JP2009128819A - Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element - Google Patents
Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element Download PDFInfo
- Publication number
- JP2009128819A JP2009128819A JP2007306233A JP2007306233A JP2009128819A JP 2009128819 A JP2009128819 A JP 2009128819A JP 2007306233 A JP2007306233 A JP 2007306233A JP 2007306233 A JP2007306233 A JP 2007306233A JP 2009128819 A JP2009128819 A JP 2009128819A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- periodic polarization
- polarization reversal
- single crystal
- ferroelectric single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 197
- 230000000737 periodic effect Effects 0.000 title claims abstract description 169
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title description 21
- 239000013078 crystal Substances 0.000 claims abstract description 101
- 239000000758 substrate Substances 0.000 claims description 96
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 13
- 239000011777 magnesium Substances 0.000 claims description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010905 molecular spectroscopy Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
本発明は、周期分極反転用電極、及びにこの周期分極反転用電極を用いてZカット又はZオフカットの強誘電体単結晶基材内に周期分極反転構造を形成する周期分極反転素子の製造方法に関する。 The present invention relates to a periodic polarization reversal electrode and a periodic polarization reversal element that uses this periodic polarization reversal electrode to form a periodic polarization reversal structure in a Z-cut or Z-off cut ferroelectric single crystal substrate. Regarding the method.
周期分極反転素子は、非線形光学に基づく波長変換により、レーザー光のコヒーレンス特性を損なわずにレーザー光の発振波長を高効率に変換することができる。この周期分極反転素子においては、周期分極反転構造の領域をレーザー光が透過するときに、擬似位相整合(QPM:Quasi−Phase−Matching)により例えば第2高調波が発生する。第2高調波(SHG:Second Harmonic Generation)は、入射したレーザー光に対して、2倍の周波数、1/2の波長となっている。このため、半導体レーザー等からのレーザー光を周期分極反転素子に入射させれば、その入射レーザー光に対して1/2の波長を有する短波長のレーザー光を出射させることができる。 The periodic polarization reversal element can convert the oscillation wavelength of the laser light with high efficiency without impairing the coherence characteristics of the laser light by wavelength conversion based on nonlinear optics. In this periodic polarization reversal element, for example, a second harmonic is generated by quasi phase matching (QPM) when the laser beam is transmitted through the region of the periodic polarization reversal structure. The second harmonic generation (SHG: Second Harmonic Generation) has twice the frequency and half the wavelength of the incident laser light. For this reason, if a laser beam from a semiconductor laser or the like is incident on the periodic polarization reversal element, a short-wavelength laser beam having a half wavelength with respect to the incident laser beam can be emitted.
かかる波長変換特性を有する周期分極反転素子の応用範囲は多岐にわたる。例えば、光情報処理や光応用計測制御の分野において、可視波長領域の光線を用いる光ディスクやレーザーディスプレイ用光源等に周期分極反転素子を応用したり、中赤外波長領域の光線を用いる分子分光や環境計測等に周期分極反転素子を応用したりすることができる。 The application range of the periodically poled elements having such wavelength conversion characteristics is diverse. For example, in the fields of optical information processing and applied optical measurement control, periodic polarization reversal elements are applied to optical disks and laser display light sources that use light in the visible wavelength region, molecular spectroscopy that uses light in the mid-infrared wavelength region, etc. Periodic polarization inversion elements can be applied to environmental measurements and the like.
このような周期分極反転素子は、例えば周期分極反転用電極を用いた電圧印加法により、ニオブ酸リチウム(LN:LiNbO3)やタンタル酸リチウム(LT:LiTaO3)等の強誘電体単結晶基板内に周期分極反転構造を形成することにより製造される。すなわち、周期分極反転素子における周期分極反転構造は、強誘電性を有する非線形光学結晶の自発分極の方向を周期的に反転させることで形成される。 Such a periodic polarization reversal element is a ferroelectric single crystal substrate such as lithium niobate (LN: LiNbO 3 ) or lithium tantalate (LT: LiTaO 3 ), for example, by a voltage application method using a periodic polarization reversal electrode. It is manufactured by forming a periodically poled structure inside. That is, the periodic polarization reversal structure in the periodic polarization reversal element is formed by periodically reversing the direction of spontaneous polarization of the nonlinear optical crystal having ferroelectricity.
この周期分極反転用電極を用いた電圧印加法では、強誘電体単結晶基板の一主面上に多数の電極片を所定の配列周期で横並びに配列させる。なお、後述するXカットタイプやYカットタイプの強誘電体単結晶基板に周期分極反転構造を形成する場合は、強誘電体単結晶基板の一主面上に所定の配列周期で横並びに配列された多数の電極片と対向するように、強誘電体単結晶基板の該一主面上及び裏面に一様な平板状の第2及び第3の電極を配設する。一方、後述するZカットタイプの強誘電体単結晶基板に周期分極反転構造を形成する場合は、強誘電体単結晶基板の一主面上に所定の配列周期で横並びに配列された多数の電極片と対向するように、強誘電体単結晶基板の裏面に一様な平板状の第2の電極を配設する。そして、これらの電極に電圧を印加して、強誘電体単結晶基板の自発分極と反対方向に電界をかける。これにより、強誘電体単結晶基板の自発分極方向と逆方向に分極した分極反転領域が、各電極片に対応する部位に形成される。その結果、分極方向が元の自発分極方向となっている分極非反転領域と、自発分極方向とは逆方向に分極した分極反転領域とが交互に配列してなる周期状分極反転構造が形成される。 In the voltage application method using the periodic polarization reversal electrodes, a large number of electrode pieces are arranged side by side with a predetermined arrangement period on one main surface of the ferroelectric single crystal substrate. When a periodic polarization inversion structure is formed on an X-cut type or Y-cut type ferroelectric single crystal substrate, which will be described later, they are arranged side by side with a predetermined arrangement period on one main surface of the ferroelectric single crystal substrate. In addition, uniform flat plate-like second and third electrodes are disposed on the main surface and the back surface of the ferroelectric single crystal substrate so as to face a large number of electrode pieces. On the other hand, when a periodically poled structure is formed on a Z-cut type ferroelectric single crystal substrate, which will be described later, a large number of electrodes arranged side by side with a predetermined arrangement period on one main surface of the ferroelectric single crystal substrate A uniform flat plate-like second electrode is disposed on the back surface of the ferroelectric single crystal substrate so as to face the piece. A voltage is applied to these electrodes to apply an electric field in the direction opposite to the spontaneous polarization of the ferroelectric single crystal substrate. As a result, a domain-inverted region polarized in the direction opposite to the spontaneous polarization direction of the ferroelectric single crystal substrate is formed at a site corresponding to each electrode piece. As a result, a periodically poled structure in which polarization non-inversion regions whose polarization direction is the original spontaneous polarization direction and polarization inversion regions polarized in a direction opposite to the spontaneous polarization direction are alternately formed is formed. The
なお、周期分極反転素子を透過する光は、分極非反転領域及び分極反転領域の配列方向と平行又は略平行な方向に進行する。また、分極非反転領域及び分極反転領域の反転周期を選定することで、位相整合波長を選定して動作波長を自由に設定することができる。 In addition, the light which permeate | transmits a periodic polarization inversion element advances in the direction parallel or substantially parallel to the arrangement direction of a polarization non-inversion area | region and a polarization inversion area | region. Further, by selecting the inversion periods of the non-polarization region and the polarization inversion region, the phase matching wavelength can be selected and the operating wavelength can be set freely.
従来、電圧印加法に用いる周期分極反転用電極として、図6に示されるように、櫛型の周期分極反転用電極80が知られている(例えば、特許文献1、2参照)。
Conventionally, as shown in FIG. 6, a comb-shaped periodic polarization
この櫛型の周期分極反転用電極80においては、同一の形状及び大きさをもつ多数の電極片81が一定の配列周期Dで横並びに配列されており、これらの電極片81の基端部が帯状に延びる共通の給電用電極82により連結されている。
In this comb-shaped periodic polarization
ここに、強誘電体単結晶基板としては、基板の主面に対する結晶軸の方向により、Xカット、Yカット、Zカットと称されるタイプに大別される。なお、Xカットタイプの強誘電体単結晶基板は、結晶のX軸が基板の主面に対して直角となるようにカットされている。Yカットタイプの強誘電体単結晶基板は、結晶のY軸が基板の主面に対して直角となるようにカットされている。Zカットタイプの強誘電体単結晶基板は、結晶のZ軸が基板の主面に対して直角となるようにカットされている。また、強誘電体単結晶基板においては、結晶のZ軸方向に分極しており、結晶のZ軸方向と分極方向とが一致している。 Here, the ferroelectric single crystal substrate is roughly classified into types called X-cut, Y-cut, and Z-cut depending on the direction of the crystal axis with respect to the main surface of the substrate. The X-cut type ferroelectric single crystal substrate is cut so that the X-axis of the crystal is perpendicular to the main surface of the substrate. The Y-cut type ferroelectric single crystal substrate is cut so that the Y-axis of the crystal is perpendicular to the main surface of the substrate. A Z-cut type ferroelectric single crystal substrate is cut so that the Z-axis of the crystal is perpendicular to the main surface of the substrate. The ferroelectric single crystal substrate is polarized in the Z-axis direction of the crystal, and the Z-axis direction and the polarization direction of the crystal coincide with each other.
