JPH05100266A - Optical higher harmonics generating element - Google Patents

Optical higher harmonics generating element

Info

Publication number
JPH05100266A
JPH05100266A JP18320691A JP18320691A JPH05100266A JP H05100266 A JPH05100266 A JP H05100266A JP 18320691 A JP18320691 A JP 18320691A JP 18320691 A JP18320691 A JP 18320691A JP H05100266 A JPH05100266 A JP H05100266A
Authority
JP
Japan
Prior art keywords
optical
substrate
refractive index
inversion
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18320691A
Other languages
Japanese (ja)
Inventor
Hiroaki Endo
弘明 遠藤
Yoshihiro Sanpei
義広 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP18320691A priority Critical patent/JPH05100266A/en
Publication of JPH05100266A publication Critical patent/JPH05100266A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a domain inversion period corresponding to the equivalent refractive index of an optical waveguide as to the optical higher harmonic generating element which utilizes phase matching by domain inversion. CONSTITUTION:On the same substrate 11, plural optical waveguides 12 are provided, and provided with different-period polarization inversion. Further, this element is provided with electrodes 14 and 15 which apply an electric field to the optical waveguides 12 to adjust the difference between the equivalent refractive index to a fundamental wave and the equivalent refractive index to higher harmonics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は短波長光の発生に利用す
る。特に、ドメイン反転位相整合方式による光高調波の
発生に関する。
BACKGROUND OF THE INVENTION The present invention is used to generate short wavelength light. In particular, it relates to generation of optical harmonics by the domain inversion phase matching method.

【0002】[0002]

【従来の技術】短波長光を発生する素子として、非線形
光学物質を用い、入射レーザ光に対してその高調波、特
に第二高調波を出力する高調波発生素子が従来から知ら
れている。特に変換効率の高いものとしては、光導波路
に沿って分極方向を周期的に反転させたドメイン反転位
相整合方式の素子がある。
2. Description of the Related Art As a device for generating short wavelength light, a harmonic generating device which uses a non-linear optical material and outputs its harmonic wave, particularly the second harmonic wave, with respect to incident laser light has been conventionally known. A device having a particularly high conversion efficiency is a domain inversion phase matching type device in which the polarization direction is periodically inverted along the optical waveguide.

【0003】ドメイン反転位相整合方式は、分極を周期
的に反転させることにより入射光の位相とその高調波光
の位相とを整合させ、変換効率を高めるものである。分
極の反転周期すなわちドメイン反転周期Lc は、コヒー
レンス長により与えられ、 Lc =λF /2(NF −NSH) で表される。λF は基本波(入射光)の波長、NF は基
本波に対する等価屈折率、NSHは高調波に対する等価屈
折率である。
The domain reversal phase matching method is to increase the conversion efficiency by periodically reversing the polarization to match the phase of incident light with the phase of its harmonic light. The polarization inversion period, that is, the domain inversion period L c is given by the coherence length and is represented by L c = λ F / 2 (N F −N SH ). λ F is the wavelength of the fundamental wave (incident light), N F is the equivalent refractive index for the fundamental wave, and N SH is the equivalent refractive index for harmonics.

【0004】光導波路の等価屈折率は、その材料の不純
物濃度や導波路の厚さによっても変化する。しかし、上
式から明らかなように、光導波路の等価屈折率が正しく
制御されていないと、光導波路上の分極を正確な周期で
反転させても位相整合が得られないことになる。これを
実用的に解決する構造として、平成2年春季第37回応
用物理学関係連合講演会予稿集第893頁、論文番号2
8P−F−8、分極反転グレーティング位相整合LN導
波路SHGデバイスには、同一基板上に複数の光導波路
を平行に設け、それに対して扇状に分極反転を形成した
素子が示されている。
The equivalent refractive index of the optical waveguide changes depending on the impurity concentration of the material and the thickness of the waveguide. However, as is clear from the above equation, if the equivalent refractive index of the optical waveguide is not properly controlled, phase matching cannot be obtained even if the polarization on the optical waveguide is inverted at an accurate period. As a structure for practically solving this, the spring of 1990, the 37th Joint Lecture on Applied Physics, Proceedings, page 893, article number 2
In 8P-F-8 and polarization inversion grating phase matching LN waveguide SHG device, an element in which a plurality of optical waveguides are provided in parallel on the same substrate and polarization inversion is formed in a fan shape is shown.

