
金属膜15はスパッタリング法や電解メッキ法などで作
製してもよい。ただし、電解メッキ法の場合はレジスト
上には積層されないので、リフトオフ工程が容易とな
る。金属膜15を構成するものは電極板14と密着性が
良好なものがよいので、このようにアルミニウムを電極
板14として用いた場合は、同じアルミニウムや銀等が
最適であるが、必ずしも金属単体である必要はなく、導
電性が良く堅固なものであればよい。また、金属膜15
の厚さは安定な絶縁膜12とほぼ等しくなるようにしな
いと、分極反転材料への密着が出来なくなるので電流が
流せなくなる。
Next, an aluminum metal film 15 was formed on the electrode plate 14 and the resist by vapor deposition. The metal film 15 may be formed by a sputtering method, an electrolytic plating method, or the like. However, in the case of the electroplating method, since it is not laminated on the resist, the lift-off process becomes easy. Since it is preferable that the metal film 15 has good adhesion to the electrode plate 14, when aluminum is used as the electrode plate 14, the same aluminum, silver, or the like is most suitable, but it is not always a simple substance of metal. It does not need to be, and may be a strong one having good conductivity. In addition, the metal film 15
If the thickness is not made substantially equal to that of the stable insulating film 12, it becomes impossible to adhere to the polarization inversion material, so that current cannot flow.

【0034】そして最後に、レジストを除去し第1の電
極体Aを完成させる。
Finally, the resist is removed to complete the first electrode body A.

【0035】また、第2の電極体16は電極板14と同
様なものを用意する。そして基板1を第1の電極体Aと
第2の電極体16とで挟み、高電圧電源17により電界
を印加して基板1の分極反転を行うのである。
As the second electrode body 16, the same one as the electrode plate 14 is prepared. Then, the substrate 1 is sandwiched between the first electrode body A and the second electrode body 16, and an electric field is applied by the high voltage power source 17 to invert the polarization of the substrate 1.

【0036】なお、上記実施例では分極反転後に電気モ
ーメントをバラバラにする可能性の無い導波路形成(イ
オン交換法やキュリー点以下の温度での金属熱拡散)を
行うようにしたものであり、電界印加により周期分極反
転を行わせた後に導波路作製する場合について説明した
が、必ずしもそうする必要はなく、電界印加前にSHG
素子本体に導波路を作製されたものを用いてもよい。
In the above embodiment, the waveguide formation (ion exchange method or metal thermal diffusion at a temperature below the Curie point) is performed after the polarization reversal without causing the electric moment to be scattered. The case where the waveguide is formed after the periodic polarization inversion is performed by applying the electric field has been described, but it is not always necessary to do so, and the SHG may be performed before applying the electric field.
A device having a waveguide formed therein may be used.

【0037】また、第2の電極はアースとして使用で
き、直接素子本体に成膜した場合にはエッチング等で除
去してもしなくともよい。
The second electrode can be used as a ground, and when it is directly formed on the element body, it may or may not be removed by etching or the like.

【0038】また、第1の電極体は円形の他に図7に示
すような楕円形状や図8に示すような形状その他が考え
られるが、輪郭線が連続していてその接線の傾きが連続
的に変化する形状のものであればよく、本発明の要旨を
逸脱しない範囲内で適宜変更が可能である。
In addition to the circular shape, the first electrode body may have an elliptical shape as shown in FIG. 7, a shape as shown in FIG. 8 or the like. However, the contour line is continuous and the tangent slope is continuous. Any shape may be used as long as the shape changes, and the shape can be appropriately changed without departing from the scope of the present invention.

【0039】さらに、上記実施例ではLiNbO3 の単
結晶基板を用いた例について説明したが、タンタル酸リ
チウム(LiTaO3 )の単結晶基板を用いてもよく、
この場合には−Z面に分極反転構造を作製するようにす
ると好適に分極反転構造が得られる。
Further, in the above-mentioned embodiment, the example using the single crystal substrate of LiNbO 3 is explained, but the single crystal substrate of lithium tantalate (LiTaO 3 ) may be used,
In this case, if the domain-inverted structure is formed on the -Z plane, the domain-inverted structure is preferably obtained.

【0040】[0040]

【発明の効果】本発明の光デバイス素子の製造方法によ
れば、破壊電界と抗電界のマージンを大きくとることが
でき、再現性よく分極反転形成が可能となる。
According to the method for manufacturing an optical device element of the present invention, it is possible to secure a large margin between the breakdown electric field and the coercive electric field, and it is possible to form the polarization inversion with good reproducibility.