これらのうちXカットタイプやYカットタイプの強誘電体単結晶基板の場合は、電圧印加による分極反転部が単結晶基板の表層部に形成される。このため、XカットタイプやYカットタイプの強誘電体単結晶基板は導波路型の周期分極反転素子の製造に適する。特許文献1や特許文献2に開示されているのは、このタイプである。
Among these, in the case of an X-cut type or Y-cut type ferroelectric single crystal substrate, a polarization inversion portion by voltage application is formed on the surface layer portion of the single crystal substrate. For this reason, the X-cut type and Y-cut type ferroelectric single crystal substrates are suitable for the production of waveguide-type periodic polarization reversal elements. This type is disclosed in
一方、Zカットタイプの強誘電体単結晶基板の場合は、単結晶基板の厚さ方向に分極しており、電圧印加による分極反転が単結晶基板の厚さ方向に沿って起こるため、光路が限定されないバルク型の周期分極反転素子の製造にも適する。このZカットタイプの強誘電体単結晶基板に周期分極反転構造を形成する場合においても、従来技術として櫛型の周期分極反転用電極等が用いられている点は同様である。
ところで近年、バルク型の周期分極反転素子(Zカットタイプの強誘電体単結晶基板を用いた周期分極反転素子)においては、大出力レーザーとの組合せや波長変換の効率向上等の関係で、周期分極反転領域の大口径化(即ち、レーザー入射方向に対して垂直な断面において周期分極反転領域の面積が大きいこと)が求められている。 By the way, in recent years, in a periodic periodic polarization reversal element of a bulk type (periodic polarization reversal element using a Z-cut type ferroelectric single crystal substrate), the periodicity is related to the combination with a high-power laser and the improvement of wavelength conversion efficiency. There is a demand for increasing the diameter of the domain-inverted region (that is, the area of the periodically domain-inverted region is large in a cross section perpendicular to the laser incident direction).
しかし、従来の櫛型の周期分極反転用電極等を用いる方法では、この要求に十分に応えることができないと言う問題があった。具体的には、従来の方法では、縦方向(基板厚さ方向)の厚さ及び横方向の幅が同じである周期分極反転領域を形成する場合、2mm角(縦方向の厚さ2mm×横方向の幅2mm)程度の口径の周期分極反転領域を有するバルク型周期分極反転素子の製造が実質的な限界であった。本願発明者の研究によれば、従来法におけるこのような問題の原因は次の点にある。 However, the conventional method using a comb-shaped periodic polarization reversal electrode has a problem that it cannot sufficiently meet this requirement. Specifically, in the conventional method, when forming a periodically poled region having the same thickness in the vertical direction (substrate thickness direction) and the same width in the horizontal direction, a 2 mm square (vertical thickness of 2 mm × horizontal direction). The production of a bulk-type periodic polarization reversal element having a periodic polarization reversal region having a diameter of about 2 mm in the direction was a substantial limit. According to the research of the present inventor, the cause of such a problem in the conventional method is as follows.
図7(a)〜(c)は、従来の櫛型の周期分極反転用電極を用いた電圧印加法により周期分極反転構造を形成する様子を説明する断面図であり、図6におけるX1−X1線断面図に相当する。ただし、櫛型の周期分極反転用電極80はZカットタイプの強誘電体単結晶基板90の一主面90aに配設されており、強誘電体単結晶基板90の裏面90bには、周期分極反転用電極80に対向して、例えば平板状の一様な背面電極83が設置されている。
FIGS. 7A to 7C are cross-sectional views illustrating a state in which a periodic polarization reversal structure is formed by a voltage application method using a conventional comb-shaped periodic polarization reversal electrode, and X1-X1 in FIG. It corresponds to a line cross-sectional view. However, the comb-shaped periodic polarization
図7(a)に示されるように、周期分極反転用電極80と背面電極83との間に必要な電圧を印加すると、電極のエッジ部に電荷が集中することで、電極片81の先端81aの部分から分極反転が始まり、その分極反転領域91が、まず基板90のZ軸方向(Zカットタイプの強誘電体単結晶基板90の厚さ方向で、図7(a)の矢印h1方向)へ伸長し、次いで図7(b)に示されるように、電極片81に沿って基板90の一主面90aの平面方向(矢印h2方向)へ伸長する。
As shown in FIG. 7A, when a necessary voltage is applied between the periodic polarization
しかしながら、基板90の平面方向への分極反転領域91の拡張幅には一定の限界(限界幅WL)がある(図7(c)参照)。そのため、図7(a)〜(c)で示す場合における分極反転領域91の大口径化の限界は、図7(c)に示される分極反転領域91の最大拡張断面積における縦方向の厚さ(基板90の厚さ)と、分極反転領域91の最大拡張断面積における横方向の幅(WL)とによって規定される。分極反転領域91の断面積における縦方向の厚さは、一定の限界はあるものの、基板90の厚さの設定によって、ある程度調整できる。しかし、上述のとおり電極片81の先端81aの部分から始まる分極反転領域91の拡張幅には一定の限界幅WLがあるため、分極反転領域91の断面積における横方向の幅をWL以上に拡張することが困難である。
However, the extension width of the domain-inverted
なお、図7(a)に示されるように、基板90における給電用電極82の直下の部分でも、分極反転領域91aは形成される。しかし、給電用電極82は、電極片81の配列方向(図7(a)の紙面奥行き方向)に沿って帯状に延びており、周期配列構造とはなっていない。このため、給電用電極82の直下の部分では、分極非反転領域を残すことなく、電極片81の配列方向に連続して延びる分極反転領域91aが形成され、電極片81の配列方向において周期分極反転構造とはならない。したがって、給電用電極82の直下の部分に形成される分極反転領域91aは、レーザー光の波長を変換させるための領域として利用することができない。
As shown in FIG. 7A, the domain-inverted
このようにバルク型の周期分極反転素子において、周期分極反転領域の実質的に有効な大口径化のためには、分極反転領域の縦方向(基板の厚さ方向)の厚さと同等に横方向の幅も大きくする必要があるところ、この大口径化は、実質的に分極反転領域91の限界幅WLに規定される。そして従来の技術では、実施条件によって幾分の差異はあるものの、例えば2mm角程度の口径の周期分極反転領域を有するバルク型周期分極反転素子を製造するのが精一杯であった。
In this way, in the bulk type periodic domain inversion element, in order to increase the diameter of the domain inversion region substantially effectively, the lateral direction is equivalent to the thickness in the vertical direction (substrate thickness direction) of the domain inversion region. However, the increase in diameter is substantially defined by the limit width WL of the domain-inverted
一方、図7に示す櫛型の周期分極反転用電極80の問題に対処するために、図8に示すような周期分極反転用電極84も想定できる。この周期分極反転用電極84においては、多数の電極片81が一定の配列周期Dで横並びに配列されるとともに、これらの電極片81の中央部が帯状に延びる共通の給電用電極82により連結されている。この場合、各電極片81の両先端81a、81a側から中央部へ向かってそれぞれ分極反転領域91が伸長するので、図7(c)で示す場合に準じて言うと、限界幅WLの2倍の幅の分極反転領域91を形成できるはずである。
On the other hand, in order to cope with the problem of the comb-shaped periodic
しかしこの場合には、各電極片81の中央部が給電用電極82で連結されている。そのため、分極反転領域91が限界幅WLの2倍に形成されたとしても、図8のX2−X2線断面図に相当する図9に示されるように、中央の分極反転領域91aは、各電極片81の配列方向(図9の紙面奥行き方向)へ向かい周期分極反転構造を持たない(レーザー光の波長を変換させるための領域として利用できない)部分となる。すなわち、周期分極反転構造自体が中央部に欠陥を持ってしまう。
However, in this case, the central portion of each
そこで本発明は、バルク型の周期分極反転素子において、周期分極反転領域の一層の大口径化を図ることを解決すべき技術課題とする。ここに「大口径化」とは、レーザー入射方向に対して垂直な方向の断面における周期分極反転領域の面積(口径)が大きいことを言う。 Accordingly, an object of the present invention is to solve the problem of further increasing the diameter of a periodically poled region in a bulk type periodically poled device. Here, “increasing the diameter” means that the area (aperture) of the periodically poled region in the cross section perpendicular to the laser incident direction is large.