【0005】図3は上述の文献に示された光高調波発生
素子を示す斜視図である。この素子はLiNbO3 基板
31上に形成された複数の光導波路32を備え、さら
に、これらの光導波路32に対して扇状の分極反転部を
周期的に形成したドメイン反転領域33を備える。分極
の反転が扇状に分布しているため、複数の光導波路32
のそれぞれに対してドメイン反転周期が少しずつ異な
る。使用時には、複数の光導波路32の中から最適のも
のを選べばよい。
FIG. 3 is a perspective view showing the optical harmonic generating element shown in the above-mentioned document. This device includes a plurality of optical waveguides 32 formed on a LiNbO 3 substrate 31, and further includes a domain inversion region 33 in which fan-shaped polarization inversion parts are periodically formed in the optical waveguides 32. Since the inversion of polarization is distributed in a fan shape, a plurality of optical waveguides 32
The domain inversion period is slightly different for each of. At the time of use, the optimum one may be selected from the plurality of optical waveguides 32.

【0006】[0006]

【発明が解決しようとする課題】しかし、この構造で
は、光導波路の実際の等価屈折率にほぼ対応するドメイ
ン反転周期を選ぶことはできるが、各々の光導波路に対
するドメイン反転周期の変化が段階的であるため、必ず
しも光導波路の等価屈折率に対応したドメイン反転周期
を得ることは困難である。
With this structure, however, it is possible to select a domain inversion period that approximately corresponds to the actual equivalent refractive index of the optical waveguide, but the domain inversion period for each optical waveguide changes gradually. Therefore, it is not always easy to obtain the domain inversion period corresponding to the equivalent refractive index of the optical waveguide.

【0007】本発明は、このような課題を解決し、光導
波路の等価屈折率に対応するドメイン反転周期を得るこ
とのできる光高調波発生素子を提供することを目的とす
る。
An object of the present invention is to solve the above problems and to provide an optical harmonic generating element capable of obtaining a domain inversion period corresponding to the equivalent refractive index of an optical waveguide.

【0008】[0008]

【課題を解決するための手段】本発明の第一の観点によ
ると、非線形光学物質の基板と、この基板に形成された
光導波路とを備え、基板には光導波路を横切って周期的
分極反転が形成された光高調波発生素子において、光導
波路に電界を印加して基本波に対する等価屈折率と高調
波に対する等価屈折率との差を調整する電界印加手段を
備えたことを特徴とする光高調波発生素子が提供され
る。
According to a first aspect of the present invention, a substrate of a non-linear optical material and an optical waveguide formed on the substrate are provided, and the substrate has a periodic polarization reversal across the optical waveguide. In the optical harmonic generation element having the structure described above, an electric field applying means is provided for adjusting the difference between the equivalent refractive index for the fundamental wave and the equivalent refractive index for the harmonic by applying an electric field to the optical waveguide. A harmonic generation element is provided.

【0009】電界印加手段は、分極が反転する毎に極性
が反転する電界を光導波路に印加する構成が望ましい
が、他の構成でもよい。例えば、周期的分極反転を光導
波路の長さ方向の一部に離散的に形成し、周期的分極反
転が設けられた部分と設けられていない部分とを含んで
電界を印加することもできる。
It is desirable that the electric field applying means applies an electric field whose polarity is inverted every time the polarization is inverted to the optical waveguide, but other configurations may be adopted. For example, the periodic polarization inversion may be discretely formed in a part of the length direction of the optical waveguide, and the electric field may be applied including the portion provided with the periodic polarization inversion and the portion not provided with the periodic polarization inversion.