【0041】また、周期電極を共通電極のごとく帯状の
絶縁膜上に形成すれば、従来のような複雑な電極の微細
パターニングを不要とすることができる。
Further, if the periodic electrodes are formed on the strip-shaped insulating film like the common electrodes, the complicated fine patterning of the electrodes as in the conventional case can be eliminated.

【0042】また、周期電極,絶縁膜,共通電極を基板
とは別体に形成して、電極間に基板を挟むようにすれ
ば、電極や絶縁膜等の剥離工程により素子を損傷させる
ことがなくなる上、連続的大量に光デバイスを製造する
ことが可能となる。
If the periodic electrode, the insulating film, and the common electrode are formed separately from the substrate and the substrate is sandwiched between the electrodes, the element may be damaged by the peeling process of the electrodes and the insulating film. In addition, it becomes possible to manufacture a large number of optical devices continuously.

【0043】さらに、電極の線抵抗の影響を大きく改善
することができ、電極の面積に応じて広い領域に微細の
分極反転構造を均一かつ容易に形成させることが可能と
なり、微細分極反転構造を長いもしくは広い領域に渡っ
て均一に形成せしめることができ、これにより形成され
るSHG素子等の特性を改善しうる。
Further, the influence of the line resistance of the electrodes can be greatly improved, and it becomes possible to uniformly and easily form a fine domain-inverted structure in a wide region according to the area of the electrode. It can be formed uniformly over a long or wide area, and the characteristics of the SHG element and the like formed thereby can be improved.

【0044】そして、光変調器に本発明を適用すればD
Cドリフトを抑え動作を安定化させることができる。
If the present invention is applied to an optical modulator, D
It is possible to suppress the C drift and stabilize the operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例を説明する斜視図であ
る。
FIG. 1 is a perspective view illustrating an embodiment according to the present invention.

【図2】比較例を説明する斜視図である。FIG. 2 is a perspective view illustrating a comparative example.

【図3】本発明により生じる電界強度分布を示す図であ
る。
FIG. 3 is a diagram showing an electric field strength distribution generated by the present invention.

【図4】第1の電極体の平面図である。FIG. 4 is a plan view of a first electrode body.

【図5】図4におけるV−V線部分断面図である。5 is a partial cross-sectional view taken along line VV in FIG.

【図6】他の実施例を説明する部分断面図である。FIG. 6 is a partial sectional view illustrating another embodiment.

【図7】第1の電極体の変形例を示す平面図である。FIG. 7 is a plan view showing a modified example of the first electrode body.

【図8】第1の電極体の変形例を示す平面図である。FIG. 8 is a plan view showing a modified example of the first electrode body.

【図9】従来の電界印加法による周期反転分極作製方法
を示す概略斜視図である。
FIG. 9 is a schematic perspective view showing a method of producing periodically inverted polarization by a conventional electric field application method.

【図10】従来の電界印加により生じる電界強度分布を
示す図である。
FIG. 10 is a diagram showing a field intensity distribution generated by applying a conventional electric field.

【符号の説明】[Explanation of symbols]