(1)上記課題を解決する本発明の周期分極反転用電極は、強誘電体単結晶基材の一主面上に間隔をおいて横並びに配列される複数の電極片よりなる配列電極群と、該配列電極群を構成する各該電極片にそれぞれ接続されて各該電極片に給電する給電用電極とを備え、前記給電用電極は、複数の前記電極片の配列方向に対して傾斜して延びていることを特徴とする。 (1) An electrode for periodic polarization reversal of the present invention that solves the above-described problems includes an array electrode group composed of a plurality of electrode pieces arranged side by side at an interval on one main surface of a ferroelectric single crystal substrate. A feeding electrode connected to each of the electrode pieces constituting the array electrode group and feeding power to the electrode pieces, wherein the feeding electrode is inclined with respect to the arrangement direction of the plurality of electrode pieces. It is characterized by extending.
本発明の周期分極反転用電極では、配列電極群を構成する各電極片にそれぞれ接続された給電用電極が電極片の配列方向に対して傾斜して延びている。このため、配列電極群を構成する複数の電極片の全部又は大部分において、電極片の端部よりも中央寄りの部位に給電用電極が接続されている。したがって、配列電極群を構成する複数の電極片の全部又は大部分において、電極片の両端部がそれぞれ電極端として機能する。よって、配列電極群を構成する複数の電極片の全部又は大部分において、電極片の両端部から中央部に向かって強誘電単結晶基材に分極反転領域を形成することができる。その結果、電極片の長さ方向、すなわち横方向(強誘電体単結晶基材の幅方向)において分極反転領域を従来の2倍程度に延ばすことができる。 In the periodic polarization reversal electrode according to the present invention, the power feeding electrodes respectively connected to the electrode pieces constituting the array electrode group extend in an inclined manner with respect to the array direction of the electrode pieces. For this reason, in all or most of the plurality of electrode pieces constituting the array electrode group, the feeding electrode is connected to a portion closer to the center than the end of the electrode piece. Therefore, in all or most of the plurality of electrode pieces constituting the array electrode group, both end portions of the electrode pieces function as electrode ends. Therefore, in all or most of the plurality of electrode pieces constituting the array electrode group, the domain-inverted regions can be formed on the ferroelectric single crystal base material from both end portions to the central portion of the electrode pieces. As a result, the domain-inverted region can be extended about twice as long as the conventional one in the length direction of the electrode piece, that is, in the lateral direction (width direction of the ferroelectric single crystal substrate).
一方、強誘電単結晶基材における給電用電極の直下の部分では、隣接する電極片同士の間の部分(本来は分極非反転領域としたい部分)にも分極反転領域が形成される。このような余計な分極反転領域の部分だけをミクロに注目すれば、周期分極反転構造とはなっていない。しかしながら、本発明の周期分極反転用電極では、給電用電極が電極片の配列方向に対して斜め方向に、すなわちレーザー光の入射方向に対して斜め方向に配設されている。このため、余計な分極反転領域は、レーザー光の入射方向に対して順次オフセットされた位置に形成される。すなわち、余計な分極反転領域は、レーザー光の入射方向において、基材の幅方向に一定量又は略一定量ずつ順次ずれた位置に形成される。そのため、余計な分極反転領域は、周期分極反転素子の長さ方向(レーザー光の入射方向と平行)において均一又は略均一に分布するとともに、周期分極反転素子の幅方向においても均一又は略均一に分布する。その結果、周期分極反転素子としての使用時において、これらの余計な分極反転領域は、実質的に障害とならない。 On the other hand, in a portion immediately below the power feeding electrode in the ferroelectric single crystal substrate, a polarization inversion region is also formed in a portion between adjacent electrode pieces (a portion that is originally desired to be a polarization non-inversion region). If only such an extra domain inversion region is focused on microscopically, it does not have a periodic domain inversion structure. However, in the periodic polarization reversal electrode of the present invention, the feeding electrode is disposed in an oblique direction with respect to the arrangement direction of the electrode pieces, that is, in an oblique direction with respect to the incident direction of the laser light. For this reason, the extra domain inversion region is formed at a position that is sequentially offset with respect to the incident direction of the laser beam. That is, the extra domain-inverted region is formed at a position sequentially shifted by a constant amount or a substantially constant amount in the width direction of the base material in the laser light incident direction. Therefore, the extra domain-inverted region is uniformly or substantially uniformly distributed in the length direction of the periodic polarization reversal element (parallel to the incident direction of the laser beam), and is also uniform or substantially uniform in the width direction of the periodic polarization reversal element. Distributed. As a result, when used as a periodic polarization reversal element, these extra polarization reversal regions do not substantially become an obstacle.
したがって、本発明の周期分極反転用電極を用いれば、実質的な欠陥部分の形成を伴うことなく、前記限界幅WLの2倍(2倍の値は単純計算によるもので、実際には限界幅w1の2倍以上となることもありうる)の幅の分極反転領域を形成することができ、周期分極反転領域の大口径化が可能となる。 Therefore, when the periodic polarization reversal electrode of the present invention is used, the critical width WL is doubled (a value twice is based on a simple calculation without actually forming a defective portion. It is possible to form a domain-inverted region having a width that can be twice or more of w1, and to increase the diameter of the periodically domain-inverted region.
よって、本発明の周期分極反転用電極によれば、実施条件によって幾分の差異はあるが、周期分極反転領域が例えば5mm角程度に大口径化されたバルク型の周期分極反転素子を製造することが可能となる。
(2)前記(1)の構成において、前記給電用電極の配設形態が斜め一直線状であることが好ましい。ここに、「給電用電極の配設形態が斜め一直線状である」とは、斜め一直線状に延びる一直線上に給電用電極が配設されていることを意味する。
Therefore, according to the periodic polarization reversal electrode of the present invention, a bulk-type periodic polarization reversal element in which the periodic polarization reversal region is enlarged to about 5 mm square, for example, is manufactured although there are some differences depending on the implementation conditions. It becomes possible.
(2) In the configuration of (1), it is preferable that an arrangement form of the power feeding electrode is a diagonal line. Here, “the arrangement form of the power feeding electrodes is diagonally straight” means that the power feeding electrodes are arranged on a straight line extending obliquely in a straight line.
この構成によると、強誘電単結晶基材における給電用電極の直下の部分に形成される前記余計な分極反転領域の部分は、電極片の配列方向、すなわちレーザー光の入射方向において基材の幅方向に一定量ずつ順次ずれた位置にある。そのため、余計な分極反転領域は、周期分極反転素子の長さ方向(レーザー光の入射方向と平行)において均一に分布するとともに周期分極反転素子の幅方向において均一に分布する。また、レーザー光の入射方向から見て、余計な分極反転領域が重なることがない。したがって、周期分極反転素子としての使用時において、余計な分極反転領域による障害を最小限に抑えることができる。
(3)前記(1)又は(2)の構成において、前記給電用電極は、前記配列電極群を構成する全ての前記電極片に対して、端部より中央寄りの部位で接続されていることが好ましい。
According to this configuration, the portion of the extra domain-inverted region formed in the portion immediately below the feeding electrode in the ferroelectric single crystal substrate is the width of the substrate in the arrangement direction of the electrode pieces, that is, the laser light incident direction. It is in a position sequentially shifted by a certain amount in the direction. Therefore, the extra domain-inverted regions are uniformly distributed in the length direction of the periodic polarization reversal element (parallel to the incident direction of the laser beam) and uniformly distributed in the width direction of the periodic polarization reversal element. Further, when viewed from the incident direction of the laser light, unnecessary polarization inversion regions do not overlap. Therefore, at the time of use as a periodic polarization reversal element, it is possible to minimize an obstacle due to an extra polarization reversal region.
(3) In the configuration of (1) or (2), the feeding electrode is connected to all the electrode pieces constituting the arrayed electrode group at a portion closer to the center than the end portion. Is preferred.