【0010】この素子を従来例に示した構造と組み合わ
せると、従来例に示した構造を粗調に用い、さらに、基
本波に対する等価屈折率NF および高調波に対する等価
屈折率NSHを微調することができる。
When this element is combined with the structure shown in the conventional example, the structure shown in the conventional example is used roughly, and the equivalent refractive index N F for the fundamental wave and the equivalent refractive index N SH for the harmonics are finely adjusted. be able to.

【0011】具体的には、非線形光学物質の基板と、こ
の基板に形成された複数の光導波路とを備え、基板に
は、複数の光導波路のそれぞれに対して異なる周期とな
る形状、例えば扇状の周期的分極反転がそれぞれの光導
波路を横切って形成された光高調波発生素子において、
分極が反転する毎に極性が反転する電界を光導波路に印
加する手段を備えたことを特徴とする光高調波発生素子
が提供される。
Specifically, it comprises a substrate of a non-linear optical material and a plurality of optical waveguides formed on the substrate, and the substrate has a shape having a different period for each of the plurality of optical waveguides, for example, a fan shape. In the optical harmonic generating device in which the periodic polarization inversion of is formed across each optical waveguide,
There is provided an optical harmonic generation device comprising a means for applying an electric field whose polarity is inverted every time the polarization is inverted, to an optical waveguide.

【0012】また、周期的分極反転が複数の光導波路の
長さ方向の一部に離散的に形成され、複数の光導波路の
それぞれに沿って、周期的分極反転が設けられた部分と
設けられていない部分とを含んで電界を印加する手段を
備えたことを特徴とする光高調波発生素子が提供され
る。
Further, the periodic polarization inversions are discretely formed in a part of the plurality of optical waveguides in the lengthwise direction, and a portion provided with the periodic polarization inversions is provided along each of the plurality of optical waveguides. An optical harmonic generating element is provided, which includes means for applying an electric field including a portion not included.

【0013】[0013]

【作用】非線形光学物質に電界を印加すれば屈折率が変
化することは公知である。しかし、分極が周期的に反転
する領域に電界を印加しても、分極の方向毎に電界の効
果が異なるために屈折率の変化が相殺されてしまう。そ
こで、例えば二つの櫛形電極を用いて、分極の方向毎に
極性の異なる電界を印加すれば、等価屈折率を変化させ
ることができる。また、光導波路の一部に離散的に周期
的分極反転を設け、光導波路全体に電界を印加すれば、
周期的分極反転が設けられた領域では屈折率の変化が相
殺されるが、その間の分極反転の設けられていない領域
では屈折率変化が残り、等価屈折率を変化させることが
できる。
It is known that the refractive index changes when an electric field is applied to a nonlinear optical material. However, even if an electric field is applied to a region where the polarization is periodically inverted, the change in the refractive index is canceled out because the effect of the electric field differs depending on the polarization direction. Therefore, the equivalent refractive index can be changed by using, for example, two comb-shaped electrodes and applying electric fields having different polarities in each polarization direction. In addition, if periodic polarization inversion is provided in a part of the optical waveguide and an electric field is applied to the entire optical waveguide,
The change in the refractive index is canceled in the region where the periodic polarization inversion is provided, but the change in the refractive index remains in the region where the polarization inversion is not provided therebetween, and the equivalent refractive index can be changed.

【0014】[0014]

【実施例】図1は本発明第一実施例の光高調波発生素子
の構造を示す斜視図である。
1 is a perspective view showing the structure of an optical harmonic generating device according to a first embodiment of the present invention.

【0015】この素子は、非線形光学物質の基板11
と、この基板11に形成された複数の光導波路12とを
備え、基板11には、複数の光導波路12のそれぞれに
対して異なる周期となる形状の周期的分極反転がそれぞ
れの光導波路を横切って形成されたドメイン反転領域1
3が設けられる。ただし、簡単のため分極が反転した部
分については図示していない。
This device comprises a substrate 11 of a non-linear optical material.
And a plurality of optical waveguides 12 formed on the substrate 11, and the substrate 11 is provided with periodic polarization inversions of different shapes for the plurality of optical waveguides 12 across the respective optical waveguides. Domain inversion region 1 formed by
3 is provided. However, the portion where the polarization is inverted is not shown for simplicity.