1 ・・・ 基板 12 ・・・ 絶縁膜 3,A ・・・ 第1の電極体 4,16 ・・
・ 第2の電極体
1 ... Substrate 12 ... Insulating film 3, A ... First electrode body 4, 16 ...
.Second electrode body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単一分域化された非線形強誘電体から成
る基板の一主面に、帯状電極と該帯状電極の両端が内側
に接続されている枠状電極とから成る周期電極を被着形
成するとともに、前記基板の他の主面に共通電極を配置
し、前記周期電極と前記共通電極との間に電界を印加す
ることによって前記基板に分極反転を生ぜしめるように
した光デバイスの製造方法であって、前記枠状電極の輪
郭を円形状もしくは角部が曲状を成す形状としたことを
特徴とする光デバイスの製造方法。
1. A periodic electrode composed of a strip-shaped electrode and a frame-shaped electrode in which both ends of the strip-shaped electrode are connected to the inside is provided on one main surface of a substrate made of a non-linear ferroelectric material having a single domain. Of the optical device, in which the common electrode is formed on the other main surface of the substrate, and an electric field is applied between the periodic electrode and the common electrode to cause polarization reversal in the substrate. A method of manufacturing an optical device, characterized in that the outline of the frame-shaped electrode has a circular shape or a shape in which corners are curved.
【請求項2】 単一分域化された非線形強誘電体から成
る基板の一主面に帯状の絶縁膜を所定間隔を空けて複数
配列するとともに、該絶縁膜を含む基板の一主面を円形
状もしくは角部が曲状を成す輪郭の導電体膜で被覆し、
前記基板の他の主面に共通電極を配置し、前記導電体膜
と前記共通電極との間に電界を印加することによって前
記基板に分極反転を生ぜしめるようにした光デバイスの
製造方法。
2. A plurality of strip-shaped insulating films are arranged at a predetermined interval on one main surface of a substrate made of a single-domain non-linear ferroelectric material, and one main surface of the substrate including the insulating film is formed. Cover with a conductor film that is circular or has a curved corner.
A method of manufacturing an optical device, wherein a common electrode is arranged on the other main surface of the substrate, and an electric field is applied between the conductor film and the common electrode to cause polarization reversal in the substrate.
【請求項3】 輪郭が円形状もしくは角部が曲状を成す
形状の板状導電体の一主面に、帯状の周期電極と帯状の
絶縁膜とを交互に配列被着するとともに、単一分域化さ
れた非線形強誘電体から成る基板の一主面に、前記板状
導電体の一主面側を載置し、前記基板の他の主面に共通
電極を配置し、前記板状導電体と前記共通電極との間に
電界を印加することによって前記基板に分極反転を生ぜ
しめるようにした光デバイスの製造方法。
3. A strip-shaped periodic electrode and a strip-shaped insulating film are alternately arranged and deposited on one main surface of a plate-shaped conductor whose contour is circular or whose corners are curved. One main surface side of the plate-shaped conductor is placed on one main surface of a substrate made of a domain-divided nonlinear ferroelectric, and a common electrode is arranged on the other main surface of the substrate, A method of manufacturing an optical device in which polarization inversion is caused in the substrate by applying an electric field between a conductor and the common electrode.
【請求項4】 前記絶縁膜はSiO2 またはSi3 4
から成り、かつ厚さが5000Å以下であることを特徴
とする請求項2乃至3に記載の光デバイスの製造方法。
4. The insulating film is SiO 2 or Si 3 N 4
4. The method for manufacturing an optical device according to claim 2, wherein the optical device has a thickness of 5000 Å or less.
JP7622295A 1995-03-31 1995-03-31 Production of optical device Pending JPH08271940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7622295A JPH08271940A (en) 1995-03-31 1995-03-31 Production of optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7622295A JPH08271940A (en) 1995-03-31 1995-03-31 Production of optical device

Publications (1)

Publication Number Publication Date
JPH08271940A true JPH08271940A (en) 1996-10-18

Family

ID=13599163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7622295A Pending JPH08271940A (en) 1995-03-31 1995-03-31 Production of optical device

Country Status (1)

Country Link
JP (1) JPH08271940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128819A (en) * 2007-11-27 2009-06-11 National Institutes Of Natural Sciences Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element
CN109814180A (en) * 2019-03-18 2019-05-28 中国科学院福建物质结构研究所 The preparation method and polarizer apparatus of fan-shaped period optical superlattices polarized crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128819A (en) * 2007-11-27 2009-06-11 National Institutes Of Natural Sciences Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element
CN109814180A (en) * 2019-03-18 2019-05-28 中国科学院福建物质结构研究所 The preparation method and polarizer apparatus of fan-shaped period optical superlattices polarized crystal

Similar Documents

Publication Publication Date Title
US5249250A (en) Optical device having domain structure and method for manufacturing the same
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
US5734772A (en) Inverted domain structure in ferroelectric crystals with polarization in the crystal plane
JP3443889B2 (en) Local polarization control method for nonlinear optical materials
US5436758A (en) Quasi-phasematched frequency converters
JPH08220578A (en) Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
CN112987447A (en) Electrode structure for periodic polarization of ferroelectric crystal material and polarization method
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JPH08271941A (en) Production of optical device
JPH08271940A (en) Production of optical device
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
JP3277515B2 (en) Polarization reversal control method
US7405512B2 (en) Acoustic transducers having localized ferroelectric domain inverted regions
Nakamura Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications
JPH0212135A (en) Second harmonic wave generating element
JP4372489B2 (en) Method for manufacturing periodically poled structure
JPH08304863A (en) Production of optical device
JP3884197B2 (en) Fabrication method of domain-inverted structure
JPH08304862A (en) Optical device
JP2002277915A (en) Polarization inversion forming method and light wavelength converting element
JPH10161167A (en) Optical device
JPH0667235A (en) Wavelength conversion device
JP2002214655A (en) Polarization inverting method for ferroelectric and manufacturing method for light-wavelength converting element
JPH08101415A (en) Production of higher harmonic generating element
JPH06289446A (en) Optical higher harmonic generator