この構成によると、配列電極群を構成する全ての電極片において、電極片の両端部が給電用電極に接続されていないので、電極片の各端部がそれぞれ電極端として機能する。このため、配列電極群を構成する全ての電極片において、電極片のそれぞれの端部から中央部に向かって強誘電単結晶基材に分極反転領域を形成することができる。したがって、配列電極群の配列方向の全範囲において、前記限界幅WLの2倍(2倍の値は単純計算によるもので、実際には限界幅WLの2倍以上となることもありうる)の幅の分極反転領域を形成することが可能となる。
(4)上記課題を解決する本発明の周期分極反転素子の製造方法は、Zカット又はZオフカットの強誘電体単結晶基材内に周期分極反転構造を形成して、周期分極反転領域を有するバルク型の周期分極反転素子を製造する方法であって、前記強誘電体単結晶基材の一主面上に、請求項1乃至3のいずれか一つに記載された周期分極反転用電極を設けるとともに、該強誘電体単結晶基材の該一主面と反対側の背面に該周期分極反転用電極と対向する背面電極を設け、該周期分極反転用電極と該背面電極との間に電圧を印加することにより、該強誘電体単結晶基材内に周期分極反転構造を形成することを特徴とする。
According to this configuration, in all electrode pieces constituting the array electrode group, since both end portions of the electrode pieces are not connected to the power feeding electrode, each end portion of the electrode piece functions as an electrode end. For this reason, in all the electrode pieces constituting the array electrode group, the domain-inverted regions can be formed in the ferroelectric single crystal substrate from the respective end portions to the center portion of the electrode pieces. Therefore, in the entire range in the arrangement direction of the array electrode group, it is twice the limit width WL (the value twice is based on a simple calculation and may actually be more than twice the limit width WL). A domain-inverted region having a width can be formed.
(4) In the method for manufacturing a periodic polarization reversal element of the present invention that solves the above-mentioned problem, a periodic polarization reversal structure is formed in a Z-cut or Z-off cut ferroelectric single crystal substrate, and a periodic polarization reversal region is formed. A method of manufacturing a bulk type periodic polarization reversal element having a periodic polarization reversal electrode according to any one of
すなわち、本発明の周期分極反転素子の製造方法では、前記構成(1)乃至(3)のいずれか一つを有する周期分極反転用電極を用いて、Zカット又はZオフカットの強誘電体単結晶基材内に周期分極反転構造を形成して、周期分極反転領域を有するバルク型の周期分極反転素子を製造する。 That is, in the method for manufacturing a periodic polarization reversal element according to the present invention, a Z-cut or Z-off cut ferroelectric single electrode is formed by using a periodic polarization reversal electrode having any one of the configurations (1) to (3). A periodic polarization reversal element having a periodic polarization reversal region is manufactured by forming a periodic polarization reversal structure in the crystal substrate.
したがって、本発明の周期分極反転素子の製造方法によれば、前述したように、実施条件によって幾分の差異はあるが、周期分極反転領域が例えば5mm角(縦5mm、横5mm)程度に大口径化されたバルク型の周期分極反転素子を製造することができる。このため、従来の周期分極反転素子と比較して、大出力レーザーとの組合せが容易となり、また波長変換の出力向上が可能となる。また、この素子を使用するに際しての位置合わせが容易になる。
(5)ここに、ニオブ酸リチウム(LN)又はタンタル酸リチウム(LT)よりなる強誘電体単結晶基材に対して電圧印加法により周期分極反転領域を形成する場合、かなり大きな印加電圧が必要とされる。このため、LN又はLTよりなる強誘電体単結晶基材に形成することのできる周期分極反転領域の厚さ(基材の厚さ方向、すなわち縦方向の厚さ又は高さ。以下、同様)は、従来、1mm程度が限界であった。これに対し、LN又はLTにマグネシウムを添加したMgLN又はMgLTよりなる強誘電体単結晶基材では、Mg添加により、分極反転に必要な印加電圧が小さくなる。このため、MgLN又はMgLTよりなる強誘電体単結晶基材に対しては、現在、厚さが5mm程度の周期分極反転領域を形成することが可能である
他方、周期分極反転素子で波長変換するレーザー光は、通常、真円の断面形状をもつビーム光である。このため、強誘電体単結晶基材に形成する周期分極反転領域は、通常、同程度の幅(横方向の幅)及び厚さを有するものである。
Therefore, according to the method for manufacturing a periodically poled device of the present invention, as described above, although there are some differences depending on the implementation conditions, the periodically poled region is large, for example, about 5 mm square (5 mm length, 5 mm width). It is possible to manufacture a bulk-type periodic polarization reversal element having a diameter. For this reason, compared with the conventional periodic polarization reversal element, the combination with a high output laser becomes easy, and the output of wavelength conversion can be improved. Further, alignment when using this element is facilitated.
(5) Here, when a periodically poled region is formed by a voltage application method on a ferroelectric single crystal substrate made of lithium niobate (LN) or lithium tantalate (LT), a considerably large applied voltage is required. It is said. For this reason, the thickness of a periodically poled region that can be formed on a ferroelectric single crystal substrate made of LN or LT (the thickness direction or the vertical direction thickness or height of the substrate; the same applies hereinafter). Conventionally, the limit was about 1 mm. On the other hand, in a ferroelectric single crystal substrate made of MgLN or MgLT in which magnesium is added to LN or LT, the applied voltage required for polarization inversion is reduced by adding Mg. For this reason, it is currently possible to form a periodically poled region having a thickness of about 5 mm for a ferroelectric single crystal substrate made of MgLN or MgLT. On the other hand, wavelength conversion is performed by a periodically poled device. The laser light is usually beam light having a perfect circular cross-sectional shape. For this reason, the periodically poled regions formed on the ferroelectric single crystal substrate usually have the same width (lateral width) and thickness.
以上より、周期分極反転領域の大口径化を図るためには、強誘電体単結晶基材としては、周期分極反転領域を基材の厚さ方向に延ばすのに有利なMgLN又はMgLTを採用し、かつ、その強誘電体単結晶基材に形成する周期分極反転領域の幅を如何に大きくするかが重要となる。ところが、従来の周期分極反転電極を用いた電圧印加法では、前述のとおり、周期分極反転領域の横方向の幅を拡張することには限界があるため、たとえMgLN又はMgLTよりなりかつ厚さが例えば5mmの強誘電体単結晶基材を採用したとして、レーザー光を波長変換するのに実質的に有効な範囲として形成することのできる周期分極反転領域の大きさは、せいぜい2mm角(厚さ2mm×幅2mm)程度であった。
From the above, in order to increase the diameter of the periodically poled region, MgLN or MgLT, which is advantageous for extending the periodically poled region in the thickness direction of the substrate, is adopted as the ferroelectric single crystal substrate. In addition, it is important how to increase the width of the periodically poled region formed in the ferroelectric single crystal substrate. However, in the conventional voltage application method using a periodically poled electrode, as described above, there is a limit to extending the lateral width of the periodically poled region, so even if it is made of MgLN or MgLT and has a thickness of For example, when a ferroelectric single crystal substrate of 5 mm is employed, the size of the periodically poled region that can be formed as a range that is substantially effective for wavelength conversion of laser light is at most 2 mm square (thickness). 2 mm ×
この点、本発明の周期分極反転用電極又は周期分極反転素子の製造方法によれば、前述のとおり、周期分極反転領域の幅を前記限界幅WLの2倍程度(場合によっては2倍以上)に延ばすことができる。 In this regard, according to the method for manufacturing a periodic polarization reversal electrode or periodic polarization reversal element of the present invention, as described above, the width of the periodic polarization reversal region is about twice the limit width WL (in some cases, twice or more). Can be extended.
したがって、本発明の周期分極反転用電極又は周期分極反転素子の製造方法によれば、以下に示すような、従来の技術によっては作り得なかった、新規な周期分極反転素子を製造することが可能となる。 Therefore, according to the method for manufacturing a periodic polarization reversal electrode or a periodic polarization reversal element of the present invention, it is possible to manufacture a novel periodic polarization reversal element that could not be made by conventional techniques as shown below. It becomes.