【0016】ここで本実施例の特徴とするところは、分
極が反転する毎に極性が反転する電界を複数の光導波路
12に印加する手段として、互いに噛み合う形状の二つ
の櫛形電極14、15を備えたことにある。
The feature of this embodiment is that two comb-shaped electrodes 14 and 15 having mutually meshing shapes are used as means for applying an electric field whose polarity is inverted each time the polarization is inverted to the plurality of optical waveguides 12. I was prepared.

【0017】非線形光学物質としてLiNbO3 が用い
られ、光導波路12がプロトン交換により形成されてい
るとする。その場合には、基本波の波長λF に対するド
メイン反転周期Lc は、 λF =1.547 μmのときLc =7.242 μm λF =0.84 μmのときLc =1.732 μm となる。
It is assumed that LiNbO 3 is used as the nonlinear optical material and the optical waveguide 12 is formed by proton exchange. In that case, the domain inversion period L c with respect to the wavelength lambda F of the fundamental wave is a case of λ F = 1.547 μm L c = 7.242 μm λ F = 0.84 L c = 1.732 μm when the [mu] m.

【0018】櫛形電極14、15間に電圧を供給する
と、互いに反転している分極間に電界が印加され、電気
光学効果により屈折率が変化し、基本波に対する屈折率
と高調波に対する屈折率との差 Δn=|NF −NSH| も変化する。この変化により導波路の等価屈折率を微調
節でき、ドメイン反転周期Lc に対応する値にできる。
したがって、分極の反転による位相整合を実現でき、基
本波から高調波への変換効率を最大に高めることができ
る。
When a voltage is applied between the comb-shaped electrodes 14 and 15, an electric field is applied between the polarizations that are inverted to each other, and the refractive index changes due to the electro-optical effect, so that the refractive index for the fundamental wave and the refractive index for the harmonic wave are changed. of the difference Δn = | N F -N SH | also varies. By this change, the equivalent refractive index of the waveguide can be finely adjusted to a value corresponding to the domain inversion period L c .
Therefore, phase matching by reversing the polarization can be realized, and the conversion efficiency from the fundamental wave to the harmonic wave can be maximized.

【0019】電界によるΔnの補正量Δn′は、 Δn′=(1/2)r33・(V/d)|ΓSH(NSH)3 −ΓF(NF)3 | で表される。具体的な値として、 電気光学係数r33=30.8×10-12 〔m/V〕 基本波の波長λF =1.55 〔μm〕 基本波に対する等価屈折率NF =2.1366 高調波の波長λSH=0.775 〔μm〕 高調波に対する等価屈折率NSH=2.1774 電界補正係数ΓSH=ΓF =0.5 電極間ギャップd=1〔μm〕 とすると、 Δn′=4.4 ×10-6×V となる。したがって、100 Vの電圧で、 Δn′=4.4 ×10-4 だけ屈折率差を補正できる。プロトン交換LiNbO3
導波路では、その厚さが0.1 μm変化したときに屈折率
差Δnが0.0044程度変化する。したがって、そのような
製造誤差を100 Vの電圧で補正できる。
The correction amount [Delta] n due to the electric field [Delta] n 'is, Δn' = (1/2) r 33 · (V / d) | is expressed by | Γ SH (N SH) 3 -Γ F (N F) 3 .. Specific values, electro-optic coefficient r 33 = 30.8 × 10 -12 [m / V] wavelength of the fundamental wave lambda F = 1.55 [μm] equivalent refractive index for the fundamental wave N F = 2.1366 harmonic wavelength lambda SH = 0.775 [μm] Equivalent refractive index for higher harmonics N SH = 2.1774 If the electric field correction coefficient Γ SH = Γ F = 0.5 and the interelectrode gap d = 1 [μm], then Δn ′ = 4.4 × 10 −6 × V. Therefore, with a voltage of 100 V, the refractive index difference can be corrected by Δn ′ = 4.4 × 10 −4 . Proton exchange LiNbO 3
In the waveguide, when the thickness changes by 0.1 μm, the refractive index difference Δn changes by about 0.0044. Therefore, such a manufacturing error can be corrected with a voltage of 100V.