すなわち、本発明の周期分極反転素子は、Zカット又はZオフカットの強誘電体単結晶基材内に周期分極反転領域を有するバルク型の周期分極反転素子であって、前記強誘電体単結晶基材は、マグネシウムを含むニオブ酸リチウム又はマグネシウムを含むタンタル酸リチウムよりなり、かつ、3mm以上の厚さ(H)を有し、前記周期分極反転領域により波長変換されて出力される光の、前記強誘電体単結晶基材の幅方向における半値全幅が、2mmを超え、かつ、前記厚さ(H)の50〜90%であることを特徴とする。 That is, the periodic polarization reversal element of the present invention is a bulk-type periodic polarization reversal element having a periodic polarization reversal region in a Z-cut or Z-off cut ferroelectric single crystal substrate, wherein the ferroelectric single crystal The substrate is made of lithium niobate containing magnesium or lithium tantalate containing magnesium, and has a thickness (H) of 3 mm or more. The full width at half maximum in the width direction of the ferroelectric single crystal substrate exceeds 2 mm and is 50 to 90% of the thickness (H).
ここに、「半値全幅」とは、山形をなす分布をもつ曲線において、最大値の1/2に対応する分布の幅をいう。 Here, “full width at half maximum” refers to the width of the distribution corresponding to ½ of the maximum value in a curve having a mountain-shaped distribution.
半値全幅が2mmを超え、かつ強誘電体単結晶基材の厚さ(H)の50〜90%である、本発明の周期分極反転素子において、例えば5mmの厚さ(H)を有する強誘電体単結晶基材を採用することにより、レーザー光を波長変換するのに実質的に有効な周期分極反転領域の範囲を最低でも4mm角程度とすることができる。 In the periodic polarization reversal element of the present invention having a full width at half maximum exceeding 2 mm and 50 to 90% of the thickness (H) of the ferroelectric single crystal substrate, the ferroelectric having a thickness (H) of, for example, 5 mm By adopting the body single crystal substrate, the range of the periodically poled region that is substantially effective for converting the wavelength of the laser light can be at least about 4 mm square.
本発明によれば、バルク型の周期分極反転素子における周期分極反転構造を電圧印加法により形成する際に、その周期分極反転構造における周期分極反転領域を大口径化することが可能になる。このような大口径化バルク型素子は、光情報処理や光応用計測制御等の分野において、可視波長領域では光ディスク用光源やレーザーディスプレイ用光源等に、中赤外波長領域では分子分光や環境計測等に、それぞれ応用することができ、社会への新たな技術的貢献をもたらすことができる。 According to the present invention, when the periodic polarization reversal structure in the bulk type periodic polarization reversal element is formed by the voltage application method, the periodic polarization reversal region in the periodic polarization reversal structure can be enlarged. Such large-diameter bulk-type devices are used in optical information processing, optical measurement control, etc., in the visible wavelength region for optical disk light sources and laser display light sources, and in the mid-infrared wavelength region for molecular spectroscopy and environmental measurement. Etc., and can make new technical contributions to society.
以下、本発明の周期分極反転用電極、周期分極反転素子の製造方法及び周期分極反転素子の実施形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の周期分極反転用電極、周期分極反転素子の製造方法及び周期分極反転素子は、下記実施形態に限定されるものではない。本発明の周期分極反転用電極、周期分極反転素子の製造方法及び周期分極反転素子は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Embodiments of a periodic polarization reversal electrode, a periodic polarization reversal element manufacturing method, and a periodic polarization reversal element according to the present invention will be described in detail below. The embodiment to be described is only one embodiment, and the periodic polarization reversal electrode, the method of manufacturing a periodic polarization reversal element, and the periodic polarization reversal element of the present invention are not limited to the following embodiments. The electrode for periodic polarization reversal, the method for manufacturing a periodic polarization reversal element, and the periodic polarization reversal element of the present invention are in various forms that have been modified or improved by those skilled in the art without departing from the gist of the present invention. Can be implemented.
(実施形態1)
図1〜図2に示される本実施形態では、周期分極反転用電極1及び背面電極2を用いた電圧印加法により、強誘電体単結晶基材3内に周期分極反転構造を形成して、周期分極反転領域を有するバルク型の周期分極反転素子を製造する。
(Embodiment 1)
In the present embodiment shown in FIG. 1 to FIG. 2, a periodic polarization reversal structure is formed in the ferroelectric
なお、図1は、本実施形態に係る周期分極反転用電極1の平面図である。また、図2(a)〜(c)は、本実施形態に係る周期分極反転用電極1を用いた電圧印加法により周期分極反転構造を形成する様子を説明する断面図であり、図2(a)及び(b)は図1におけるY1−Y1線断面図に相当し、図2(c)は図1におけるY2−Y2線断面図に相当する。
FIG. 1 is a plan view of the periodically poled
強誘電体単結晶基材3としては、結晶のZ軸が基材3の主面3aに対して直角となるようにカットされたZカット強誘電体単結晶基材、又は結晶のZ軸が基材3の主面3aに対して所定角度(1〜45°)傾斜したZオフカット基材を用いることができる。
As the ferroelectric single
強誘電体単結晶基材3の材質は特に限定されないが、例えば、ニオブ酸リチウム(LN)、タンタル酸リチウム(LT)、KTP(KTiOPO4)やKN(KNbO3)等を好適に用いることができる。この強誘電体単結晶基材3には、必要に応じて、マグネシウム(Mg)やZn等の適宜な金属元素、金属化合物や希土類元素等を添加することができる。特に、ニオブ酸リチウム(LN)やタンタル酸リチウム(LT)にマグネシウムを添加したMgLNやMgLTよりなる強誘電体単結晶基材3を好適に用いることができる。
The material of the ferroelectric
強誘電体単結晶基材3の大きさや形状は特に限定されないが、例えば、幅:W=1〜10mm程度、厚さ(高さ):H=1〜10mm程度、長さ:L=1〜50mm程度の直方体形状のものを好適に用いることができる。ただし、分極反転領域の大口径化や分極反転領域を形成可能な深度等を考慮して、幅:W=1〜5mm程度、厚さ(高さ):H=1〜5mm程度とすることがより好ましい。また、印加電圧を高くする実施条件等によっては、厚さ(高さ):Hを5mm程度以上とすることができる場合もある。
The size and shape of the ferroelectric
周期分極反転用電極1は、図1に示されるように、配列電極群10と、給電用電極11とを備えている。なお、図1、図2においては、本発明の特徴を明確にすべく、周期分極反転用電極1等の大きさ及び形状等が実際のものと異なるように描かれている。
As shown in FIG. 1, the periodic
配列電極群10は、強誘電体単結晶基材3の一主面(+Z面又は−Z面)3a上に間隔をおいて横並びに配列される複数の電極片101よりなる。この配列電極群10では、形成しようとする周期分極反転構造における分極反転領域及び分極非反転領域の幅や反転周期に合わせて、所定の幅W1を有する複数の電極片101が所定の配列周期Dで形成されている。
The
本実施形態における各電極片101は、それぞれ大きさの細長い長方形状とされている。配列電極群10における、電極片101の幅W1と配列周期Dとの関係は適宜にかつ任意に設定することができる。例えば、配列周期Dは、D=数μm〜数十μm程度(一例として、30μm程度)とすることができ、電極片101の幅W1は、W1=D/4〜D/2程度の値とすることができる。また、電極片101の長さL1は、形成しようとする周期分極反転領域の幅に応じて適宜設定可能であり、例えばL1=1〜10mm程度とすることができる。
Each
ここに、各電極片101の長さL1としては、過不足のない長さとすることが好ましい。すなわち、電極片101の端部101aから電極片101の中央部に向かって形成される分極反転領域4の拡張可能な最大幅が前記臨界幅WLであると仮定したとき、電極片101が余りに短い(例えば、電極片101の長さが前記臨界幅WLである)場合は、本発明の構成を採用することの技術的意義が小さくなる。逆に、電極片101が余りに長い(例えば、電極片101の長さが前記前記臨界幅WLの数倍以上である)場合は、電極片101の両端部101a、101aからそれぞれ発生する分極反転領域4の中間に、大きな分極非反転領域が残り、バルク型周期分極反転素子としての使用時の障害になる可能性がある。また、前記臨界幅WL自体も、実施条件等によって変わりうる値である。そこで、電極片101の長さL1は、前記臨界幅WLの1.5倍〜3倍程度(より好ましくは2〜2.5倍程度)とすることが好ましく、この範囲内で試行錯誤によって最適値を設定することができる。
Here, it is preferable that the length L1 of each
なお、各電極片101の形状は特に限定されず、一定幅で一端から他端まで延びる細長い長方形状としてもよいし、一端から他端に向けて幅が連続的に増大する細長い(底辺に対して高さの高い)台形状としてもよいし、幅が部分的に増大又は減少した異形状としてもよい。また、配列周期Dの大きさも、電極片101の配列方向において一部が異なっていてもよい。
The shape of each
また説明の便宜上、図1において、配列電極群10を構成する各電極片101のうち、図1の左端に位置する電極片101を101Aと示し、図1の右端に位置する電極片101を101Bと示し、残りの電極片101をそれぞれ101Cと示す。
For convenience of explanation, in FIG. 1, among the
給電用電極11は、配列電極群10を構成する各電極片101に給電するためのもので、各電極片101にそれぞれ接続されている。本実施形態における給電用電極11は、配列電極群10における複数の電極片101の配列方向に対して傾斜して延びており、給電用電極11の配設形態が斜め一直線状とされている。
The
具体的には、配列電極群10の電極片101の配列方向における一端(図1に示される配列電極群10の左端)の電極片101Aの一端(図1に示される電極片101Aの上端)と、配列電極群10の電極片101の配列方向における他端(図1に示される配列電極群10の右端)の電極片101Bの他端(図1に示される電極片101Bの下端)とを繋ぐように、配列電極群10の一つの対角線上に斜め一直線状に一定の幅で延びている。すなわち、本実施形態においては、途中に屈曲部又は湾曲部を有しない一つの直線部よりなる一対角線上に給電用電極11が配設されている。
Specifically, one end of the
そして、配列電極群10を構成する各電極片101のうち、電極片101A及び電極片101B以外の各電極片101Cにおいては、電極片101の端部101aよりも中央寄りの部位で給電用電極11が接続されている。また、配列電極群10を構成する各電極片101のうち、配列方向の端部に位置する電極片101A及び電極片101Bにおいては、電極片101Aの上端及び電極片101Bの下端に給電用電極11が接続されている。
And among each
ここに、給電用電極11の幅は、配列電極群10を構成する各電極片101に確実に給電することができれば特に限定されない。ただし、給電用電極11の直下の部分に形成される余分な分極反転領域を極力小さくする観点より、各電極片11に確実に給電できる範囲内で給電用電極11の幅を極力小さくする方が好ましい。また、この余分な分極反転領域を強誘電体単結晶基材2の長さ方向及び幅方向において均一に分布させる観点より、給電用電極11の幅は給電用電極11の長さ方向において一定であることが好ましい。給電用電極11の幅:W2は、W2=1〜100μm程度であることが好ましく、W2=10〜30μm程度であることがより好ましい。ただし、断線しない限りにおいて、給電用電極11の幅:W2を1μm未満とすることも勿論可能である。
Here, the width of the
また、給電用電極11の配設形態としては、斜め一直線状に限られず、例えば、ある程度のカーブを描く円弧線状であったり、サインカーブ線状であったり、ジグザグの折れ線状であったりしてもよい。ただし、給電用電極11の配設形態が斜め一直線状でない場合は、周期分極反転素子としてレーザー光を入射した場合、入射の部位によって擬似位相整合の効果に強弱の差を生じる可能性がある。
In addition, the arrangement of the
なお、1本の給電用電極11が断線した場合であっても、各電極片101への給電を可能とするために、複数本の給電用電極11を設けることもできる。例えば、配列電極群10の2つの対角線上にそれぞれ斜め一直線状に延びる給電用電極11を設けたり、あるいは配列電極群10の1つの対角線に沿って斜め一直線状に平行に延びる2本の給電用電極11を設けたりしてもよい。
Even when one
背面電極2は、平板状を呈しており、図2に示されるように、強誘電体単結晶基材3の一主面3aと反対側の背面3bの全体に周期分極反転用電極1と対向するように一様に設けられている。
The
ここに、背面電極2としては、周期分極反転用電極1の配列電極群10を構成する電極片101と対向するように、強誘電体単結晶基材3の背面3bと面接触する一様な電極である限りにおいて構成が限定されない。例えば、背面電極2として、強誘電体単結晶基材3の背面3bの全体に接触する液状電極(電解質液)を採用してもよい。
Here, the
周期分極反転用電極1及び背面電極2の材質としては特に限定されないが、例えば、アルミニウム(Al)、チタン(Ti)、金(Au)やクロム(Cr)等の金属を好適に用いることができる。周期分極反転用電極1は真空蒸着やスパッタリング等による成膜後、フォトリソグラフィー技術により微細パターン加工することで形成することができ、背面電極2は真空蒸着やスパッタリング等により形成することができる。また、周期分極反転用電極1及び背面電極2の厚さも特に限定されず、例えば、10〜100nm程度とすることができる。
The material for the periodically poled
この周期分極反転用電極1及び背面電極2を用いた電圧印加法により、強誘電体単結晶基材3内に周期分極反転構造を形成するには、周期分極反転用電極1と背面電極2との間に所定の電圧を印加する。この電圧印加法の実施条件は適宜に設定すればよく、特に限定されない。例えば、パルス電圧を印加するのが好ましく、その際の電圧の大きさや電圧印加のインターバル等は適宜に設定することができる。また、電圧印加は適宜な加熱条件下で行うこともできる。
In order to form a periodic polarization reversal structure in the ferroelectric
周期分極反転用電極1と背面電極2との間に必要な電圧が印加されると、電極のエッジ部に電荷が集中することで、各電極片101の端部101aの部分から分極反転が始まる。
When a necessary voltage is applied between the periodic
ここに、本実施形態における周期分極反転用電極1では、配列電極群10を構成する各電極片101のうち、電極片101A及び電極片101B以外の各電極片101Cにおいては、電極片101の端部101aよりも中央寄りの部位で給電用電極11が接続されているため、電極片101の両端部101a、101aがそれぞれ電極端として機能する。そのため、図2(a)に示されるように、各電極片101Cにおける両端部101a、101aから分極反転が始まる。その分極反転領域4は、強誘電体単結晶基材3のZ軸方向(Zカットタイプの強誘電体単結晶基材3の厚さ方向)へ伸長して強誘電体単結晶基材3の裏面3bまで達した後、電極片101に沿って強誘電体単結晶基材3の一主面3aの平面方向(図2(a)の矢印h2方向)へそれぞれ前記限界幅WL程度まで伸長し、トータルで前記限界幅WLの2倍程度の幅の分極反転領域4が形成される。
Here, in the electrode for
なお、配列電極群10を構成する各電極片101のうち、電極片101A及び電極片101Bにおいては、電極片101Aの一端部(図1に示される電極片101Aの下端部)101a及び電極片101Bの一端部(図1に示される電極片101Bの上端部)101aからそれぞれ分極反転が始まり、前記限界幅WL程度の分極反転領域が形成される。
Of the
一方、図1のY2−Y2線断面図に相当する断面図が図2(c)に示されるように、強誘電体単結晶基材3における給電用電極11の直下の部分では、隣接する電極片101同士の間隔の部分(本来は分極非反転領域としたい部分)でも、余計な分極反転領域4aが形成される。しかし、本実施形態に係る周期分極反転用電極1では、給電用電極11が電極片101の配列方向、すなわちレーザー光の入射方向(図1に示されるA矢印方向)に対して斜め一直線状に配設されている。このため、余計な分極反転領域4aは、レーザー光の入射方向Aにおいて、強誘電体単結晶基材3の幅W方向に一定量ずつ順次ずれた位置に形成される。そのため、余計な分極反転領域4は、強誘電体単結晶基材3の長さL方向(レーザー光の入射方向Aと平行)において均一に分布するとともに、強誘電体単結晶基材3の幅W方向においても均一に分布する。また、余計な分極反転領域4aは、レーザー光の入射方向Aから見て2回以上重なることがない。その結果、周期分極反転素子としての使用時において、これらの余計な分極反転領域4aは、実質的に障害とならない。
On the other hand, as shown in FIG. 2C, a sectional view corresponding to the sectional view taken along line Y2-Y2 of FIG. An extra domain-inverted
したがって、本実施形態に係る周期分極反転用電極1を用いれば、実質的な欠陥部分の形成を伴うことなく、前記限界幅WLの2倍程度の幅の分極反転領域4を形成することができ、周期分極反転領域(すなわち、周期分極反転構造)の大口径化が可能となる。
Therefore, by using the periodic
よって、本実施形態によれば、実施条件によって幾分の差異はあるが、周期分極反転領域が例えば4mm角程度以上(一例として5mm角)に大口径化されたバルク型の周期分極反転素子を製造することが可能となる。このため、従来の周期分極反転素子と比較して、大出力レーザーとの組合せが容易となり、また波長変換の出力向上が可能となる。また、この素子を使用するに際しての位置合わせが容易になる。 Therefore, according to the present embodiment, although there are some differences depending on the implementation conditions, a bulk type periodic polarization reversal element in which the periodic polarization reversal region is increased to a diameter of about 4 mm square or more (for example, 5 mm square) is used. It can be manufactured. For this reason, compared with the conventional periodic polarization reversal element, the combination with a high output laser becomes easy, and the output of wavelength conversion can be improved. Further, alignment when using this element is facilitated.