【0020】図2は本発明第二実施例の光高調波発生素
子の構造を示す斜視図である。
FIG. 2 is a perspective view showing the structure of the optical harmonic generating element of the second embodiment of the present invention.

【0021】この素子は、非線形光学物質の基板21
と、この基板21に形成された複数の光導波路22とを
備え、基板21には、複数の光導波路22のそれぞれに
対して異なる周期となる形状の周期的分極反転がそれぞ
れの光導波路を横切って形成されたドメイン反転領域2
3が設けられる。
This device comprises a substrate 21 of nonlinear optical material.
And a plurality of optical waveguides 22 formed on the substrate 21, and the substrate 21 has a periodic polarization inversion having a different period for each of the plurality of optical waveguides 22 across each optical waveguide. Domain inversion region 2 formed by
3 is provided.

【0022】ここで本実施例の特徴とするところは、ド
メイン反転領域23が複数の光導波路22の長さ方向の
一部に離散的に形成され、この複数の光導波路22のそ
れぞれに沿って、周期的分極反転が設けられた部分と設
けられていない部分とを含んで電界を印加する手段とし
て二つの櫛形電極24、25を備えたことにある。櫛形
電極24は、その歯が複数の光導波路22に沿って配置
される。櫛形電極25は、その歯が櫛形電極24の歯の
間に挟まれるように配置される。
The feature of this embodiment is that the domain inversion regions 23 are discretely formed in a part of the plurality of optical waveguides 22 in the longitudinal direction, and the domain inversion regions 23 are formed along the respective optical waveguides 22. The two comb-shaped electrodes 24 and 25 are provided as means for applying an electric field including a portion provided with periodic polarization inversion and a portion not provided with periodic polarization inversion. The teeth of the comb-shaped electrode 24 are arranged along the plurality of optical waveguides 22. The comb-shaped electrode 25 is arranged so that its teeth are sandwiched between the teeth of the comb-shaped electrode 24.

【0023】上述した第一実施例では、基本波の波長λ
F が短いほどドメイン反転周期Lc が短くなり、それに
伴って電極の周期も小さくしなければならない。例えば
基本波として波長0.84 μmの光を用いるとすると、上
述したようにドメイン反転周期Lc は1.732 μmであ
り、電極の幅はその半分以下にしなければならない。こ
のような微細なパターンは通常のフォトリソグラフィで
は製造が困難となり、高価な製造装置や複雑な製造プロ
セスが必要となってしまう。
In the first embodiment described above, the wavelength λ of the fundamental wave is
The shorter F becomes, the shorter the domain inversion period L c becomes, and the electrode period must be made smaller accordingly. For example, if light having a wavelength of 0.84 μm is used as the fundamental wave, the domain inversion period L c is 1.732 μm as described above, and the width of the electrode must be half or less. Such a fine pattern is difficult to manufacture by ordinary photolithography, and an expensive manufacturing apparatus and a complicated manufacturing process are required.

【0024】そこで第二実施例では、周期的分極反転を
光導波路22に対して離散的に配置し、分極反転の設け
られていない領域における屈折率差の変化を利用する。
ドメイン反転領域23では屈折率差の変化は生じない。
櫛形電極24、25のそれぞれの歯の部分は光導波路2
2と平行であり、その周期は光導波路22の間隔によっ
て決まる。したがって、使用する基本波の波長とは無関
係に調節できる。
Therefore, in the second embodiment, the periodic polarization inversion is discretely arranged with respect to the optical waveguide 22, and the change in the refractive index difference in the region where the polarization inversion is not provided is utilized.
In the domain inversion region 23, the difference in refractive index does not change.
The tooth portions of the comb-shaped electrodes 24 and 25 are the optical waveguides 2.
It is parallel to 2 and its period is determined by the distance between the optical waveguides 22. Therefore, it can be adjusted regardless of the wavelength of the fundamental wave used.

【0025】以上の説明では、非線形光学物質としてL
iNbO3 を用い、光導波路としてプロトン交換導波路
を用い、第二高調波を発生する場合を例に説明したが、
本発明は、他の材料や他のプロセスにより得られる導波
路を用いた場合や、より高次の高調波の発生の場合にも
本発明を同様に実施できる。
In the above description, L is used as the nonlinear optical material.
The case where iNbO 3 is used and a proton exchange waveguide is used as an optical waveguide to generate the second harmonic has been described as an example.
The present invention can be similarly applied to the case where a waveguide obtained by another material or another process is used, or when higher harmonics are generated.

【0026】[0026]

【発明の効果】以上説明したように、本発明の光高調波
発生素子は、分極反転の周期に合わせて最適な導波路等
価屈折率を得ることができる。したがって、基本波から
高調波への変換効率を高めることができる効果がある。
As described above, the optical harmonic generating element of the present invention can obtain an optimum waveguide equivalent refractive index in accordance with the period of polarization inversion. Therefore, there is an effect that the conversion efficiency from the fundamental wave to the harmonic wave can be increased.

【0027】また、温度変化などの外的要因により分極
反転の周期に変化が生じた場合でも、その変化を簡単に
補正できる効果がある。
Further, even if the period of the polarization inversion changes due to an external factor such as a temperature change, the change can be easily corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の光高調波発生素子を示す斜
視図。
FIG. 1 is a perspective view showing an optical harmonic generation device of a first embodiment of the present invention.

【図2】本発明第二実施例の光高調波発生素子を示す斜
視図。
FIG. 2 is a perspective view showing an optical harmonic generating element of a second embodiment of the present invention.

【図3】従来例の光高調波発生素子を示す斜視図。FIG. 3 is a perspective view showing a conventional optical harmonic generation element.

【符号の説明】[Explanation of symbols]

11、21、31 基板 12、22、32 光導波路 13、23、33 ドメイン反転領域 14、15、24、25 櫛形電極 11, 21, 31 Substrate 12, 22, 32 Optical waveguide 13, 23, 33 Domain inversion region 14, 15, 24, 25 Comb-shaped electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学物質の基板と、 この基板に形成された光導波路とを備え、 前記基板には前記光導波路を横切って周期的分極反転が
形成された光高調波発生素子において、 前記光導波路に電界を印加して基本波に対する等価屈折
率と高調波に対する等価屈折率との差を調整する電界印
加手段を備えたことを特徴とする光高調波発生素子。
1. An optical harmonic generation device comprising: a substrate of a non-linear optical material; and an optical waveguide formed on the substrate, wherein a periodic polarization inversion is formed across the optical waveguide on the substrate. An optical harmonic generation device comprising an electric field applying means for applying an electric field to an optical waveguide to adjust a difference between an equivalent refractive index for a fundamental wave and an equivalent refractive index for a harmonic.
【請求項2】 非線形光学物質の基板と、 この基板に形成された複数の光導波路とを備え、 前記基板には、前記複数の光導波路のそれぞれに対して
異なる周期となる形状の周期的分極反転がそれぞれの光
導波路を横切って形成された光高調波発生素子におい
て、 分極が反転する毎に極性が反転する電界を前記複数の光
導波路に印加する手段を備えたことを特徴とする光高調
波発生素子。
2. A substrate made of a non-linear optical material and a plurality of optical waveguides formed on the substrate, wherein the substrate has a periodic polarization having a shape having a different period for each of the plurality of optical waveguides. An optical harmonic generation device in which inversion is formed across each optical waveguide, characterized in that it is provided with means for applying to said plurality of optical waveguides an electric field whose polarity is inverted every time the polarization is inverted. Wave generating element.
【請求項3】 非線形光学物質の基板と、 この基板に形成された複数の光導波路とを備え、 前記基板には、前記複数の光導波路のそれぞれに対して
異なる周期となる形状の周期的分極反転がそれぞれの光
導波路を横切って形成された光高調波発生素子におい
て、 前記周期的分極反転は前記複数の光導波路の長さ方向の
一部に離散的に形成され、 前記複数の光導波路のそれぞれに沿って、前記周期的分
極反転が設けられた部分と設けられていない部分とを含
んで電界を印加する手段を備えたことを特徴とする光高
調波発生素子。
3. A substrate of a non-linear optical material, and a plurality of optical waveguides formed on the substrate, wherein the substrate has a periodic polarization having a shape having a different period for each of the plurality of optical waveguides. In the optical harmonic generating element in which inversion is formed across each optical waveguide, the periodic polarization inversion is discretely formed in a part of the length direction of the plurality of optical waveguides, An optical harmonic generation device comprising means for applying an electric field including a portion provided with the periodic polarization inversion and a portion not provided with the periodic polarization inversion along each of them.
JP18320691A 1991-06-26 1991-06-26 Optical higher harmonics generating element Pending JPH05100266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18320691A JPH05100266A (en) 1991-06-26 1991-06-26 Optical higher harmonics generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18320691A JPH05100266A (en) 1991-06-26 1991-06-26 Optical higher harmonics generating element

Publications (1)

Publication Number Publication Date
JPH05100266A true JPH05100266A (en) 1993-04-23

Family

ID=16131638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18320691A Pending JPH05100266A (en) 1991-06-26 1991-06-26 Optical higher harmonics generating element

Country Status (1)

Country Link
JP (1) JPH05100266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127208A (en) * 1991-11-06 1993-05-25 Oki Electric Ind Co Ltd Second harmonic generating element
JP2007073552A (en) * 2005-09-02 2007-03-22 Sony Corp Laser light generator and image formation apparatus
JP2009128819A (en) * 2007-11-27 2009-06-11 National Institutes Of Natural Sciences Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127208A (en) * 1991-11-06 1993-05-25 Oki Electric Ind Co Ltd Second harmonic generating element
JP2007073552A (en) * 2005-09-02 2007-03-22 Sony Corp Laser light generator and image formation apparatus
JP2009128819A (en) * 2007-11-27 2009-06-11 National Institutes Of Natural Sciences Electrode for periodic polarization reversal, and method for manufacturing periodic polarization reversed element

Similar Documents

Publication Publication Date Title
US20110043895A1 (en) Wavelength converting device, laser, and method to stabilize the wavelength conversion efficiency
EP0664474A1 (en) Electrically controllable grating, and optical elements having an electrically controllable grating
JP2969787B2 (en) Domain control method for nonlinear ferroelectric optical materials
US6952307B2 (en) Electric field poling of ferroelectric materials
JPH05100266A (en) Optical higher harmonics generating element
EP2245508B1 (en) Compensation for the gouy phase shift in quasi-phase matching
JP3005225B2 (en) Method for manufacturing nonlinear ferroelectric optical element having domain inversion structure
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
EP0558801A1 (en) Wavelength converting element
JPH06273816A (en) Optical waveguide type second higher harmonic generating element
JPH06265956A (en) Optical wavelength conversion method
JP3049986B2 (en) Optical wavelength conversion element
JPH06110024A (en) Light reflector
JP4635246B2 (en) Polarization inversion method by charge amount control and wavelength conversion element using the same
JPH06102553A (en) Optical wavelength conversion element and short wavelength laser beam source
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JP3111955B2 (en) Wavelength conversion element
US6762874B2 (en) Polarization inversion method of ferroelectrics and fabrication method of optical wavelength conversion device
JP3447078B2 (en) Optical wavelength conversion element
JP2002350915A (en) Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JP2001109028A (en) Production of polarization inversion structure
Laurell et al. Recent developments of periodically poled KTP and isomorphs
JP5403521B2 (en) Apparatus for forming domain-inverted regions
CN111046588A (en) Chirp quasiperiodic structure superlattice material and design method thereof
JPH06123903A (en) Second harmonic wave generator