(実施形態2)
図3に示される本実施形態では、前記実施形態1において、周期分極反転用電極1の構造を変更した。
(Embodiment 2)
In the present embodiment shown in FIG. 3, the structure of the periodic
すなわち、この実施形態に係る周期分極反転用電極1では、給電用電極11が、配列電極群10を構成する全ての電極片101に対して、端部より中央寄りの部位で接続されている。
That is, in the periodic
したがって、本実施形態では、配列電極群10を構成する全ての電極片101において、電極片101の両端部101a、101aが給電用電極11に接続されていないので、電極片101の両端部101a、101aがそれぞれ電極端として機能する。このため、配列電極群10を構成する全ての電極片101において、電極片101のそれぞれの端部101a、101aから中央部に向かって強誘電単結晶基材3に分極反転領域を形成することができる。したがって、配列電極群10の配列方向の全範囲において、前記限界幅WLの2倍程度の幅の分極反転領域を形成することが可能となる。
Therefore, in this embodiment, in all
その他の構成及び作用効果は、前記実施形態1と同様である。 Other configurations and operational effects are the same as those of the first embodiment.
(実施形態3)
図4に示される本実施形態では、前記実施形態1において、周期分極反転用電極1の構造を変更した。
(Embodiment 3)
In the present embodiment shown in FIG. 4, the structure of the periodically poled
すなわち、この実施形態に係る周期分極反転用電極1では、給電用電極11が折り返し部11aを有し、給電用電極11の配設形態が中途で折り返された斜め折り返し直線状とされている。
That is, in the periodic
したがって、本実施形態では、強誘電体単結晶基材3における給電用電極11の直下の部分において、隣接する電極片101同士の間隔の部分(本来は分極非反転領域としたい部分)に形成される余計な分極反転領域4aが、レーザー光の入射方向Aから見て2回重なる。このため、周期分極反転素子としての使用時において、これらの余計な分極反転領域4aが実質的な障害となるおそれが、実施形態1のものよりも高くなる。
Therefore, in the present embodiment, in the portion immediately below the feeding
その他の構成及び作用効果は、前記実施形態1と同様である。 Other configurations and operational effects are the same as those of the first embodiment.
(実施形態4)
本実施形態では、Zカット又はZオフカットの強誘電体単結晶基材3として、マグネシウムを含むニオブ酸リチウム(MgLN)又はマグネシウムを含むタンタル酸リチウム(MgLT)よりなるものを採用する。また、このMgLN又はMgLTよりなる強誘電体単結晶基材3は、3〜5mmの厚さ(H)を有している。
(Embodiment 4)
In the present embodiment, a Z-cut or Z-off cut ferroelectric
そして、この強誘電体単結晶基材3に対して、前記実施形態1乃至3で説明した製造方法に準じて周期分極反転領域を形成して周期分極反転素子を製造すれば、得られる周期分極反転素子は、周期分極反転領域により波長変換されて出力される光の、強誘電体単結晶基材3の幅方向における半値全幅が、2mmを超え、かつ、厚さ(H)の50〜90%のものとなる。
Then, a periodic polarization reversal element can be obtained by forming a periodic polarization reversal region in accordance with the production method described in the first to third embodiments for the ferroelectric single
以下、本発明の一実施例及び比較例について説明する。 Hereinafter, an example of the present invention and a comparative example will be described.
(実施例)
本実施例では、強誘電体単結晶基材として、MgOドープしたLN単結晶(MgO添加濃度:5mol%)よりなるZカット板を用いた。このZカット板のサイズは、幅:W=5mm、高さ(厚さ):H=5mm、長さ:L=約36mmである。
(Example)
In this example, a Z-cut plate made of MgO-doped LN single crystal (MgO addition concentration: 5 mol%) was used as the ferroelectric single crystal substrate. The size of this Z-cut plate is: width: W = 5 mm, height (thickness): H = 5 mm, and length: L = about 36 mm.
そして、Zカット板の主面(+Z面)に前記実施形態1で説明した周期分極反転用電極1を真空蒸着及びフォトリソグラフィー技術により形成するとともに、Zカット板の裏面(−Z面)に前記実施形態1で説明した背面電極2を真空蒸着により形成した。この周期分極反転用電極1において、配列電極群10における配列周期:Dは、D=32.3μmであり、電極片101の幅:W1は、W1=9.7μmであり、電極片101の長さ:L1は、L1=5mmであり、給電用電極11の幅:W2は、W2=50μmである。また、周期分極反転用電極1及び背面電極2は、いずれもアルミニウム製で、50nmの厚さを有する。
The periodic
そして、120°Cの加熱下に、周期分極反転用電極1及び背面電極2間に+Z面から−Z面へ16kVのパルス電圧を必要な時間だけ印加して、本実施例に係るバルク型の周期分極反転素子を作成した。
Then, under heating at 120 ° C., a pulse voltage of 16 kV is applied from the + Z plane to the −Z plane between the periodic
電圧印加処理の終了後、得られた周期分極反転素子を切断し、その切断面を酸でエッチングしてから、周期分極反転領域を光学顕微鏡によって観察したところ、縦方向(Z方向)に約5mm、横方向にも約5mmの実質的に矩形状を呈する周期分極反転領域が形成されていることを確認した。 After the voltage application process was finished, the obtained periodically poled device was cut, the cut surface was etched with acid, and the periodically poled region was observed with an optical microscope. As a result, the longitudinal direction (Z direction) was about 5 mm. Further, it was confirmed that a periodic domain-inverted region having a substantially rectangular shape of about 5 mm was also formed in the lateral direction.
また、得られた周期分極反転素子について、光パラメトリック発振実験を実施することにより、半値全幅を測定した。その結果、この周期分極反転素子における半値全幅は、約4mmであり、強誘電体単結晶基材の厚さ(高さ):H=5mmの約80%であった。 Further, the full width at half maximum was measured by conducting an optical parametric oscillation experiment on the obtained periodically poled device. As a result, the full width at half maximum of this periodic polarization reversal element was about 4 mm, and the thickness (height) of the ferroelectric single crystal substrate: about 80% of H = 5 mm.
(性能評価)
本実施例で得られた周期分極反転素子の、光パラメトリック発振実験における性能データを図5に示す。
(Performance evaluation)
FIG. 5 shows performance data of the periodic polarization reversal element obtained in this example in an optical parametric oscillation experiment.
図5のグラフで、横軸は励起光の入力励起エネルギーを、縦軸は出力エネルギーをそれぞれ示す。励起用レーザーは、波長1.064μm、パルス幅10ナノ秒のランプ励起高出力パルスNd:YAGレーザーシステム(スペクトラフィジックス社、LAB170−30)を用いた。図5中において、「●」でプロットしたグラフは、光パラメトリック発振で波長変換された波長2.128μmのレーザー光出力エネルギーを表す。 In the graph of FIG. 5, the horizontal axis represents the input excitation energy of the excitation light, and the vertical axis represents the output energy. As the excitation laser, a lamp excitation high-power pulse Nd: YAG laser system (Spectra Physics, LAB170-30) having a wavelength of 1.064 μm and a pulse width of 10 nanoseconds was used. In FIG. 5, the graph plotted with “●” represents the laser light output energy of wavelength 2.128 μm wavelength-converted by optical parametric oscillation.
図5より、本実施例で得られた周期分極反転素子が、その大口径を生かした大出力用の波長変換素子として有効に機能していることがわかる。また、励起用レーザーをほぼ真円に近いビーム形状で周期分極反転素子に入力した場合、得られる出力光のビーム形状もほぼ真円となった。これにより、本実施例で得られた周期分極反転素子が、その口径5mm×5mmの全域にわたって均一な周期分極反転構造を実現できていることが分かる。 From FIG. 5, it can be seen that the periodic polarization reversal element obtained in this example functions effectively as a wavelength converter for large output utilizing the large diameter. In addition, when the excitation laser was input to the periodic polarization reversal element in a beam shape that was almost a perfect circle, the beam shape of the output light obtained was also a substantially circle. Thus, it can be seen that the periodic polarization reversal element obtained in this example can realize a uniform periodic polarization reversal structure over the entire area of the aperture of 5 mm × 5 mm.
1…周期分極反転用電極 2…背面電極
3…強誘電体単結晶基材 3a…主面
3b…裏面 4…分極反転領域
10…配列電極群 11…給電用電極
101…電極片
DESCRIPTION OF
Claims (5)
前記給電用電極は、複数の前記電極片の配列方向に対して傾斜して延びていることを特徴とする周期分極反転用電極。 An array electrode group consisting of a plurality of electrode pieces arranged side by side on one main surface of the ferroelectric single crystal base material, and each electrode piece connected to each electrode piece constituting the array electrode group A power supply electrode for supplying power to the electrode piece,
The electrode for periodic polarization inversion, wherein the power feeding electrode extends in an inclined manner with respect to an arrangement direction of the plurality of electrode pieces.
前記強誘電体単結晶基材の一主面上に、請求項1乃至3のいずれか一つに記載された周期分極反転用電極を設けるとともに、該強誘電体単結晶基材の該一主面と反対側の背面に該周期分極反転用電極と対向する背面電極を設け、該周期分極反転用電極と該背面電極との間に電圧を印加することにより、該強誘電体単結晶基材内に周期分極反転構造を形成することを特徴とする周期分極反転素子の製造方法。 A method of manufacturing a bulk-type periodic polarization reversal element having a periodic polarization reversal region by forming a periodic polarization reversal structure in a Z-cut or Z-off cut ferroelectric single crystal substrate,
A periodic polarization reversal electrode according to any one of claims 1 to 3 is provided on one main surface of the ferroelectric single crystal substrate, and the one main surface of the ferroelectric single crystal substrate is provided. Providing a back electrode opposite to the periodic polarization reversal electrode on the back side opposite to the surface, and applying a voltage between the periodic polarization reversal electrode and the back electrode, thereby providing the ferroelectric single crystal substrate A method of manufacturing a periodic polarization reversal element, wherein a periodic polarization reversal structure is formed inside.
前記強誘電体単結晶基材は、マグネシウムを含むニオブ酸リチウム又はマグネシウムを含むタンタル酸リチウムよりなり、かつ、3mm以上の厚さ(H)を有し、
前記周期分極反転領域により波長変換されて出力される光の、前記強誘電体単結晶基材の幅方向における半値全幅が、2mmを超え、かつ、前記厚さ(H)の50〜90%であることを特徴とする周期分極反転素子。 A bulk-type periodic polarization reversal element having a periodic polarization reversal region in a Z-cut or Z-off cut ferroelectric single crystal substrate,
The ferroelectric single crystal substrate is made of lithium niobate containing magnesium or lithium tantalate containing magnesium, and has a thickness (H) of 3 mm or more,
The full width at half maximum in the width direction of the ferroelectric single crystal substrate of the light that is wavelength-converted and output by the periodic polarization inversion region exceeds 2 mm, and is 50 to 90% of the thickness (H). There is a periodic polarization reversal element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007306233A JP5105358B2 (en) | 2007-11-27 | 2007-11-27 | Periodic polarization reversal member and method of manufacturing periodic polarization reversal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007306233A JP5105358B2 (en) | 2007-11-27 | 2007-11-27 | Periodic polarization reversal member and method of manufacturing periodic polarization reversal element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009128819A true JP2009128819A (en) | 2009-06-11 |
JP5105358B2 JP5105358B2 (en) | 2012-12-26 |
Family
ID=40819768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007306233A Active JP5105358B2 (en) | 2007-11-27 | 2007-11-27 | Periodic polarization reversal member and method of manufacturing periodic polarization reversal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5105358B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014010387A (en) * | 2012-07-02 | 2014-01-20 | Shimadzu Corp | Electrode for periodic polarization reversal, method for forming periodic polarization reversal structure, and periodic polarization reversed element |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05100266A (en) * | 1991-06-26 | 1993-04-23 | Hikari Keisoku Gijutsu Kaihatsu Kk | Optical higher harmonics generating element |
JPH08271940A (en) * | 1995-03-31 | 1996-10-18 | Kyocera Corp | Production of optical device |
JPH11202376A (en) * | 1998-01-08 | 1999-07-30 | Mitsubishi Cable Ind Ltd | Manufacture of polarization inverted crystal |
JP2001287999A (en) * | 1999-11-09 | 2001-10-16 | National Institute For Materials Science | Lithium tantalate single crystal, optical element thereof and method for producing the same |
JP2005148203A (en) * | 2003-11-12 | 2005-06-09 | National Institute For Materials Science | Polarization inversion method by defect density control and optical wavelength conversion element |
JP2007269626A (en) * | 1999-11-09 | 2007-10-18 | National Institute For Materials Science | Single crystal of lithium niobate, its optical element and method for manufacturing the crystal |
-
2007
- 2007-11-27 JP JP2007306233A patent/JP5105358B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05100266A (en) * | 1991-06-26 | 1993-04-23 | Hikari Keisoku Gijutsu Kaihatsu Kk | Optical higher harmonics generating element |
JPH08271940A (en) * | 1995-03-31 | 1996-10-18 | Kyocera Corp | Production of optical device |
JPH11202376A (en) * | 1998-01-08 | 1999-07-30 | Mitsubishi Cable Ind Ltd | Manufacture of polarization inverted crystal |
JP2001287999A (en) * | 1999-11-09 | 2001-10-16 | National Institute For Materials Science | Lithium tantalate single crystal, optical element thereof and method for producing the same |
JP2007269626A (en) * | 1999-11-09 | 2007-10-18 | National Institute For Materials Science | Single crystal of lithium niobate, its optical element and method for manufacturing the crystal |
JP2005148203A (en) * | 2003-11-12 | 2005-06-09 | National Institute For Materials Science | Polarization inversion method by defect density control and optical wavelength conversion element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014010387A (en) * | 2012-07-02 | 2014-01-20 | Shimadzu Corp | Electrode for periodic polarization reversal, method for forming periodic polarization reversal structure, and periodic polarization reversed element |
Also Published As
Publication number | Publication date |
---|---|
JP5105358B2 (en) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000066254A (en) | Formation of polarization inversion structure | |
JP4646333B2 (en) | Harmonic generator | |
US6952307B2 (en) | Electric field poling of ferroelectric materials | |
JP4119508B2 (en) | Optical wavelength conversion element and manufacturing method thereof, light generation apparatus and optical pickup using the element, and manufacturing method of polarization inversion unit | |
JP5300664B2 (en) | Method for manufacturing polarization reversal part | |
JP5105358B2 (en) | Periodic polarization reversal member and method of manufacturing periodic polarization reversal element | |
JP2008268547A (en) | Laser device, wavelength conversion element, and manufacturing method thereof | |
JP4400816B2 (en) | Method for manufacturing periodically poled structure and optical device | |
US7668410B2 (en) | Production method for polarization inversion unit | |
JP4201244B2 (en) | Method for manufacturing polarization reversal part | |
JP4067039B2 (en) | Method for forming periodically poled structure | |
JP4646150B2 (en) | Method for manufacturing periodically poled structure | |
JP3885939B2 (en) | Manufacturing method of optical waveguide device | |
JP3884197B2 (en) | Fabrication method of domain-inverted structure | |
JP2002372731A (en) | Element for waveguide conversion and element for optical operation | |
JP4764964B2 (en) | Method for forming minute periodic polarization reversal structure and minute periodic polarization reversal structure | |
JP2013160970A (en) | Periodic polarization inverting electrode, method for forming periodic polarization inverting structure, and periodic polarization inverting element | |
JP4100937B2 (en) | Wavelength conversion element and method of forming periodic domain-inverted structure | |
JP4514146B2 (en) | Method for manufacturing periodically poled optical waveguide device | |
JP2009151149A (en) | Method of manufacturing periodic polarization inversion structure | |
JP2016024423A (en) | Manufacturing method of wavelength conversion element, and wavelength conversion element | |
JP4899948B2 (en) | Optical element manufacturing method | |
JP2009092843A (en) | Manufacturing method for periodic polarization reversal structure | |
JP2005258348A (en) | Method for manufacturing periodic polarization inversion structure and periodic polarization inversion structure | |
Okazaki et al. | EO Spatial UV-Light Modulator Using Periodically-Poled Deep-Proton-Exchaged s-LiTaO3 Waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5105358 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151012 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |